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ON UNITARY AUTOMORPHISMS OF
SOLVABLE LIE ALGEBRAS

OLDRICH KOWALSKI

Let V be a finite dimensional vector space over real
numbers. An automorphism A of V is called unitary if it
is semisimple and all its eigenvalues are complex units.
Particularly, all periodic automorphisms, i.e., such that 7%=
identity for some integer %, are unitary. The aim of this
paper is to prove the following Theorem. Let g be an
n-dimensional real Lie algebra admitting a unitary auto-
morphism without nonzero fixed vectors. Then g admits a
periodic automorphism without nonzero fixed vectors and of
order %, where k<5"* for n even, and k=<2.5®"V/¢ for n
odd.

The proof is based upon the detailed study of possible eigen-
values of admissible automorphisms of g. Yet our method is purely
combinatorial—we do not make use of the Jacobi identities in g.
Thus, the same method can be applied to nonassociative algebras
or, more generally, to various tensor structures on vector spaces.
As concerns applications to the differential geometry (generalized
symmetric Riemannian spaces), see note at the end of this paper.

Comments:
(a) Obviously, an automorphism A of V is unitary if and only

if V admits a scalar product ¢ , ) such that (Tw, Tw) = {u, v) for

all u,ve V.
(b) It is well-known ([1],[3]) that a finite dimensional Lie

algebra admitting an automorphism without nonzero fixed vectors
is solvable. Thus our theorem is essentially a result on solvable
Lie algebras.

(¢) For the validity of our theorem, it is not necessary to
assume that the initial automorphism is semisimple. For, let A be
an automorphism of g and 4 = S-U the Jordan decomposition into
the semisimple and the unipotent part. Then S is an automorphism
of g possessing the same eigenvalues as A. Particularly, if A is
fixed-point free then so is S, and if all eigenvalues of A4 are complex
units then S is unitary.

(d) The fact that g admits a fixed-point free automorphism of
finite order can be proved directly as follows (cf. also [2]): Let A4
be the given unitary, fixed-point free automorphism of g; then A
can be represented by a diagonal matrix (4, ---, 6,) belonging to
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the torus T". Denote by G the closed subgroup of T* generated
by the powers of A. Then G is a product of a torus and a finite
group. Hence the elements of finite order of G are dense and the
result follows.

Thus the principal result of our theorem is not the existence
part but the given inequalities.

1. The space of eigenvalues—multiplicative theory. Let <"
denote the set of all n-tuples (4, ---, #,) of complex units such that
;41 for i =1, ---,n. (Thus, as a submanifold of C~, &&" is
diffeomorphic to an open unit cube of R*). A characteristic variety
of &#" is a hypersurface 7" < <#" defined by any of the following
relations:

0:;-0; = 0, G#=j#k 1,5,Ek=1--+,n)
(1) 02"01':1 (iyj:]-;"'7n)
s = 0; (t=#17).

For a permulation we X, of the indices 1, --., » and for a subset
A ™" we put

I:r('//zl) = {(0“1)' ) 0«(%))/(01’ ) 6%) € “//Z(} .

If 77 is a characteristic variety then so is I.(?") for each wel2,.
Finally, put
(.2 = L_! L(.#) for all . Z c .zz™.

By a O-variety of <" we mean a 'nonempty set of the form
X 7Nn---N 7;), where 7, ---, 7, are characteristic varieties.
Obviously, we have only finite number of @-varieties in <#™; they
form a partially ordered set with respect to the inclusion map.
Let " c <™ be the union of all characteristic varieties of <Z".
For (0,)e %™ we shall denote by %77(6,) the intersection of all
characteristic varieties containing (4;). Finally, we put 227*,) =
3(97°(0,)). Then 277*(f;) is the minimum §-variety containing (6,).
It is easy to see that, for each #-variety %7 of <#", there is (4,) &
%" such that %7~ = %Z7*(,).

