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A CYCLIC INEQUALITY AND A RELATED
EIGENVALUE PROBLEM

J. L. SEARCY AND B. A. TROESCH

A cyclic sum S(z)=2x,/(®;+1+%;+2) is formed with the N
components of a vector 2z, where xy..=%, %y::=%,, and
where all denominators are positive and all numerators non-
negative. It is known that the inequality S(z)=N/2 does
not hold for even N=14; this result is derived in a uniform
manner by considering a related algebraic eigenvalue pro-
blem. Numerical evidence is presented for the conjecture
that this cyclic inequality is true for even N=12 and odd
N=28.

The corresponding cyclic inequality, namely the question for
what value of N

S(x) = N/2

holds, has been investigated by many mathematicians (cf. Mitrinovié
[7] and the references given there). In §1 we prove in a unified
manner that the inequality does not hold for even N = 14. The
method is based on the idea used first by Lighthill for N = 20 [4]
and then by several other authors. The argument indicates why
the case N = 12 remains still unresolved. Some properties of this
type of solution are described in §2. Section 8 deals with numeri-
cal results that strongly suggest that the inequality is valid for
N =12 and, if N is odd, for N = 23. These numerical results def-
initely represent stationary values of the cyclic sum, and we are
inclined to believe that they are indeed global minima. A connee-
tion between the inequality above and a related inequality with
indices reversed is considered in the last section. In the Appendix
some examples are listed for N = 14, 25 and 27.

1. The linear cyclic inequality. By considering the cyeclie
sum S(x) it is obvious that for any N there exists a vector for
which

S(x) = N/2

holds, namely z, =1 for 1 =1,2, -+, N. If N is even, there exists
also a wider class of “nominal” vectors,

.1 o — 1+ a)/2 for ¢ odd

i = ] 0asl
(1 —a)/2  for i even “« ’
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for which S(z°) = N/2. Vectors of this type seem to form the
basis in the reported solutions for even N where the inequality
does not hold, in particular, in Zulauf’s solution [7, p. 133] for the
important case N = 14.

If N is odd, the situation is much more difficult to understand.
Indeed, while only N = 12 is unresolved for even N, for odd N
the answer is still unknown for N =11,13, ...,23. A simple nom-
inal vector of the form (1.1) exists for odd N only if & = 0.

We now show in a uniform manner that the cyclic inequality
is violated for even N = 14. (In the remainder of this section, N
is understood to be even.) - We proceed by writing the vector z as
x = 2° + ¢ and expanding the cyclic sum S(x) in terms of the com-
ponents of the vector e. If S can be made smaller than N/2 for
small ¢, the inequality is clearly violated.

By including quadratic terms in the expansion—the contribution
of the linear terms vanishes—we obtain

S* = N/2 + 3\ e — ey, + (—Dae e, = NJ/2 + eTAe/2

where again ey, = e, ey, = ¢, and where A is the symmetric
matrix

2 —a —1 -1l a
—a 2 a —1 —1
-1 a 2 -—-—a -1
A= -
' -1 —a 2 a —1
-1 -1 a 2 —«
a —1 -1 —a 2

In order to minimize S* we must minimize ¢”"Ae with ¢”¢e kept con-
stant. The corresponding eigenvalue problem (A — AI)e = 0 has the
known solution, which can be easily verified,

a sin t, for &k odd

1.2 =
(1.2) o —a CoS &, for &k even

where t, = t, + (k — 1)h; the amplitude a > 0 and the phase ¢, are
arbitrary, and

h = 27j/N , i=L4L2 «--,N.
The N corresponding eigenvalues are

N=2sinh(@sinh — ) ;
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they are, with the exception of at most two of them, all double
eigenvalues. We may choose t, = 0 so that the e-vector becomes

¢ = a(0, —cos h, sin 2h, —cos 8h, ---, sin (N — 2)h, —cos (N — 1)h) .
Now, at the stationary values of S* we have
S* = NJ/2 + \e"e/2 .

Hence, S* is smaller than N/2 if there exists at least one negative
eigenvalue . This means that we must require that 0 < 2sinh <
a <1, ie., 0<sin(@2rj/N) <1/2, 2nj/N < w/6, or finally N > 12j.
The case where 57/6 < 27j/N < m can be excluded since it leads to
the indentical result for x and S*. For N > 12, the condition N >
127 can indeed always be satisfied. We conclude that vectors of
this kind with S* < N/2, and therefore also for the full eyclic in-
equality with S < N/2, are always possible for N = 14, but not
possible for N < 12 (cf. also [10]). This concludes the main argu-
ment. '

However, these considerations do not resolve the open case
N =12. The inequality holds in the neighborhood of a nominal
vector z,. Consequently, if a vector x exists that violates the
inequality, then it cannot be obtained by a perturbation of a
nominal vector z°.

2. The minimum of the linear cyclic sum. It seems worth-
while to elaborate on the vectors formed with (1.2) and add a few
remarks.

First, we note that »x = 4sin*h = 0 for &« = 0. This means that
for odd N, where the only simple nominal veetor z° is furnished
by a = 0, the eigenvalues are all nonnegative, so that the argument
given above cannot be applied to odd N. Furthermore, higher
order terms in the e-expansion do not alter this conclusion.

