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THE FUNDAMENTAL DIVISOR OF NORMAL
DOUBLE POINTS OF SURFACES

DAVID JOSEPH DIXON

Let W be a surface with a normal singular point w.
Consider the minimal resolution of that singularity,
π: W'->W. Let π^iw) = Γ = Y, ••• Yd, where the Y, are
distinct irreducible curves on W. We are interested in
two divisors on W both of which have support on Y. These
divisors are Z, the fundamental divisor, and M, the divisor
of the maximal ideal. In general Z ^ M. In this thesis
we show that if w is a double point singularity which
satisfies certain conditions, then Z — M.

Introduction* Let A denote a normal, two-dimensional local
ring. For simplicity assume that the residue field, k, of A is
algebraically closed. Let π: Y-> Spec (A) be a birational proper map
with Y regular, i.e., a resolution of the singularity Spec (A). Denote
by mf the maximal ideal of A. Let π~\m') — Yx U U Yd, where
the Yi are distinct irreducible curves on F. Then, according to
Artin [1, page 132] there is a unique smallest positive divisor Z,
with support \Jί=1 Yu s u c ^ that Z-Y^O for all ΐ. Z is called the
fundamental divisor. We also have the divisor of the maximal ideal,
M, given by

where m< = mintem' {Wi(t)} and wi is the valuation determined by
Yi £ Y. In general Z <; M. Artin [1, Theorem 4] shows that if
Spec (A) has a rational singularity, then Z = M on every resolution.
Laufer [4, Theorem 3.13] proves that if Spec (A) has a minimally
elliptic double point singularity, then Z — M on every resolution.
Laufer also gives examples of double point singularities for which
Z < M. His surfaces have defining equation z2 = f(x, y), where
f(x, y)ek[[x, y]], jf(O, 0) = 0, and f(x, y) is reducible at (0, 0).

In this paper we show that if f(x, y) has even order or if f(x, y)
has odd order and is irreducible at (0, 0), then Z — M on the minimal
resolution of z2 = fix, y). In §1 we give a method for obtaining a
specific resolution of Spec (A) [3]. In §2 we perform some necessary
computations with Z and M, and in §3 we give the proofs of the
theorems.

1* Methods for resolving double point singularities* Let A
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be a noetherian, complete, two-dimensional, equicharacteristic (not
two), normal, local domain of multiplicity two. Assume that the
residue field, k, of A is algebraically closed. One has the following
characterization of A.

PROPOSITION 1. With A as above, we have that

A k[[x,y,T]]
(T2-f(xfy)) '

where f(x, y) 6 k[[x, y]], /(0, 0) = 0, and fix, y) has no multiple factors.

Proof. According to [9, Ch. VIII, Theorem 22 and Theorem 24,
Corollary 2] A is a finite module over k[[x, y]] and [A: k[[x, y]]] — 2,
where {x, y) is a system of parameters of A. Let L be the quotient
field of A and K be the quotient field of k[[x, y]]. Then [L: K] = 2
and there exists an element zeK such that L — K(z) and zz — f(x, y) e
M[#> 2/]] Without loss of generality we may assume that f(x, y) has
no multiple factors. It is easy to see that the integral closure of
k[[%, y]] i n L is k[[x, y, z]]. In fact, let a + βz be an element of L
which is integral over k[[x, y]]. Then Trace (a + βz) = 2aek[[x, y]]
and Norm (a + βz) = a2 + β2f(x, y) e ά[[x, ?/]], which imply that a and
/9 are elements of k[[xf y]]. But the fact that A is normal and
integral over k[[x, y]] implies that A, too, is the integral closure of
k[[x, y]] in L. Also, since A is local, /(0, 0) = 0 [8, Ch. V, Theorem
34].

We wish to obtain a resolution of the singularity of the surface
Spec (A). Thus we wish to find a nonsingular surface W and a
proper map π:W—> Spec (A) such that π induces an isomorphism
between W — π'\mr) and Spec (A) — m', where mf denotes the
maximal ideal of A.

