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APPROXIMATE IDENTITIES AND POINTWISE
CONVERGENCE

H. S. BEAR

We give two additional conditions on an approximate
identity (or positive kernel) {Ka} which insure that f*Ka-+f
a.e. if feL1 on the line or circle. Where the convolution
defines a function on the disc or a half-plane, as for the
Poisson kernels or heat kernels, then the theorem gives
automatically the paths toward a boundary point along
which point wise convergence occurs.

1* Introduction* An approximate identity on the line or the
circle is a family of bounded nonnegative L1 functions {Ka} such

that \κa = 1 and limα \κa = 1 for all intervals / = {x: \x\ ̂ δ}, δ> 0.
The convolutions fa = f*Ka of a given function / with the members
of an approximate identity provide approximations which converge
to / in various ways depending on /. For a finite interval, for
example, /«->/ uniformly if / is continuous; fa-+f in Lp if
feL*(l^p< oo);fa-*fw* if/eLTO [3, p. 22].

For specific approximate identities (Poisson kernels, heat kernels,
the Fejer kernel) one also has fa —> f pointwise almost everywhere.
The proofs of these theorems use additional properties of the
several kernels beyond the very general conditions for an appro-
ximate identity.

To illustrate, the Poisson kernel for the disc is

2π 1 + r2 — 2r cos θ

If feLX-π, π), let /(r, θ) ̂  fr{θ) = (/*Pr)(β). Then /(r, θ) is har-
monic in | z | < l , and /(r, θ) -+f(θ) a.e. as r—> 1. In fact, one
actually has the following classical theorem on nontangential ap-
proach: /(r, θ) -*/(#) a.e. as (r, θ) -> (1, θ) along any nontangential
path.

Our purpose here is to prove a theorem of this form: If feL1

and fa — f*Ka, then fa—>/ a.e. The hypothesis is that {Ka} be an
approximate identity (on the circle or line) with two additional
assumptions. The first of these is simply a smoothness assumption:
K'a is continuous, and each Ka has a unique maximum, and decreases
monotonically away from this maximum in both directions. The
second extra assumption (condition (e)) limits the distance from the
origin at which Ka can have its maximum.

In the applications, condition (e) determines which translates of
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a given approximate identity can be added to the family so the
result will still be an approximate identity. For the Poisson kernels,
condition (e) is equivalent to restricting approach to a boundary
point to paths within a Stolz angle. Hence condition (e) is in some
sense "best possible."

Applied to the heat kernels our theorem gives apparently new
results on the kind of approach toward a boundary point for which
heat convolutions converge to the boundary function a.e.

For the Fejer kernel, "approach to a boundary point" is not a
relevant idea. However, we do obtain information about how the
modulus of continuity of the Cesaro sums of an Lι function depend
on n. The same sort of inference can be made for the other
kernels, and is basically what is involved in the results on "non-
perpendicular" approach.

There is nothing novel in the proof of the theorem. What is
new is the isolation of the simple conditions which make all the
standard proofs work, and the fact that translates of an approxi-
mate identity again form an approximate identity when suitably
indexed. It is this last fact which gives the paths toward bound-
ary points along which pointwise convergence takes place.

2* Proof of the theorem. Let {Ka} be a net of nonnegative
real functions on X=( — ooy oo), or on X= ( — π, π] (the circle). The
index a is an element of a set D with a transitive partial ordering
>. In addition we assume that for every a19 a2 e D, there is azeD
so that a3 > ax and a3 > a2. Thus (Z), >) is a directed set. We
write a-->oo to indicate limits as a runs over D; e.g., Ka(x0)—> 0
a s a —-> oo.

The net {Ka} is an approximate identity if (a), (b), (c) below
are satisfied, and we will call {Ka} a smooth approximate identity
if in addition (d) and (e) are satisfied.

(a) Ka e U and Ka ^ 0 for all a.

(b) \κa - 1 for all a.

(c) \ Ka —> 1 as a—>ooy for all δ > 0.

(d) Kά is continuous on X. Ka increases to a unique maximum
at xa, and decreases for x ^ xa. For the circle, Ka increases from
some minimum value along the two complementary arcs to a uni-
que maximum at xa.

(e) For some constant A, \xa\Ka{x^ S A for all a.
We will prove the following theorem.