Now, let .o denote the subset of all elements (4,)e ™ with
the following property: if ¢ is among @, -- -, 6, with the multiplicity
m then so is its conjugate 8. Equivalently: (9,) e & belongs to
7™ if and only if there is a permutation pe X, such that p* = id,
and 0, =0,; for i =1, ..., m. Obviously, if S is a real unitary
automorphism without nonzero fixed vectors of a real vector space
V*, then the system of eigenvalues (4,) of S belongs to .o7".
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For (0,) e .&7" we always have %77*(9,) c .7". In fact, because
w*,) = 3(#7°(6,)), and (™) = .7 it is sufficient to prove
w7 (6,) c ™. Suppose (6;)€.or", and let pe X, be a permutation
such that 0*=4d, and 6, =6,, for 1 =1, ---,n. Then 66,, =1
for t =1, ---,n. In other words, 2%77(8,) c #.N -+ N %, where
%", denotes the characteristic variety of <#* given by the relation
000 = 1. For (0:) e (0,) we get 020;(1) =1 for i1=1, ..., m, ie.,
G; = 6, for each i. Hence (4;) € ..

As a consequence, we can see that each minimal #-variety
" c B either belongs to 97" or to the complement <Z™\.o7".

ProPOSITION 1. Let S be a unitary automorphism without non-
zero fixed wvectors of a real Lie algebra g (dimg = n). Let ()€
7" be the system of eigenvalues of S. Then for each n-tuple (9;)
W*(0,) there is a unitary automorphism S’ of g having (6;) as its
system of eigenvalues.

Proof. Suppose (0;) € 7 *(#;). Then there is a permutation 7 ¢
Y, such that I.(6))e?7°(6;). Thus we can re-numerate the eigen-
values 6i, ---, 6, in such a way that (8;) e #°(9,).

Let U, ---, U,eg° be a basis of (complex) eigenvectors corre-
sponding to the eigenvalues 4, ---, §, respectively. Moreover, we
can suppose that a permutation pe ¥, exists such that o* = id, 6,=
Opiry Uy = U,y for i =1, -+, n. Now, let us define a linear trans-
formation S’ of g° by the relations S'U, =6;U,i1=1, -+, n. We
have to show that S’ induces a (real) automorphism of g.

Firstly, S’ induces a real linear transformation of g. In fact,
we have 0, = 6., for each i, and hence S'U, = 6,U, implies S'U,=
S' Uy = 0,0, Upay = 6:U,. Further, put [U, U;] = St ¢5U,. Then
because S is an automorphism, we have S([U,, U;]) = [SU,, SU;]=
0.0,{U,, U;]. Thus [U,, U;] # 0 implies that 6,§; is an eigenvalue
of S and ¢};# 0 can occur only in case that 6, =60, Now,
S' (U, U;]) = 33, ck6.U,, where ¢f; # 0 only if 6, = 6:0;. Hence
S'([U,, U;]) = 0:05{U, U;] =[S’'U, S’U;]. This completes the proof.

Now, consider the partially ordered set of all #-varieties of
", and let =" denote the union of all minimal #-varieties (with
respect to the inclusion map). We obtain the following consequence
of Proposition 1:

PROPOSITION 2. Let g be an n-dimensitonal real Lie algebra
admitting a unitary automorphism without monzero fixed wvectors.
Then g admits a unitary automorphism S such that its system of
etgenvalues belongs to 7" N ™.
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For our further purposes, we have to reveal the structure of
the variety ©2*. In the next paragraphs we shall show that <=
is a finite set. There is a certain difficulty connected with the
proof—it is caused by the fact that the manifold <& is noncompact.

2. The space of eigenvalues—additive theory. We shall start
this section with a geometric result called “Basic Lemma”.

Let A, be a finite set of linear subspaces of the cartesian space
R*[a', - -+, "] with the following properties:

(@) For K,Le/d, we have KN Le 4,.

(b) 4, contains all hyperplanes given by the equations of the
form " — 2’ =0, or 2* + 2 =1, where 1 <1< Jj = n.