Let R — k[[x, y]] and let m denote the maximal ideal of R. Let
φ: V—»Spec (iϋ) be a proper birational map obtained by successively
belonging up closed points. Let φ~\m) — X — X1 U U Xn, where
the Xi are distinct irreducible curves on F. Let D be the divisor
of f(x, y) on V. Then D = Όγ + D2, where Dx has support in X and
i)2 does not involve any Xi9 It is well known that we can find V
so that (A)red = Σ?=i -X"i ^ a s o n ly normal crossings and A is non-
singular. Each Xi Q V gives rise to a valuation xt on the function
field of V. Call Xt an odd (even) curve if Vi{f{x, y)) is odd (even).
Suppose Xi and X^i Φ j) are both odd curves such that Xt Xs = 1.
Let us blow up the point of intersection of Xt and X3 . Then we
obtain an even curve E such that E Xt = J5 X, — 1 and X^ Xy = 0,
where X< and Xά are the proper transforms of Xt and Xy. Thus
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we may assume that no two odd curves meet.
Now let V be the normalization of V in L. Then we get the

following commutative diagram:

Spec (A) <-?— V

(*)

Spec (A) < — V
Φ

We claim that π is a resolution of spec (A), i.e., that V is non-
singular. This follows easily from Proposition 1. In fact, let S be
the local ring of a point on V. Let fix, y)S — anavh, where {u, v}
is a regular system of parameters for S and a is a unit. Then S',
the integral closure of S, is also the integral closure of S[z], where
z2 = f(x9 V) = auav\ Hence S' = S[z'], where (z'Y = aua'vb', 0 ^ α',
6' <; 1, a ΞΞ α' mod 2, and δ ΞΞ &' mod 2. Thus S' is regular.

Let m' denote the maximal ideal of A. Note that π~\mr) =
g~^~\m) — g~\X). Thus, to find the irreducible components of π~\m')
we must see how the curves XiQV behave under normalization.
The rules are as follows and are easily deduced from the above
description of S'

(1) If Xi is and odd curve, then its reduced inverse image in
V is an isomorphic copy of Xt. This is because each point of Xt

has just one point lying above it in V (check locally).
(2) If Xt is an even curve meeting no odd curves, then in V'f

Xt splits into two disjoint copies of itself. This follows because
Xi = P' and the ramification points of Xi are precisely the points
of intersection of Xt with odd curves. Note that N = 2g + 2, where
N is the number of ramification points of Xt and g is the genus of
the inverse image of Xt in V.

(3) If Xi is an even curve meeting some odd curves, then the
inverse image of Xέ in V is a two fold branched cover of Xt. This
again follows from the local algebra. In this case, each even curve
must meet an even number of odd curves. This follows from the
formula N = 2g + 2.

Note that if X4 is an even curve in X meeting at most three
other curves, then the inverse image of Xt in V is rational.

We wish to determine the self-intersection numbers of the
inverse images of the Xi from the numbers (Xf). The rules are as
follows.

(1) If Xt is an odd curve, then the self-inter section number
of the inverse image of Xi in V is (Xί)/2.

(2) If Xi is an even curve meeting no odd curves, then in V
each component of the inverse image of X* has self-intersection
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number equal to (Xf).
(3) If Xi is an even curve which meets some odd curves, then

the self-intersection number of the inverse image of Xi in V is
2(Xf).

Let us prove rule one (the proofs of the other two rules are
similar). Let Zt denote the inverse image of Xim Let g be as in
diagram (*), gz. be g restricted to Zif ίx.: X* —> F and iz.: Zi —• V
be inclusions, and let &v and &v, denote structure sheaves. Then

2(Zi • Z^ - (2Zi Z^ = deg ί

= deg i%t(έ?v(Xi)) = (X!) .

See [5, Ch. IV, §13] for details.
Note that m'&γ, is locally principal.