For N = 14 there exists a negative eigenvalue, namely exactly
one for 14 S N<24. If 24 < N<36 both =1 and j = 2 furnish
negative eigenvalues, and similarly for larger N values, where for
each increase of N by 12 a “higher harmonic” is added. The Figure
1 shows the eigenvectors for N =26, =1 and j = 2. The values
of the full (i.e., not linearized) cyclic sum for these vectors are
S = 18-0.01913 and S = 13-0.0000787.

Since all x, are required to be nonnegative, the amplitude a
must be chosen sufficiently small, namely

1.3) asd—a)2.

In some cases, a can be chosen slightly larger, e.g., for N = 14
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Ficure 1. Eigenvectors for N=26, j=1,2.
and 7 =1,

(1.4) a=(1—a)2cosh,

since the trigonometric functions in (1.2) are evaluated only at

diserete points.

The sum S* is computable in closed form and gives, for the

cases of interest,
S* = N2 + na?)/4

or, using the (nearly) largest admissible a,

S*a) = N(z - %(1 — @) sinh(a — 2sin k) ) /4 .

For ¢« =1 and @ = 2sin h, we obtain S* = N/2, and S* attains its

minimum value (for either (1.3) or (1.4)) at

@, = (1 + 4sinh)/3,



A CYCLIC INEQUALITY AND A RELATED EIGENVALUE PROBLEM 221

namely
(L.5) S* = N(l — L sinna — 2sinny )/2 .
27

The linearized sum S* has of course a different minimum than
the full cyclic sum. As an example, we choose N =14, j =1.
From (1.5) we obtain for a = 1 — @)/2

S* =7 — 0.000260 ,

and it can be shown that for ¢ = (1 — @)/2cosh (1.5) gives
S* =7 — 0.000320 ,

while the full cyelic sum for this vector is
S =17—0.000323 .

On the other hand, a numerical minimization of the full cyeclic sum
furnishes

S =T —0.000347 .

It is not difficult to include the cubic terms in the e-expansion.
It turns out that in order to obtain this sum, let us call it S**,
one only needs to increase the amplitude a. However, the amplitude
is in general restricted to ¢ < (1 — @)/2. Hence, it seems reasonable
to increase a, except that those x, which would become negative
are replaced by zero. A computation then leads to the result

S** =T — 0.000331 .

One might expect that for large N where more than one nega-
tive eigenvalue occurs, the eigenvalue for j =1 would give the
smallest sum S*. However, (1.5) shows that for N = 74 this is not
the case.

3. The cases N = 12 and N = 23. By considering the numer-
ical minimization for N =14 (cf. Figure 2 and Table 1) we are led
to the conjecture that for the still open case N = 12 the inequality
is indeed satisfied. But it should be kept in mind that these numer-
ical results have not been shown to be global minima.

Similarly, for N odd and larger than 23, the numerical results
indicate that the inequality is valid for N = 23. Here the solution
for N = 23 which is similar in structure to the solutions for N>25
is also listed, although in this case the vector z, =1, for all %,
furnishes the lower value N/2. The same conclusion has been
reached by Malcolm [6] who solved the problem for N =25 by
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Ficure 2. Extrapolation of the minimum cyclic sum to N=12 and N=23.

TABLE 1
Extrapolation of the minimum of the eyclic sum S to N=12 and N=23.

N S—N/2 N S—N/2

14 —.000347303 23 +.011689438
16 —.002004523 25 —.001514765
18 —.005287982 27 —.014469580
20 —.010062465 29 —.027056111
22 —.015979281 31 —.039127154

convincing numerical minimization and by Daykin [1] who also
lists a solution in integer values for the z,.
Additional numerical results are discussed in the Appendix.

4. The cyclic inequality with indices reversed. The solutions
listed above exhibit an interesting general property. We define a
vector b by setting

(4.1a) b; = @;/(®s4y + Tiy0)’
and introduce also

(4.2a) r = bi/(bt—x + b;_,)
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as a counterpart to
(4.2b) 8; = X/ @iyy + Tiys) -

At the stationary values of S(z) for admissible vectors z, either
z; = 0 or 0S/ox, = 0. This leads readily to the relations that either

@iy + Xip)byoy + b)) =1l or 2, =b,=0,

and hence,
(4.1b) w; = b;/(bi—y + b, ),
P =0y + Zigs) = by +b,5) =8,
and
xb, = 8 =7}
for all 4.

Clearly then, for any stationary solution z'¥ another stationary
solution z® can be formed, namely the vector b read in reverse
order. Both solutions lead to the same stationary sum S = s, =
2r,. Therefore, if the minimum of S is unique, the two vectors
must be equivalent, i.e., ® must be constant multiple of z*. The
computation of many minima for both even and odd N showed that
in all cases indeed, z® = c¢x”. As an example we list in the
Appendix, Table 4, the results for N = 25 where z¥ has been nor-
malized so that ¢ =1, i.e., b, = Ty, and 8; = Syig s

This means that for all computed minima (including the result
in [6]) the vector s exhibits a symmetry, and it might be of inte-
rest to prove this property, if indeed it holds in general.

