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THE SPECTRAL APPROACH TO DETERMINING THE
NUMBER OF WALKS IN A GRAPH

FRANK HARARY AND ALLEN J. SCHWENK

Dedicated to Paul Erd'όs on his sixtieth birthday, and may
he long continue his academic random walks.

It is well known that the number of closed walks of
length n is simply the nth moment of the adjacency matrix.
We find similar spectral expressions for unrestricted (either
open or closed) walks, and also for walks from any specified
starting set of points to another set of terminal points.
Knowledge of the number of walks in G may be applied to
find the spectrum of the complement of G. In conclusion,
cyclic and dihedral equivalence relations are defined for
closed walks and Burnside's lemma is used to enumerate
the number of equivalence classes of both types.

The characteristic polynomial of a graph G is defined as that
of its adjacency matrix A(G)9 and we denote it by

(1) Φ(G; x) = U(x- λ,) .

Since A is real and symmetric, it has only real roots. This sequence
of roots λx ^ λ2 ^ ^ Xp is called the spectrum of (?. Another
consequence of the symmetry of A is that there exists a unitary
matrix that transforms A into Jordan canonical form, and consequ-
ently, this form must be a diagonal matrix. Therefore, the mini-
mum polynomial of A can possess no multiple roots, and we write it

(2) μ(G;x) = A(x - μt) = Σ>bkx
k

i=l k=0

where the μt are the distinct roots of (1).
An elementary graph theoretic interpretation identifies the trace

of An as the number of closed walks of length n in G. But a
standard matrix result equates tr An to the nth moment of A
defined as

(3) Mn(A) = ±X7.

Thus, we have found that the number of closed walks of length n
in G is simply the sum of the nth powers of the eigenvalues. We
might hope that a similar spectral expression could be found for
Wn, the number of arbitrary (either open or closed) walks as length
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n in G, and this has been done by Cvetkovic [2]. We proceed to
sketch his results. Since A satisfies μ(G; x) — 0, we find for n7> d,

(4 ) An~d Σ bkA
k = Σ bkA

n~d+k = 0 .

Now Wn-d+k is simply the sum of the entries in An~d+k

f so summ-
ing entries throughout this matrix equation yields

d

( 5 ) 1Li>kWΛ-d+h = 0 .
k=0

This is a linear homogeneous recurrence relation for the number
of walks. But notice that for 1 ^ i <^ d, we may substitute μi for
Wj to obtain a solution to (5) because μi satisfies μ(G; x) — 0. Since
this provides d particular solutions which are [linearly independent,
a general solution must be a linear combination of these solutions.
That is, Wn must satisfy

d

( /-» \ TT7* "NT"* ^ * tfl

where the constants c, are determined by the initial conditions.
Cvetkovic [2] defined the main part of the spectrum, denoted M —
fa, »2> ' ' t Vm) as the set of those distinct eigenvalues which occur
in (6) with a nonzero coefficient. For convenience, we relabel the
constants in (6), omitting those constants which are 0, to obtain

(7) W — y cv*
ί=l

Thus, Cvetkovic laid the groundwork for solving this problem, but
he did not describe how M and the constants ct can be efficiently
determined. To do this, we begin by characterizing the main part
of the spectrum.

THEOREM 1.2. The following statements are equivalent for a
graph G.

(1) M = {vlf ι>2, , vm} is the main part of the spectrum.
( 2 ) M is the minimum set of eigenvalues the span of whose

eigenvectors includes the vector β = (1, 1, , 1).
(3) M is the set of those eigenvalues which have an eigen-

vector not orthogonal to β = (1, 1, , 1).