2* Definitions and computations* Let π: V —* Spec (A) be as
before and let π~\mf) = XJ U U Xs\ where the X\ are distinct
irreducible curves on V. Let α4 = min ί e m {vt(t)} and let α =
mintte»'W(w)}> where v< and vj are the valuations determined by
Xi QV and Xί Q F'. Define a divisor M on F' by:

Λf = Σ a'iX'i

Λf is called the divisor of the maximal ideal. The αί can be computed
from the at as follows. If Xi is an odd curve and X) is the reduced
inverse image of Xi9 then a) = 2^. If Xi is an even curve meeting
some odd curves and X) is the inverse image of Xif then a'β — at.
Finally, if Xt is an even curve meeting no odd curves and if the
inverse image of Xi is X) U Xί, then a'ό = a[ = αίβ The proofs of
these rules are straightforward.

On the other hand, there is another important divisor on F'
called the fundamental divisor, which we denote by Z. As in Artin
[1, page 132], Z is the unique positive divisor on V such that:

(1) Z Xl ^ 0, for every i,
(2) if C is a divisor such that C X ^ O for every i, then

Let R be a normal two-dimensional local ring with maximal
ideal q. For simplicity, assume that the residue field of R is
algebraically closed. Let β: Y —• Spec (R) be a resolution of Spec (R).
Let β~\q)= ΓΊU U Yd, where the Yt are distinct irreducible curves.
Then in this general setting M and Z are defined as above and we
have the following propositions.
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PROPOSITION 2. If Z, M, R, q, and Y1 U ••• U Yd are as above,

then Z <: M.

Proof. We show that M Y, ^ 0 for every j . Let ws denote
the valuation determined by Yά £ Y. Clearly if Λf = Σ?=i w&iί'o
then mt = minlwΛ/i), •••, wt(fr)}f where the minimum is taken over
a basis flf -- ,fr of q. Denote the divisor of fi on F b y (/4). Then
(ft) = Fi + Gi9 where Ft is a linear combination of the Ys and G<
involves no F, . We obtain

0 - (/,) Fy = Ft . F, + G< F, .

Now Gt Γ, ^ 0, so F, Γ y ^ 0. Let Ft = Σ{s=1 6^ΓZ. Then

Λf - min (Flf -- ,Fr) = ±( min {6
i = l \ ί = l, .,r

and so Λf. Γ, ^ 0 [1, page 131].

PROPOSITION 3 [6, Lemma 2.8], Lei CΊ αwcί C2 be two divisors
on Y with support in U*=i ^ Assume that Cx Ŷ  ^ 0 /or every
j and that d ^ C2. Tfee^ (C?) ^ (C*) α^ώ Cx = C2 i/ α^d <mZi/ i/
(CD - (C2

2).

Proof. Let Cx + B = C2. Then

(CD = (CD + 2C, B + B2 ^ (CD

since C, B ^ 0 and J52 ̂  0. If (CD = (C2

2), then Cx - B ^ 0 implies
that B2 — 0. Thus B •= 0 since the intersection matrix for the F / s
is negative definite.

Let us also prove a lemma which will be useful in §3.

LEMMA 1. Let h: Yf —> F δe ίfee δiotί; up of pe Y, with β(p) = #.
Lei ΛίF αtid ikίF, denote the divisors of the maximal ideal on Y and
T. Then h-\Mγ) ^ Mγ,.