Let (I"*)" denote the open unit cube,

(In)o = {[wlr %y x"]eR“/O < x’ < 1, 1= 1, M) n} .
A < 4, will denote the subset of all 0-dimensional subspaces; they

will be called the lattice points of 4,.

Basic LEMMA. FEach linear subspace K€ A, of dimension k> 0
such that KN (I")' %= @ contains a proper subspace L€ A, of dimen-
sion L <k such that LN (I*)°"# @. Particularly, if Ked,, KN
I" + @, then KN (I") contains a lattice point p € &F,.

We shall send two more lemmas beforehand.

LEmMMA 1. (Generalized Pasch’s axiom). Let 4™ be an r-dimen-
sional simplex in the euclidean space E”, and let a linear subspace
Kc Er, dim K > 0, intersect the interior of A'. Then K intersects
the interior of a (r — 1)-dimensional face A4 and the interior of
an l-dimensional face 4P(l < r — 1) such that 4P & 4.

Proof is left to the reader.

Let I*(n = 2) denote the closed n-dimensional unit cube
I"={x, -+, 2" ]eR0=2*<1,9=1, ---,m}.
LEMMA 2. I™ admits a triangulation into 2" '-n! simplexes
4 of dimension m such that:

(a) FEach (n — l)-dimensional face of each simplex 4™ 1is
contained in one of the following hyperplanes:

(2) 2*=0,0r 2f=1, or 2° — a7 =001 # 7), or 2* + o/ = 1(¢£7) .

(b) E=xactly one (n — 1)-dimensional face of each simplex A™
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belongs to the boundary oI of I*.
(¢) The center of the cube I™ is the common wvertex of all
simplexes 4.

Proof. For n = 2, the wanted triangulation of I* is given by
means of 6 lines ' =0,2*=0,2'=1,2>=1, 2 —2*=0, 2" + 2* = 1.
Suppose Lemma 2 to be true for some %, and consider the cube
I**, Let T be a triangulation of I* satisfying the conditions of
Lemma 2, and let f, o I"—>I""(i=1,---,n+ 1;a =0,1) denote
the map

fi,a([xly M) xn]) = [xly ] xi_lx a, wi+l7 %y {D”] .

Then we get a triangulation f;.(T) on each face f;,(I") of I™*,
and thus a triangulation of the boundary o(I**'). Now, we define
a triangulation 7' of I"*' in such a way that each (» + 1)-dimen-
sional simplex 4{*** of T’ has the center [1/2, ---,1/2] of I™** for
a vertex and an n-dimensional simplex of the boundary triangula-
tion for a face. It is obvious that 7" consists of 2n-2"7'.-n] =
2*«(n + 1)! simplexes 4+, and that the conditions (b), (¢) are also
satisfied. The verification of the condition (a) is left to the reader.

LEMMA 3. Let T be a triangulation of the cube I"™ satisfying
the conditions of Lemma 2. Further, let A, be a set of linear sub-
spaces of R™ as in Basic Lemma. Then each k-dimensional simplex
APk <n — 1) of the triangulation T is either contained in the
boundary oI™, or it is contained in a linear subspace Ke A, and
has the point {1/2, -+, 1/2] for a wvertex.

Proof. Each k-dimensional simplex 4{¥ of T is the intersection
of a certain number of (n — 1)-dimensional simplexes of T. Thus
the k-dimensional plane L containing 4{® is determined by a system
of n — k equations of the form (2). Now, if 4{¥ is not contained
in the boundary oI", it has the point [1/2, ---, 1/2] for a vertex.
Hence L is given by a system of equations of the form z* — z7=0.
' + 2™ = 1, and thus it belongs to 4,.

Proof of Basic Lemma. Let T be the triangulation of I
constructed in Lemma 2. Let Ke 4, be of dimension k£ >0 and
such that KN (") = @. Let 4”7 e T be a simplex of the minimum
dimension containing a point of KN (I™)° in its interior. Let LD
4" be the corresponding r-dimensional plane. According to Lemma
3, we have Le4,, and [1/2, ---, 1/2] is a vertex of 4{".