THEOREM 1. If feL1 on X and {Ka} is a smooth approximate
identity, then f*Ka(x)-+f(x) a.e. as a-> °o.



APPROXIMATE IDENTITIES AND POINTWISE CONVERGENCE 19

The proof depends on a number of simple lemmas. Throughout
this section we assume that {Ka} is a smooth approximate identity
on X, where X is either the line or the circle. The notation will
be for the case X— ( — o°, oo).

L E M M A 1. \ K a ^ 0 a s a - ^ ^ for all δ > 0.

Proof. This is immediate from (b) and (c).

LEMMA 2. xa —> 0 as a —> oo.

Proof. By (c), max Ka = Ka{xa) —> °° as a --> oo. Hence xa —> 0
by (e).

LEMMA 3. sup{ϋΓα(s): | s | ^ 5}-^0 as α->oo, for all δ > 0. In
particular, Ka(sQ) —> 0 as a -> oo /or aϊi s0 Φ 0.

Proo/. Fix δ > 0. Then | xa \ < δ f or all sufficiently "large" α,
and sup{iΓα(s): |β | ̂  δ} is either jBΓα(δ) or Ka(—δ). Suppose the lemma
is false, and to be specific that there are arbitrarily large values
of a for which Ka(δ) ̂  p > 0. Then there are arbitrarily large
values of a such that \xa\ £ δ/2 and Ka{δ) ̂  p by Lemma 2. For

all such a, \ Ka^ i/2<5̂ >, which contradicts Lemma 1.
JU|Ξ>«5/2

The next lemma is relevant only if X— (—°°, °°).

LEMMA 4. lim,,!^ Ka(s) = 0 for all a.

Proof. This follows from (d) and the fact that Ka e ZΛ

LEMMA 5. For all δ > 0, \ J C ~> 0 as a —> oo.
J l x l ^ ί

Proof. We consider the interval [δ, oo). The proof for the
other cases is similar. For each a, K'a e Lι by (d) and Lemma 3,
and

Γ C = lim Ka(s) ~ Ka(δ)=~Ka(δ) .
Jδ

As α-> oofKa(δ)-*
The next lemma uses condition (e) in an essential way. Condi-

tion (e) determines the paths toward boundary points (i.e., points
x0 of X) along which the convolutions f*Ka will approach f(x0) a.e.
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LEMMA 6. There is a constant B and aoe D such that

[\xK«(x)\ dx ̂  B for all a > a0.

Proof. Fix M > 0, and pick a0 so that | xa | < M for a > a0.

Now we consider only a > a0, and show that I | xK'a(x) \dx ^ B,

where B is independent of M. Fix a, and assume 0 <̂  xa < M; the
same sort of argument works if — M < xa ^ 0.

= ί° -xiί'(ίc)rfx + [*"xKά(x)dx - ["xK'(x)dx
J-M JO } x a

= -xKa(x)l +\° Ka(x)dx
J-M J—M

+ xKa(x)]X" - [" Ka(x)dx
Jo Jo

- xKa(x)Y + [M Ka(x)dx
Ana Jχa

xaKa{xa) - MKa{M) + ϊ X ( a

LEMMA 7. IffeL1, then for almost all x,

lim - i - Γ (/(M) - /(a;))dw = 0 .
•-« s - a; J"

Proo/. If F(x) = Γ/(w)^, then F'(x)=f(x) a.e.; i.e., (F(s)-F(x))/
JO

(s — x)-*f(x) a.e., which is the same as (1).

COROLLARY. T%β iίmiί (1) /ιoWs whenever f is continuous at x.

THEOREM 1. If feL\ and {Ka} is a smooth approximate
identity, then (f*Ka)(x)-+f(x) a.e. as a-> °o; specifically, the limit
holds for all x for which (1) holds, and so in particular for x
where f is continuous.

Proof. Fix x, and let δ > 0.

f*Ka(x) - f(x) = Γ JΓα(s - β)(/(β) - /(a;))(to
J - c o

~'ίΓβ(!c - β)/(β)ώ» - f{x) [~°Ka(x - s)ds
oo J-oo

Γ Ka(x - s)f(s)ds - f(x) Γ Ka{x - s)ds
JX+δ Jx+δ

Γ Kaix - s)ifis) - fix))dx + [+iKaix - s)ifis) - fix))ds .
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Let Jlf J2, , Jβ be the six integrals above, in the order in which
they occur.