Proof. Let D = h~\p) and Λ-^F,) = F{ + ^I> Certainly the
coefficients of Y\ in h~1(Mγ) and Λfr/ are equal. Let ^ denote the
local ring of p on Y. Then g ^ , = tap, where ap is an ideal primary
for the maximal ideal of &v and ί is a local equation of Mγ at p.
Let vD deeote the valuation determined by D. Then

VD(Q) = v^Cί) + vD(ap) ,

and since, at D, h~\Mγ) has coefficient vD(t) and Λfr/ has coefficient
VD(Q)9 we have proved the lemma. Note that q&γ is invertible if
and only if h'\Mγ) — Mγ,.
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Let us now return to the case of surface singularities of multi-
plicity two. We wish to determine the possible values for the two
integers Z2 and M2 on a resolution of Spec (A), where A is an in
§1 and A has maximal ideal m\ Let β: F-» Spec (A) and any
resolution of Spec (A) and let β~\mf) = Y1 U U Yd9 where the Yt

are distinct irreducible curves. By [6, Theorem 2.7] if m'^ F is locally
principal, then M2 = — 2 on Y. If m'f^γ is not locally principal, then
consider a resolution a: TF—>Spec(A) such that mf^w is locally principal
(V for example), with λ: FT >Y. Denote the divisor of the maximal
ideal on W by M'. Lemma 1 and the remark following it then imply
that X~ι(M) < M'. But then Proposition 3 implies that

0 > M2 = (X-\M))2 > (MJ = - 2

and thus M2 = — 1. Combining the two above cases we obtain that
— 2 ^ M2 < 0 for any resolution of Spec (A). Propositions 2 and 3
then imply that - 2 ^ Z2 < 0. These bounds for Z2 and M2 give
us the following corollary to Proposition 3.

COROLLARY. With Z and M as above, if M2 = — 1, ίftew Z = M.

Proof. Z2^ M2 = - 1 implies that Z2 = - 1 . Proposition 3 then
implies that Z = M.

Note that m'tfΎ is not invertible in the above corollary since
m'6?γ is invertible if and only if M2 = - 2 .

Let us make the following two remarks. If Z2 = — 2 on some
resolution, then i£2 = — 2 on every resolution [6, Proposition 2.9]
and hence Z = M on every resolution by Proposition 3. Again using
Proposition 3, if Z < M on some resolution, then we must have
that M2 = - 2 and Z2 - - 1 .

We need the following general proposition.

PROPOSITION 4. Le£ Z be the fundamental divisor for a resolu-
tion of Spec (it!), where R is as in Proposition 2. Let Y =
Y1 U U Yd be the support of Z, with Yt distinct irreducible
curves. Let Z = Σ t i r% Y% and let B = Σΐ=i &* Ύi be a divisor whose
support is contained in Y, where bt ̂  0 for all i. Suppose that
Z2 = — 1, B2 = —2, ami JS Yi ^ 0 /or every i. Then the following
two conditions hold.

(1) There exists a unique integer % such that Z YiQ= —1,
ri0 = 1, and Z Y, = 0 /or j Φ iQ.

(2) There exists a unique integer kQ such that BΎko — — 1,
bk0 - 2, a^d J? Γy = 0 for j Φ k0.

Proof. To prove part one we compute with Z as follows:
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- 1 = Z Z = ΣUrAYj Z). Noting that Yj Z ^ 0 for all i and
that rd > 0 for all j [1, page 132], we obtain part one. To prove
part two we compute with B:

Since Yt B <* 0 for all i and bt ^ 0 for all i, we have three cases.

Case 1. There exists an integer k0 such that B YkQ — — 2,
δAo = 1, and i? Yd = 0 for j Φ k0.

Case 2. There exist two distinct integers k0 and l0 such that
B. YkQ = S Γ,o = - 1 , 6,0 - δ,0 = 1, and £• Γ, = 0 for j Φ k0, l0.

Case 3 is part two of the present proposition.
We will show that Cases 1 and 2 cannot occur. First we need

a computation. Since Z < B, let Z' Φ 0 be a divisor such that B =
Z + Z\ Then

- 2 = £ 2 = Z2 + 2Z Z'

and thus

Since {ZJ < 0, and Z Z' ̂  0, we must have that Z • Z' = 0. But
then

J5 Z = Z2 + ^ . ^ ' = - 1 .