Suppose now K < L. Then, according to Lemma 1, the k-
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dimensional plane K intersects the interior of a face 4y and the
interior of a face 4", where [ <7 —1 and 4P & 4. Then at
least one of the simplexes 47", 4% € T contains the vertex [1/2, ---,
1/2] and thus it does not belong to the boundary aI*. Moreover,
it contains in its interior a point ge KN (I")° — a contradiction to
the minimality of 7.

Hence K £ L, and the subspace P= K L is a proper subspace
of K. We have Ped, and PN ({I")° # &, which completes the
proof.

PROPOSITION 3. The union 2™ of all minimal O-varieties of
FB" is a finite set. Moreover, each element (0)e 2™ is of finite
order, i.e., (6)* = (6)* = --- = (0,)* = 1 for some integer k.

Proof. Consider the diffeomorphism f of the open unit cube
(I c R" onto <#Z™ given as follows:

F(at, «--, z*]) = (exp (2rV 1Y), - - -, exp (271 —1z")) .

Consider the set of all hyperplanes of R" which correspond to the
following linear equations:

'+l —2kF=0,

i+l —xtF=1;
(3) oat+4+a2i=1,

—ai=0;

20t =1, t=1,-.--,m).

(Gxj*k+1%1,5,k=1,---,m)

(t#74;4,5=1+--,m)

Let 4, denote the set of all linear subspaces of R™ which are
intersections of finite number of hyperplanes given above. For
each L e 4, we shall take into consideration all hyperplanes of the
form (38) containing L. Thus, each subspace L€ 4, is characterized
by a unique (maximal) set #(L) of linear nonhomogeneous equations
of the form (8); the equations of this set may be linearly dependent.
For each subspace L we also consider the corresponding set A(L)
of linear homogeneous equations. Now, two subspaces L, L'e 4,
will be said to be conjugate if h(L) = h(L').
For any permutation 7 €Y, consider the transformation

L:[a, ---, w”] [m“(l), ] xn(“)]

of R, and for L Cc R" put Y(L) = Uxes, I(L).

LemMA 4. If %" C Z™ is an G-variety them fY() = 3L, U
-««UL)NUI™ where L, ---, L,c A, is a complete set of mutually
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conjugate subspaces. Conversely, if L, ---,L,€ 4, is a complete
set of mutually conjugate subspaces then f[E(L,U--+-UL,)NUI"™)]
18 either an empty set or a G-variety.

The proof is easy and it is left to the reader.

LemmaA 5. If " cZ™ is a minimal G-variely themn f~Y(#7)
consists of lattice points of A,.

Proof of the lemma. Let % be a @#-variety and put fY(# )=
(L, U---UL,)N U™ Suppose that dim L, >0, L, N I")° = @. The
set 4, satisfies the conditions of Basic Lemma. Thus, there is a
lattice point pe L, N (I™)°. Obviously, the set L, U---U L, contains
all lattice points p,, ---, p, which are conjugate to p, and f(Z{p,, ---,
2N IY) ¥ is a G-variety. Hence Lemma 5 follows.

Proof of Proposition 8—continuation. Clearly, the points of the
set =" are in one-to-one correspondence with the lattice points of
A4, included in (I™)°. Now, all lattice points of 4, have rational
coordinates, and consequently, the points (4,) of =" are elements
of finite order.

3. Evaluation of an upper bound for the order.

PROPOSITION 4. Let k(n) denote the maximum order of an
element of Z2"N ™. Then k(n) < 5" for n even, and k(n) <
2.5V for n odd.

The proof will be performed, after some preparations, at the
end of this section.