By Lemma 1, J2 —> 0 and J 4 -^0 as α-^oo,
JΛ and Jz are similar to each other, and we estimate J±:

Hence Jx —> 0 and Jz -> 0 as a -> oo by Lemma 3.
Finally we show that Jδ-+0 for every x for which (1) holds,

and a similar argument holds for J6.
Let x be a number for which (1) holds, and let

β(s) =

so that β(s)/(s — x) -> 0 as s —• #. Then

β(α? - s)dβ(s)

Jx-δ

= Ka(0)β(x) - Ka(d)β(x -δ) + [ β(s)KXx -

Observe that (̂a?) — 0, that β is continuous, and that Ka(δ) —> 0 for
any fixed <5, as α-^ oo. Now we estimate the final integral.

β{s)K'a(x -
— X

I (α? -

(2) <: max

< B max

! — *

β(s)

\dt

X

where B is the constant of Lemma 6. Choose 3 so the right side
of (2) is less than β. Then pick a0 so that \Ka(β)β(x - δ)\ < ε if
a > aQ. Hence | J5\ < 2ε if a > aQ, and we conclude that Jδ —> 0 as
o; —» oo.

In all the applications we take as our net {Ka} the translates
of some standard approximate identity {Lβ}. Hence we state the
following simple observation as a lemma.

LEMMA 8. Let {Lβ} be a smooth approximate identity, and let

Kiβ>t)(s) = Lβ(s - t) .

If the indices (/S, t) are so ordered that (βf t) —» oo implies β —> oo
and t -> 0, ίfcβ^ {i£(iM)} satisfies (a), (b), (c), cmd (d).

For the applications, we so order the pairs (/9, £) that condition
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(e) also holds. The restrictions imposed by (e) determine the paths
along which pointwise convergence occurs.

3. Applications. In this section we apply Theorem 1 to the
Poisson kernels for the disc and half-plane, to heat kernels for the
half-plane and the first quadrant, and to the Fejer kernel.

(A) The Poisson kernel for the disc.
Let

( 3 ) Pr(s) =
2π 1 + r 2 — 2r cos s

where — π < s <; π and r < 1. The kernels {Pr} are a smooth ap-
proximate identity as r —•> 1 [2, p. 102], [3, p. 32]. Let

K{rA*) = Pr(S ~ θ) = X 1 T 2

2π 1 + r2 - 2r cos(s - θ)

Here a = (r, θ) for 0 <L r < 1 and —π < θ <>π. The α's are ordered
as follows: fix A and let

(r, β) > (r', <?0 iff r ^ r f,](?| ^ A(l - r), |^ ' | ^ A(l - r') .

Clearly (r, ^) —> co implies r ~> 1 and θ —> 0, so {Kir>0)} satisfies (a)-(d).
The polar curve θ = A(l — r) has limiting slope ±A as r —> 1.
Hence (r, ^) —> ̂  implies that (r, θ) —> (1, 0) between the lines through
(1, 0) with slopes ±A. If F(r, θ) -> L as (r, θ) —> co, then
lim,.^ i^O, θ) ~ L and the limit is uniform in # for (r, #) within the
given angle at (1, 0). This is formally stronger than the usual
statement "F(r, θ) - > L along any path to (1, 0) within an angle."
Actually, the two statements are equivalent, and we will write
"(r, θ) -> (1, 0) in an angle" for (r, θ) -* <*>.

If a = (r, 5), then αjα of condition (e) is given by xa — θ, and
condition (e) is satisfied as follows:

\*\KM = Mi-r* = i j ^ M < A
' y 2τr (1 - r) 2 2τr 1 - r ~ π

THEOREM A. If feL\—π,π), then

α -
1 + r2 — 2r cos(s0 — s — θ)

^/(^o) a e. as (r, ^) > (1, 0) m an angle .

To get the usual statement, replace sQ — θ hy θ in the right
side of (4) and let
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F<r, θ) = - L
2π

Γ as.
2π J-*l + r2 - 2r cos(0 - s)

Then F is harmonic in the disc and the classical theorem is:

THEOREM A'. If feL\—π,π), then for almost all so,F(r,θ)->
f(s0) as (r, θ) —»(1, s0) within an angle at (1, s0).