Now it is easy to prove that Cases 1 and 2 are impossible. In
fact, for Case 1 we obtain

- 1 = B- Z = Σ.rAYrB) = - 2 n 0 ,

and so rko = 1/2 which is impossible. For Case 2 we compute
similarly:

-l = B'Z=£rJ(Yi-B) = -rk0-rh.

Thus r4o + Tι0 = 1 which is impossible since r, ^ 1 for all j [1, page
132]. This completes the proof of Proposition 4.

Under the assumptions of Proposition 4 we can also obtain the
following information. The computation
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yields biQ = 1. Also, since bko = 2 we have that % Φ k0.

COROLLARY. Suppose that the hypotheses of Proposition 4 are
satisfied with B = M {i.e., assume that Z < M on the resolution).
Assume that YkQ is rational and (Yl0) = —1 Let a: Y-*V0 be the
map obtained by blowing down Yko. Let Mo be the divisor of the
maximal ideal on Fo and let Zo be the fundamental divisor or Vo.
Then Zo = Mo.

Proof. We have that or\M,) Yko = 0, and thus a~\MQ) < M by
Lemma 1 and the remark following it. Then

Ml = (a-\M0)γ > M2 = - 2

by Proposition 3. Thus Ml = — 1 and we have that Zo = Mo by the
corollary to Proposition 3.

3* Statements and proofs of the theorems. The purpose of
this section is to prove that Z equals M in the minimal resolution
of certain double points of surfaces, among which are those in whose
defining equation z2 = f(x, y), f(x, y) is irreducible. We will show,
for these double points, that Z equals M either in the resolution
V described in §1 or in the resolution obtained by blowing down
a certain curve on V'. Note that M is locally principal on F ;, so
that Z = M on V if and only if Z2 = - 2 , and in that case Z = M
on every resolution. Now the minimal resolution can be obtained
from V by a succession of blowing downs [2, 7], Hence the follow-
ing proposition will imply that if Z equals M on some resolution
then Z = M on the minimal one.

PROPOSITION 5. Let R be a normal two-dimensional local ring
with algebraically closed residue field and maximal ideal q. Suppose
λ: Y—>Spec(R) is a resolution of the singularity of Spec R. Let
h: Y' —> Y be the blow up of pe Y} with X(p) = q. Let MY and MY,
denote the divisors of the maximal ideal on Y and Y', and let ZY

and ZY, denote the fundamental divisors on Y and Yf. If MY, = ZY,,
then MY = ZY.

Proof. Let Y19 •••, Yd be the irreducible components of λ" 1 ^).
Let D = h~\p) and h~\ Yt) = Y't + nj). Then h~\MY) Y\ = MY Yt^ 0
for all i [6, page 421]. Therefore ZY, ^ h~\MY) by the definition
of Zγl.

Lemma 1 of §2 implies that h~\MY) ^ MY,. Combining the
above two inequalities we obtain
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Zτ. £ hr\Mγ) S Mγ, .

But by assumption Zγ, = Mγ,f and thus h~\Mγ) = Zγ,. Now [6,
Proposition 2.9] shows that Zγ, — h~\Zγ), and thus h~\Mγ) = h'\Zγ),
which implies that jfcfr = Zγ.

We now commence to prove that Z equals M on V for certain
double points.

THEOREM 1. Let fix, y) e &[[#, ?/]] be as in Proposition 1. Suppose
that f(x9 y) has even order. Then on V we have that Z equals M
{and hence Z equals M on every resolution of z2 = f{x, y)).