Let [a}, ---, a"] € (I™)" be a lattice point of 4,. If 4, ---, 6, =
f(a!, -+, a"]) e ", then there is a permutation pe€ 2, such that
©* = identity, and @, =6,,, ie.,, a' +a*?=1 for 1=1,---, m.
Suppose p(%) #= 4 for 4 =1, --+, 2r and p(j) = j for j=2r+1, ---, n.
We can also achieve by a re-numeration that 0 <a’ < 1/2 for i =
1, .., and p(t) =7r+1¢ for i =1, ---, 7. Naturally, we have
¥t = ... =q"=1/2. Put b*=a* for i=1,---,7, and b’ = o’
for j=r+1,---,n—17r. Now, the lattice point [a!, ---, a"] can
be calculated from the values of b, ---,5"”. On the other hand,
the numbers a*, -+, a" are uniquely determined by a set z((a%)) of
linear equations of the form (3). Thus the corresponding values
b, +--, b7, b, -+ «, b " are uniquely determined by a set of equations
of the form
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¥y+y—y=0,
vy +yt=1;
2y —y*=0, 2y’ +y*=1, ¥’ —y*=0 (i#k, 1, k=1, -+, n—7)
20 =1 (i=r+1---,n—17).

G#tj*k+1 1,3,k=1 -, n—7)
(4)

It means that we can select a system of n — r independent
equations of the form (4) and then calculate b, ---, ™" using the
Cramer’s rule.

Let 4 be the matrix of the left hand side of this system, and
let | 4| denote the absolute value of det 4. Obviously, if we can find
an upper bound for |4|, we get hence an upper bound for the order
of (6,). For this reason, we shall now investigate the matrices of
the above type.

In the following, define the weight of a row (or column) of a
matrix 4 to be the sum of the absolute values of all elements of
this row (or column). For the sake of brevity, a matrix 4 will be
said to be of type 6 if its elements a] are integers satisfying
lal] £ 2 and the weight of each row is =<3. Clearly, a submatrix
of a matrix of type 6 is also of type o.

LemMMmA 6. Let 4,(n =3) be a square matriz of type o such
that |afl <1 for 4,5=1, -+, n. Let w(d,) denote the number of
all places in 4, occupied by the elements =1 and t(4,) = 3n — w(4,)
Then

(5) 14, = 55 ) where & = min 2, (4.)

Proof. Let us remark first that ¢(4,) =0 for each 4,. We
shall now proceed by induction. For n» = 8 we can verify formula
(5) directly. Suppose (5) to be true for all n <m,m =3, and
choose a matrix 4,.,,.

(A) Let us have first ¢(4,,,) =0 or 1. We can suppose that
Ay has exactly 8 elements +1 in the first row. Denote by D,
the matrix consisting of the remaining m rows. If some column
of D,,., consists of zeros then either 4,,, =0, or 4,,, has a column
of weight one. In the last case |4,..| = |4.|, where 4, is a sub-
matrix of D,,,. Here t(4,) = t(4,.+.), and the induction step follows.

Let now each column of D,., contain at least one element +1.
Then each submatrix 49 of D,,, satisfies ¢(4?) = t(4,.) +1. If
we put k, = min (2, t(4¥)), k = min (2, t¢(4,.,.)), then k, =k + 1 for
each i. Now, |4%| < 5™2(1/5/3)% 'according to (5). Hence |4,.,| =<
3.max,; |49 | < 3-5™2(1/5/3)+ < 5m+2(1/5[3)k.

(B) Let now t(4,.,) = 2. We shall distinguish two subcases:
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(Bl) One row of 4,.,, has weight 1; then |4,.,| = |4,|, where
4, is a suitable submatrix. Now |4,,| < 5™ and hence |4,,,,| <5<
5m+1/2(1/§'/3)z.

(B2) One row of 4,., is of weight 2. The matrix D,,,, consist-
ing of remaining m rows contains 3(m + 1) — t(d,y) — 2 = 3m —
(t(4ps)—1) elements +1. If some column of D, consists of zeros,
then either 4,.,, =0, or |4,.,| = |4,.] where t4,) = t(4,,,) — 1= 1.
In the last case |4,..,| = [4,| < 5™*(V/5/8) < 5™+v2(y/5/3)%. If each
column of D,,, contains at least one +1, then for each submatrix
4% of D,., we have t(4¥) = t(d,.) = 2. Hence [45| < 5™*(V/5/3)?,
and |4,..| £ 2. max, 49| < 2-5"2(V/5/3)* < 5m+2(v/5/3)".

