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A SELECTION THEOREM FOR GROUP ACTIONS

JOHN P. BURGESS

Let a Polish group G act continuously on a Polish space
X, inducing an equivalence relation £E. Let E} be the re-
striction of £ to an invariant Borel subset Y of X. As-
sume E; is countably separated. Then it has a Borel trans-
versal.

Throughout, let I be a continuous action of a Polish group G on
a Polish space X. Thus X is a separable space admitting a complete
metric, while G is a topological group whose topology is separable
and admits a complete metric, and I" is a continuous function
Gx X — X satisfying I'(g7, I'(g,2)) =« and I'(g, I'(h, x)) = I'(gh, x)
for all xe X and g, heG. We write gz for I'(g, x), and for subsets
of X write g4 for {gx: x€ A}. I’ induces an equivalence relation
E on X: zEy iff gx =y for some geG. WcX is invariant if
gW = W for all geG. Let YcX be an invariant Borel set, E, the
restriction of E to Y. A transversal or selector-set for an equi-
valence relation is a set composed of exactly one representative
from each equivalence class. Let us assume F, is countably
separated, i.e., that there exist invariant Borel Z, Z, Z,, ---CY
such that for all x,ye Y:

0) 2By —— Vm(x € Z,— Yy <€ Z,)

our goal is to prove the following selection result:

THEOREM. Under the above hypotheses, E, has a Borel trans-
versal. It should be mentioned that a number of special cases and
overlapping results have been known to and applied by C*-algebra-
ists for some time now. The construction of the required trans-
versal proceeds in four stages.

Stage A. 1t will prove convenient to reserve the letters m, n
plain and with subscripts to range over the set I of natural numbers,
and to reserve s, t plain and with subscripts to range over the set
@ of finite sequences of natural numbers. We let s*m denote the
concatenation of s and m, i.e., s with m tacked on at the end. We
wish to define Borel sets A(s) for overy se @ of even length.

Case 1. s = the empty sequence @. Set A(®) =Y.

Case 2. s = a sequence (m, n) of length two. Set A((m, n))= Z,
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if »n=0,and Y - Z, if n > 0.

Case 8. s = a sequence of form ¢*m*n, where ¢ has length = 2,
and A(t) is a closed set. For such ¢t we wish to define A(t*m*n)
for all m and »n at once. In order to do so, we first fix a complete
metric o compatible with the topology of X. For each m we then
let {A(t*m*n): nel} be a family of closed sets of p-diameter < 1/m
whose union is A(t).

Note that in every case so far we have:

(L) A@®) = NaU. At*m*n) .

Case 4. s = a sequence of form t*m*n, where ¢ has length = 2,
and A(t) is not closed. Again, for such ¢t we define all A(t*m*n) at
once.

But first we introduce by induction on countable ordinals a a
slight modification of the usual hierarchies of Borel sets. Let 6, be
the family of all closed subsets of X. For a countable ordinal
a >0, let ©, be the family of all sets of form N.U., W, with the
Won € Us<e®s. Thus 6, = F,;,, 0, = F,;,;. For present purposes the
rank of a Borel set W will mean the least a with We@,.

Now returning to our Borel set A(f) of rank a >0, we let the
A(t*m*n) be sets of rank < a satisfying (1) above. This completes
the opening stage of the construction.

Stage B. Let us fix an enumeration s, s, s,, -+ of the nonempty
members of @, such that if s, is an initial segment of s,, then
m < n. Let F, denote the set of all functions {s,, --+, s,_,} —I. (So
F, contains only the empty function @.) Let F = U.F,, and let F',
be the set of all functions {s;: 1€I}—1. We reserve the letters
o, ¢ plain and with subscripts to range over F. We say c is an
immediate proper extension of o, and write o c7,, if for some n,
ceF, reF,,, and v extends o.

For v+ FUF,, and s = (m,, m,, +-+, m,_,) €cdom + we define:

¥(8) = (Mg, Moy MMy, <=+, My_yy My_y), Where

n, = P((m,)) and n, = ((m,, m,)), - -, Wy = P(8) -

To complete stage B of the construction, we define B(g) to be the
intersection of all A(6%(s)) for sedom o. Unpacking all these de-
finitions, one readily verifies that:

(2) B(0) = Uqe: B(r) .