Proof. (1) is equivalent to (2). Since the eigenvectors of G
form a basis for Ep, euclidean p-space, β can be represented as a
linear combination of eigenvectors. For multiple eigenvalues, there
is some freedom in choosing the eigenvectors, but we may assume
they have been chosen so that at most one vector from each multi-



DETERMINING THE NUMBER OF WALKS 445

pie set is not orthogonal to β. Consequently, β can be expressed
as a linear combination of eigenvectors with distinct eigenvalues
and nonzero coefficients, say

( 8 ) β = Σ Wi
ί = l

Assuming az has eigenvalue σif we observe that

( 9 ) Wn = Anβ-β = Σ aiiarajσϊ .
1 = 1

But we have already found the unique expression (7) of this type
for Wn, so we conclude that k — m and M — {σlf σ2, , σk) and that
the corresponding constants in (7) and (9) are identical. Thus state-
ments (1) and (2) define the same set, and so (1) is equivalent to (2).

(2) is equivalent to (3). Suppose β — ΣΠ=i &&. Then for 1 <;
i <Lm, β at = at(arat) Φ 0, and so every veM has an eigenvector
not orthogonal to β. Conversely, if each eigenvector 7 for eigen-
value v does not appear among the α/s, then β-y = Σ ^ Λ T = 0,
Therefore v$M implies that all eigenvectors of v are orthogonal to
β, so (2) is equivalent to (3).

Let the neighborhood of v, denoted N(v), be the set of points
adjacent to v. In [5, § 3] we call a partition Vx U V2 U U Vm of
the points of graph G equitable if for all i, j and for all u, ve Vt

(10) \N(u)f] Vό\ = \N(v)(λ V, \ .

For example, the similarity classes of points formed by the auto-
morphism group of G constitute an equitable partition. We associate
with each equitable partition a matrix T defined by

(ii) ti3- = \N(u)n Vj\

where u e Vt. We conjecture that there is a fourth statement
equivalent to the three in Theorem 1.

Conjecture (4). Let the matrix T be obtained from an equi-
table partition of smallest size. Then T is an m x m matrix and
M is just the set of eigenvalues of T.

If aί9 a2, , ap form an orthonormal basis, the theorem permits
us to rewrite (7) in the form

(12) Wn = ±(β'ai)
ΛK.

ί = l

That is, XiβM if and only if β*at Φ 0, and so the constants ct of
(7) are just the squares of the dot products (β cίi).
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It is easy to see how to adjust (9) to obtain the number of
walks of length n from any subset B of possible starting points to
a second subset C of permitted terminal points. Let 7 be the
vector whose vt component is 1 or 0 according as vt is or is not in
B. Let δ be the corresponding vector determined by C.

COROLLARY la. The number Wn(B, C) of walks of length n
from any set B to another set C is

(13) Wn{B, C) = A*y-δ = Σ Cr ^Xδ αJλί .

Since it is well known (see for example Collatz and Sinogowitz
[1]) that the largest eigenvalue λx (also called the spectral radius)
has a nonnegative eigenvector, we see that cx — (/S ^i)2 > 0, and we
quickly obtain another result of Cvetkovic [3].

THEOREM 2. The spectral radius is given by

(14) \ = lim y~WJp~.

Notice that since p remains fixed as n increases, it has no
affect on the limit. It has been included simply to make the indi-
vidual terms identical to the nth root of what Cvetkovic calls "the
dynamic average degree". In particular when n = 1, notice that
WJp is just the usual average degree.

In [5] we discussed the relation between spectra and various
graphical operations. We can now determine φ(G) and hence the
spectrum of the complement. The ordinary generating function for
the number of walks of length n is readily found from (7) to be

(15) W(x) - Σ Wnx
n = Σ <*i/(l - »i«)

Using this function, Cvetkovic [2] was able to express the characte-
ristic polynomial of the complement in terms of Φ(G).

THEOREM 3. The characteristic polynomial of G is

(16) φ(G; x) = (- l)^(G - 1 - B ) ( 1 - TΓ(-1/(1 + a?))/(l + x)).

For example, if G is regular, W(x) has the particularly simple
form

(17) W{x) - p/(l - rx) .

Substituting this into (16), we find that for a regular graph G,
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(18) φ(G; x) = (-l)pφ(G; — 1 —a?)(l + r - p + x)/(l + r + x) .