LeMMA 7. For an arbitrary matrix 4, of type 6 we have

(6) |4.] = 5™ .

Proof. We can verify easily that |4, =2 < 5% |4,] <5, and
thus the formula is true for » =1, 2. Let (6) be true for all n<m,
and consider some 4,,,. If 4,, contains some row or column of
weight <2, then we can write |4,,] < 2-max, |4{| < 2.5 < 5mFi2,
(Here 4% are the submatrices which are complementary to the
elements of the given row or column.)

Suppose now that the weight of each column and each row is
>38. (For the rows the weight is always 3.) If 4,,, does not
contain elements +2, we have |4,,,| < 5™ according to Lemma
6. Thus, let 4,,, contain at least one element +2. Then inter-
changing the rows, and also the columns properly we can achieve
that a} = £2,a! # 0, a2 0. We shall consider 3 cases:

(@) |at| =2, |ai| = 1; then the submatrix 4; to a} has the first
row of weight 1, and the submatrix 4% to a? has at least one row
of weight <2. Hence |4}| < 572, |4} < 2-5™2 |4, | < |ai| |4+
lai] | 47| = 4-5m7"" = 5™

(b) l|ai| = lai| = |ai| =1. Then the submatrix 4; has the first
row of weight 1, and each of the submatrices 4, ££ has at least
one row of weight <2. Thus |4, | = D lai| 4] = 1+2+2)5™12 L
5m+1/2.

(e) lail =1,lai| =2. The conclusion |4,,,| = 5" is quite
similar to the case (b).

This completes the proof.
REMARK. For n» even, the estimate (6) is the best one.

Proof of Proposition 4. Consider a given (4;)e 2"N %™ and
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the lattice point [a}, ---, a"] = f7%(6;). Then we can find a compatible
system of » — r independent equations of the form (4) defining the
corresponding values b, ---, b7, 0", «+-, b*". Without the loss of
generality we can suppose that all equations of the form 2y’ =1
G=r+1,---,n—7) form a part of this system. The matrix of
the left hand side of the system take on the form

4, *

where 4, is a matrix of type 6 with » rows and columns. Solving
the system by means of the Cramer’s rule, we obtain for =1, ---,
r: |yt = | D;|/@" | 4,]), where D, is the matrix obtained by replac-
ing the ith column of D by a column consisting of elements 0 and
+1. Clearly, if » — 27 > 0, then |D;| = 2"*'.n,, where =, is an
integer. Hence |b*| = n,/(2|4,]) (i=1, ---, 1), ' =12 (j=r+1, ---,
n — 7). Thus, if » — 2 > 0, we can see that 2|4,|-b° is an integer
fori=1,-.--,n — 7, and also 2|4,|a’ is an integer for j =1, ---, n.
If » —2r =0, then |4,|b® is an integer for ¢=1, ---, 7, and also
|4,|a’ is an integer for j =1, ---, n.

Now, if % is odd, then n — 2r >0, and (6, is of order k <
2]4,]|, where |4,] <57 < 5" V4 gecording to Lemma 7. If = is
even, then either (4,) is of order k < |4,|, where r = n/2, or of
order k < 2|4,|, where » < (n — 2)/2. In both cases, k& < 5~*. This
completes the proof.

Now, our theorem follows from Proposition 2 and Proposition 4.

4. Note. In the paper [2] we have defined a generalized
symmetric Riemannian space of order k. (Here, the usual globally
symmetric Riemannian spaces are those of order 2.) We have also
shown that all simply connected generalized symmetric Riemannian
spaces are in one-to-one correspondence with certain tensor struec-
tures on vector spaces, admitting unitary automorphisms without
nonzero fixed vectors. By the same method as we used above we
can come to the following theorem:

Let M be a simply connected generalized symmetric Riemannian
space of dimension n and of order k. Then %k < 5" for n even,
and k < 2-579% for n odd.
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