Proof. Recall that φ: V —> Spec {k[[x, y]]) is obtained by succes-
sively blowing up closed points. In the first blowing up (the blow-
ing up of m, the maximal ideal of k[[x, y]]) we obtain a curve
which is the inverse image of m. This curve also has an inverse
image in V, and we call it Xλ. Let M and Λfx denote the divisors
of the maximal ideals mr and m on V and V. Recall that M1 =•
Σ*= 1 α{Xi and M = Σ*=i »ίXί> where

and

min

= min
uew'

with ^ and α J denoting the valuations determined by Xt £ V and
Xί £ V7. Then Xt is an even curve and M1 X1= —1. If Xt meets
no odd curves in X, then g'\X^ is a disjoint union of two curves
isomorphic to Xγ and the intersection number of M with each of
these curves is —1. But this condition is incompatible with Z < M
by Proposition 4. If X1 meets some odd curves, then we have that
M1 X, = - 1 and αx = 1. Let X[ = flr"1^). Then AT Xί = - 2 and
a[ — 1, which, again, is incompatible with Z < M by Proposition 4.

If f(%, V) has odd order, then Theorem 1 does not hold in general.
In fact, if f(%, y) = y(x4 + yG), then in the minimal resolution of
z2 = f(χ, y) we have that Z < M. This example was given by Henry
B. Laufer. Notice however that f(x, y) = y{x* + y*) is reducible. If
we assume that f(x, y) is irreducible at (0, 0), then we can prove
that Z — M in the minimal resolution.

THEOREM 2. Let f{x, y) e k[[x, y]] be as in Proposition 1. Suppose
that f(x, y) has odd order and is irreducible at (0, 0). Then Z equals
M on the minimal resolution of z2 = f(x, y).
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Proof. Let Xt be as in the proof of Theorem 1 and let Xc

be defined similarly as curves and on V for c — 2, •••, n. Then X1

is an odd curve and we set X[ = (g~ι(Xd)red We have two cases to
consider.

(1) Suppose that the first quadratic transform of f(x, y) has
the same multiplicity as f(x, y). Then on V we have that Xλ X2 = 1
and X^Xj = 0 for j > 2. Thus (Xΐ) = - 2 and so (XO2 = - 1 since
X1 is an odd curve. Note also that X[ is rational since XL is odd.
Thus we can apply the corollary to Proposition 4 (k0 = 1).

Let us make two remarks here before continuing with the proof.
Since fix, y) is irreducible at (0, 0) it is easy to see that X* is rational
for all i. This follows because it can be shown that each Xt meets
at most 3 other curves in X and thus the genus of an even curve
meeting some odd curves is (N — 2)/2, where N must be 2. Also
note that the proof of Case 1 above still holds if we assume instead
that some quadratic transform of f(x, y) has the same multiplicity
as f(x, y), where f(x, y) is not necessarily irreducible at (0, 0).

(2) Suppose the first quadratic transform of f(x, y) does not
have the same multiplicity as f(x, y). Assume that Z < M on V.
Then Proposition 4 shows that there exists an integer i0 such that
Z-X'iQ = —1, Z X'j = 0 for j Φ i0, and a'h = 1. It is clear from
the definition of the integers at that aγ = a2 = 1 and at > 1 for i > 2.
We have two possibilities to check. Suppose that X2 is an odd
curve. Let X[ — (g~\X2))red Then since Xx and X2 are odd curves
we have that a[ = a[ — 2 and a'2 ̂  2 for i > 2. This contradicts
Proposition 4 since αί0 must be 1. Now suppose that X2 is an even
curve. Since f(x, y) is irreducible it can easily be checked that X2

meets only one other curve in X. In fact, if (XI) = — c, then X2

meets only Xe+1. This curve cannot be odd since each even curve
meets an even number of odd curves, as stated in §1. Thus X2

meets no odd curves and so g~ι{X2) consists of two disjoint isomorphic
copies of X2f say X'2 and X[. Now a[ — 2 and a\ ̂  2 for i > 3.
Thus, since αjo = 1, i0 must be either 2 or 3. But if Z has nonzero
intersection number with one of X'2 and X'z, then it must have it
with the other. In fact, the automorphism of L = UL(Z) given by
z\-+ —z leaves Z fixed and interchanges X[ and XJ. Thus we have
a contradiction since Proposition 4 insists that i0 must be unique.
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