To see that condition (e) is an appropriate hypothesis, consider
the function g{z) = exp(z + l)/(z — 1), with g(ΐ) = 0. By [1, Theorem
3.2], (1) holds for this g at θ = 0, since g(r) •-* 0 as r —> 1. Observe
that \g{z)\ = exp(—P(r, θ)), where z — reid. On the circle r = cos^,
P(r, ί) = 1/27Γ, so I flr(2) | is a constant different from g(ϊ) = 0. If
/(0) = Re ίjr(e<<?) and F(r, θ) is the Poisson integral of /, then
F(r9θ)-+*f(0) as (r, .0)-> (1, 0) along the tangential path r = cos0,
even though (1) holds for / at θ = 0.

(B) Tfcβ Poisson kernel for the half-plane.
Let

(5) P f(8) = _V
7Γ

Here — oo < s < oo, and y>0, and {PJ is an approximate identity
as y -> 0 + [3, p. 123]. Let

- p (e __ r) _ y
π V2 + (s — x)2

where — °o < x < ©o and ]/ > 0. Order the pairs (x, #) as follows:

(x, y) > (x'f yf) iff y ^ y' , | x |

Hence (x, y) -+ °° means y-+Q+ and (x9 y) stays between the lines
y — ±Ax. We will indicate such a limit by "(x, y) —> (0, 0) in an
angle."

If α = (a;, 7/), then xa = cc, and condition (e) becomes

β ( σ ) | | ^

πy π y π

Theorem 1 in this case is

THEOREM B. If feL\-oof co), then

-ds
( 6 ) π J — 7 / 2 + (s0 - 8 - x)2

>/(s0) a.e. as (x, y) > (0, 0) in an angle .
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Replace s0 — x by x in the right side of (6), and let

ds.
° i/2 + (s — #) 2

Then JF7 is harmonic in the upper half-plane, and we have:

THEOREM B\ If feL\— ©o, oo), £Λ,e<w, for almost all s0, F(x, j/)->
/(s0) as (a;, 2/) -»(s0, 0) within an angle at (sQ, 0).

(C) Heat kernel for the upper half-plane.
Let

( 7 ) kt(s) = — L = - ^~82/4< >
V 47Γί

where — 00 < s < oo, and t > 0. The family {&J is an approximate
identity as ί - * 0 + [4, p. 31], and kt(s) satisfies the heat equation
d2u/ds2 = 3%/3ί. Let

V Aπt

Order the indices (x, t) as follows:

(a?, t) > (x', V) iff ί ^t', \x\ ̂  A l/T, |oj'| ^

Then (a;, ί)-> 00 means ί - ^ 0 + and (a?, t) lies over the parabola
t = αry^ We will write α(x, t) -^ (0, 0) over a parabola" for (a?, ί )-* 0 0 -
If a = (x, t), then xa — x, and condition (e) is satisfied as follows:.

\xa\Ka(xa) - !^| -yi—
V At

THEOREM C. J / / e Z / ( - o o , oo), then

( 8) / * K{.M = λ \°° e-^-*-χ)2/itf(s)ds

>/(s0) a.e. as (x, t) -> (0, 0) over a parabola .

Replace s0 — a; by x on the right side of (8), and let

*Xtf, ί) =

Then F(x, t) satisfies the heat equation in the upper halfrplane, and:

THEOREM C\ If feL\-00y ©o), ίfcβw /or αZmosί αίϊ s0, F(a?,
f(sQ) as (x, t) -> (s0, 0) over α^i/ parabola t = A(# — s0)

2.
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(D) The heat kernel for the first quadrant.
For a function / in L\t ^ 0) we want to obtain an extension

f(x, t) which satisfies the heat equation in the first quadrant. Since
Theorem 1 treats a convolution on (— oo, oo) rather than (0, oo), we
first prove a lemma which puts Theorem 1 in accessible form.

LEMMA 9. // {Ka} is a smooth approximate identity on (— oo,
oo), and Ka = 0 on (— oo, ba), and / e L ^ O , N) for every N, then

S x~ba

Ka(x — s)f(s)ds • f(x) a.e. as a • o o .
0

Proof. Extend / to the whole line by letting / = 0 on (— oo, 0).
Then for x ;> ba,

f*Ka(x) = Γ Ka(x - s)f(s)ds
J — CO

aKa{x — s)f(s)ds .