By inspection, we see that if (r, λ2, λ3, , λp) is the spectrum of
G, then the spectrum of G is (p — 1—r, —1—λ2, —1—λ3, •••, — 1—λp).
Notice that most of the eigenvalues are —1 minus the correspond-
ing eigenvalue of G. This is in fact a special case of the following
result.

THEOREM 4. Let a be an eigenvector of G with eigenvalue X
and suppose a is orthogonal to β = (1, 1, « ,1). Then a is an
eigenvector of G with eigenvalue — 1 — λ.

Proof. Since A — J — I — A, we see that

(19) Aa — Ja — la — Aα = Oα: — α: — λα = (—1 — X)a .

In other words, the nonmain eigenvalues of G are easily found
from those of G. The difficulty is to find the main eigenvalues.
Theorem 3 accomplishes this in general. If the Conjecture (4) holds,
there is another way to find the main part of the spectrum of G.
Namely, the equitable partition found for G is also equitable for
G. The corresponding matrix T is given by

(20) ί*i = l^il - t t f - δ * ,

where diά is the Kroneker delta function. Thus, the main eigen-
values are the roots of T and the nonmain eigenvalues are readily
found from Theorem 4.

We conclude by returning to the enumeration of closed walks.
Each walk counted by (3) has a specified starting point. Thus the
walks vtv2 vn^vnvx and v2v^ v^v^v^ are different walks (even though
they traverse the same points in the same relative order) because
one starts at v1 and the other starts at v2. We define two closed
walks to be cyclic equivalent if one can be obtained from the other
by rotating an initial segment to the end of the walk. One might
first suspect that each equivalence class has n walks in it, but
that is not always true. For example, with n = 6, the equivalence
class of VxVtVzVtVgV^ has just three walks. Thus, we ask what is
Cn(G), the number of cyclic equivalence classes of closed walks of
length n in G? Let φ(n) denote the Euler phi-function1 and let
(i, n) be the greatest common divisor of i and n.

THEOREM 5. Cn(G) = 1/n Σdi Φ(n/d) Σ?=i *>*-

Proof. We apply Burnside's lemma (see [4, p. 181]) to the
1This is a minor sin of notation since Φ(G; x) is the characteristic polynomial.



448 FRANK HARARY AND ALLEN J. SCHWENK

cyclic group of order n acting on closed walks of length n, observ-
ing that a walk W is "fixed" under a rotation of i positions if and
only if W consists of a closed walk of length (ί, n) repeated n/(ί, n)
times. Thus

(21) Cn(G) = i - Σ t r A ^ } .
n i=ί

If we let d = (i, n), we may regroup (21) as a sum over the divi-
sors of n. Each d occurs as an exponent as often as it is the
greatest common divisor of n and some i, which is just φ(n/d)
times. Therefore,

(22) Cn(G)=±-Σ*Φ(n/d)tτAA,

and the theorem is verified by substitution from (3).
Another equivalence relation, called dihedral equivalence, is

obtained if we permit reversals in addition to rotations. That is,
we consider the dihedral group Dn acting on closed walks of length
n. We let Dn(G) denote the number of these dihedral equivalence
classes.

COROLLARY 5a.

1

(23)

ΣΦ/i)ΣM if n is odd
2n d\n i=l

1 p Λ m

— ΣΦ(n/d) Σ M + — ΣβjVf2 if n is even .
2n d\n j=l 4 i=i

Proof. The rotations in Dw are handled just as they were in
C» above, so we need only account for the n reflections in Dn. A
reflection that interchanges two consecutive points in the walk can-
not fix any closed walk because two consecutive points must be
distinct since G has no loops. But when n is odd, each reflection
does interchange two adjacent points, and so we obtain the first
half of (23). When n is even, on the other hand, n/2 reflections
interchange consecutive points while the other n/2 reflections do
not. These latter reflections "fix" a walk if and only if it consists
of an arbitrary walk of length n/2 followed by its reversal. Thus,
the reflections contribute n/2(l/2n)Wn/2 when n is even, and so (23)
is verified.
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