Another glance at the definitions (especially stage A, case 2) dis-
closes:

(3) € B(o) & (m)edom 0 — (x € Z,, — a((m)) = 0) .



A SELECTION THEOREM FOR GROUP ACTIONS 335

Stage C. Before launching into the next stage of the construc-
tion, we define for any W X the Vaught transform W* of W to
be {xre X: {geG: gre W} is nonmeanger (2nd can,egory) in G}. One
readily verifies that:

W# is invariant.

W is invariant — W = W%

(U W) = U(W).

It is shown in [1] that

W is Borel —— W* is Borel

which will be all-important for us.

Now let us define C(0) = B(o)*. The above facts from Vaught’s
theory of group actions imply that each C(¢) is an invariant Borel
set, that C(@) = Y, and that:

(4) C(0) = Uqe: C(2) .

Now if x€C(o), then some gx <€ B(s), so applying (3) above, and
recalling that the Z, are invariant, we conclude:

(5) xecClo) & (m)edom 6 — (x € Z,, —— d((m)) = 0) .

Stage D. We say o lexicographically precedes =, and write
o <]z, if for some n and ¢« <n we have o€ F,,teF, o(s;) = 7(s;)
for all j <1, and d(s;) < 7(s;). The relation <] well orders each F,.

Let D(o) be the invariant Borel set C(o):- U{C(z): ¢ <{o}. Thus
D(@) =Y and by (4) and (5) we have:

(6) D(o) = >.,e- D(7)
(7) 2z € D(o) and (m)edom ¢ —> (x€ Z, —— o((m)) = 0) .

In (6), ¥ denotes disjoint union.
Finally we are in a position to introduce the Borel set:

T = N.Uoer,(Bo) N D(0)) .

We aim to show that T is the required transversal for E,. To this
end we consider an arbitrary E-equivalence class K C Y and verify
that T N K is a singleton.

To begin with, from (6) it is evident that there exists a
sequence @ = 0,€0,€ 0, C--- of efements of F' such that K e D(o,)
for each n, but K N D(o) = @ for any other o€ F. Let ¢ F be
the union of these o,.

Recall that:

B(g,) = N{A(0:(s)): 1 <n} = N{AWT(s)): © <m}.
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Let us consider the closely related sets:
L, = N{AG@T(s)): 1 <n and A(y'(s;)) is a closed set} .

Manifestly the L, are closed and nested, L,.,c L,. They are also
nonempty. (To see this, note that K < D(c,) < C(os,) implies KN
B(o,) # @, and that L,DB(s,).) Finally, the p-diameters of the L,
converge to zero. (To see this, consider for any given m the sets
At ((m))), A(*((m, m))), A(y*((m, m, m))), ---. By stage A, case 4
of our construction, the ranks of these sets decrease until at some
step we reach a closed set; then by stage A, case 3, at the very
next step we get a closed set of p-diameter < 1/m.) Since p is com-
plete, N.L, is a singleton {y}.

Claim. ye A@t(s)) for all s.

This is established by induction on the rank of the set involved:
we know it already for rank 0, i.e., closed, sets. Suppose then
A(*(s)) has rank a >0, and assume as induction hypothesis that
the claim holds for sets of rank < a, e.g., for the various
Ay (s)*m*n). Then for any m, letting n = (s*m), we have
fT(s*m) = ¢¥*(s)*m*n, and so by induction hypothesis, y € A("(s)*m*n).
This shows y € N.U.A@ (s)*m*n) = AWr1(s)) as required to prove
the claim.

From the claim it is immediate that v € N,.B(o.), and also that
for any m,ye€ Z, iff 4o(m) = 0. On the other hand, by (7) above,
for any m, K Z,, iff (m) = 0. But then by (0), y€¢ K. And this
implies ¥y € N, D(s,). Putting everything together, TN K = {y} as
required.
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