As a - ^ o o , l imsupb a ^ 0 by Lemma 2. Hence (9) holds for almost
all x in (0, oo).

For x > 0, the kernel hx is defined as follows:

(10) λ.(8) = V 4π s3/2

0 if s <, 0 .

-e~χ2/i8 i f s > 0

The function hjp) satisfies the heat equation d2u/dx2 = du/ds every-
where except (0, 0) [4, p. 16]. For fixed x > 0, hx(s) = 0 for s ^ 0,
and /&S has a unique maximum at s = #2/6. The maximum value is

The functions {hz} form an approximate identity as x-+0+ [4, p.
71]. Let

K{Xtt)(s) = K(s - t) = • VAπ (s-tγ/2

0 if s ^ ί .

-" if

Note that JBΓ(β.t) Ξ 0 on (—<χ>, t), so the ba of Lemma 9 is: b{Xtt) = ί.
Order the points ($, t) of the right half-plane as follows: fix B > 0,
and let

(x, t) > (x\ tf) iff x ^ x1 , | t | ^ B^2 , \t'\ ^
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Hence (x, t) -» ^ iff x —> o + and (as, ί). lies in the right half-plane
between the parabolas t = ± 2?#2.

The function JL(a.ft> has its unique maximum where s — t = cc2/6.
Hence for α: = (α?, ί), #α = ί + x2/6, and the left side of the condition
(e) becomes

(11) xa\Ka(xa) = \t
]_ / g \ 3/2 1

~4π~ \e / x2
VAπ \e/ x2

If t ^ - α2/6, then (11) becomes, with c = (6/e)3/2/τ/IF,

If ί < — #2/6, then (11) becomes

Hence (e) holds with constant

ίπ \ e / v 6 >

THEOREM D. // feLι(0, N) for every N, then for almost all s0,

^ 1 % 9

/̂(So) as (cc, ί) > (0, 0) between parabolas .

Now replace s0 — t by t, and let

i^,ί) = - Γ N3/2 e
4π Jo (t — s)3/2

Then JFXB, ί) satisfies the heat equation for x > 0, t > 0, and (cf.
[4, p. 78]):

THEOREM D'. If feL\0f N) for any N, then for almost all s0,
F(x, t) —> f(s0) as {x, t) —> (0, s0) between any parabolas t = s0 ± -B^2.

(E) T%e jPβier kernel.
The Fejer kernel is defined by

H-ψ)
Hi)sin

if 8 = 0 .

if s Φ 0
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The family {Ln} is smooth approximate identity on [—πf π] and
/ * L Λ = σn, the nth Cesaro sum of the Fourier series for / [2,
p. 79], [3, p. 17]. We let K{M)(s) = Ln(s - x), and order the pairs
(n, x) as follows:

{n, x) > (n\ x') iff n ^ n' , w |OJ| <̂  A, w' |&'| <; A .

Then (w, x) —> co means w —> oo and | x | <£ A/w. The unique maximum
of K{n>x) is jBΓ(Hιa.)(ίc) = w, so condition (e) reads

\xa\Ka(xa) = |a?|-w ^ A .

Hence {K{n,z)} is a smooth approximate identity and

THEOREM E. If feL\—π,π), then

σn(s0 - x) = f*K{n>x)(sQ) • /(s 0 ) a.e. a s w > oo ,

uniformly in x if \ x \ ̂  A/w.

Let s0 be a point where the limit above exists, and let ε > 0.
Then there is N so that \σn(s0 — x) — 6rn(80)| < e if n^ N and
x I <; 1/τt. Hence we have an estimate of the modulus of continuity

of σn9 for large n, and this estimate does not depend on /, so long
as (1) holds at the point in question.

The kind of continuity statement made above for the Cesaro
sums can be made for convolutions with any smooth approximate
identity. For example, let fr(θ) = (f*Pr)(θ) where Pr is the Poisson
kernel. For ε > 0, there is rε so that |/r(s0) - fr(sQ + θ)\ < ε for all
r ^ re and all θ such that θ ^ A(l — r). We have an explicit es-
timate of how the continuity of fr at s0 depends on r. The es-
timate is independent of /, so long as (1) holds at s0.
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