Since the difficult cases where the eyclic inequality holds, namely
N =8 [3] and N = 10 [8], have been proved by discussing all rele-
vant possibilities in turn, the symmetry in s might just restrict
the number of cases sufficiently to make N = 12 amenable to a
proof.

Appendix. Miscellaneous numerical results. In this appendix
we present examples and computational results for the cyeclic in-
equality.

The approach described in §1 enables us to obtain vectors z
for which S(z) < N/2 without requiring an extensive search on a
computer. In Table 2 we present the results for the vector 2, [7,
p. 133], zy [5], and the vector z suggested by (1.2). For the ex-
pansion for small e, one obtains S(z) = N/2 — gé* + 0(¢®). The mini-
mum of the cyclic sum for these vectors is also listed; the comparison
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TABLE 2
Vectors « with S(x)< N/2 for small e. N=14.

zz=(1+Te, Te, 1+4e, 6e, 1+e, be, 1, 2e, 1+e, 0, 1+4e, e, 1+6¢, 4e)
rp=(1+10e, Te, 14-8e¢, 10e, 1+3e¢, 10e, 1—2¢, 5e, 1—2¢, 0, 1, 0, 1+8e, 3e)
x=(1+11le, 8e, 1+8e, 10e, 1+3e, 8¢, 1, 3e, 1+2¢, 0, 1+6¢, 0, 1+10e, 4e)

vector ¢ minimum at e=
of S—N/2
Tz 2 —0.0000215 0.0059
Tir 3 —0.0000028 0.0017
x 11 —0.0002661 0.0093

between x, and x, shows that a larger ¢ need not lead to a smaller
minimum.

The expansion in small e is not available for odd N. Convine-
ing examples for S(x) < N/2 are then furnished by vectors with
nonnegative integers as components. Table 38 lists examples for
N =14, 25, 27. Clearly, there is a limit on how small the largest
integer component can be chosen. We believe that the examples
are quite close to optimal in this respect. The vector z, for N =

TABLE 3
Vectors £ with integer components and S(®)< N/2.

2,=(0, 42, 2, 42, 4, 41, 5, 39, 4, 38, 2, 38, 0, 40)

2.=(0, 44, 2, 44, 4, 43, 5, 41, 4, 40, 2, 40, 0, 42)

£p=(3,6,2,6,1,6,0,7,0,80,09, 0,10, 0, 11, 1, 12, 3, 11, 5, 9, 6, 7, 6, 5, 6)
5 0

2=@3,5 25 1,5,0,6,0,70,80,9,0,10,1, 11, 3, 10, 5, 8, 5, 6, 5, 4, 5)
vector N Largest «; S—N/2
L1 14 42 —151/28933140 = —0.00000522
Lo 14 44 —217/ 4280760= —0.00005069
Table 4, %in, 25 35 =—0.00013752
Lins™® 25 35 —691 /80013430=—0.00000863
Zp 27 12 —53/ 55440 =—0.00095599
X3 27 11 —8/ 3465=—0.00230880
5% 27 11 -1/ 126=—0.00079365
I [ I I T
10—
Xi 5 l—d-"
0 -~ b o
5 g 13 17 21 25
i
F1cURE 3. The numerical minimization of S.---., and an example with

integer components z; @—® for N=27.
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TABLE 4
The numerical minimization of S(x) for N=25 and a case 2,: with integer
components.

s Ting
2, =b; = .8448196 .8448196 25
L2 =b25= .0 .0 0
23 =b=1.0 .8448196 29
Ly :b23: .0 .0 0
x5 =bee=1.1836847 .8448196 34
X =ban= .1924932 .1160666 5
%7 =bgp=1.2086162 .8133369 35
xg =bp= .4498554 .2777040 13
%y =b13=1.0361416 7447432 30
Z10=bir= .5837685 .4125654 17
211=bis= .8075051 .6676996 24
212=bis= .6074671 .5125019 18
213=b= .6019168 .5925761 18
Z14a=b1s= .5833803 5925761 17
2s=bia= .4323827 .5125019 13
215=b11= .5520990 .6676996 16
Tir=bp= .2915714 .4125654 9
213=by = .5352959 71447432 16
T1p=bs = .1714317 2777040 5
X20=b; = .5473341 .8133369 16
291=bs = .0699841 .1160666 2
Zoe=bs = .6029648 .8448196 18
x23=b4 = .0 .0 0
Xou=bs = .7137202 8448196 21
ngzbz = .0 0 0

S(x)=12.498485

27 is published in [2], and the vector z,,, is a slight modification
of the vector given in [9] (the authors were unaware of the results
in [1] and [6]) and is listed in Table 4. The vector xz, for n = 27
is strongly suggested by the numerical minimization as Figure 3
shows, so that only a very limited search is required. We have
also added vectors with the most pleasing fractions for S — N/2,
namely zf. obtained from 2., by changing x, to 381, and =z by
changing the first 10 in z, to an 11.

Table 4 lists the results of the numerical minimization and
exhibits to high accuracy the relations conjectured in §4.
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