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CONSTRUCTIVE VERSIONS OF TARSKΓS
FIXED POINT THEOREMS

PATRICK COUSOT AND RADHIA COUSOT

Let F be a monotone operator on the complete lattice
L into itself. Tarski's lattice theoretical fixed point theorem
states that the set of fixed points of F is a nonempty complete
lattice for the ordering of L. We give a constructive proof
of this theorem showing that the set of fixed points of F is
the image of L by a lower and an upper preclosure operator.
These preclosure operators are the composition of lower and
upper closure operators which are defined by means of limits
of stationary transfinite iteration sequences for F. In the
same way we give a constructive characterization of the set
of common fixed points of a family of commuting operators.
Finally we examine some consequences of additional semi-
continuity hypotheses.

1* Introduction. Let L ( £ , J_, T , (J , Π) be a nonempty complete
lattice with partial ordering Q, least upper bound U, greatest
lower bound Π. The infimum L of L is f)L, the supremum T of
L is Ul#- (BirkhofΓs standard reference book [3] provides the
necessary background material.) Set inclusion, union and intersection
are respectively denoted by £ , Li and JΊ.

Let F be a monotone operator on L(£, JL, T, U, Π) into itself
(i.e., VX, YeL, {IS7} =- {F(X)Q F(Y)}).

The fundamental theorem of Tarski [19] states that the set fp(F)
of fixed points of F (i.e., fp(F) — {XeL: X = F(X)}) is a nonempty
complete lattice with ordering Q. The proof of this theorem is
based on the definition of the least fixed point lfp(F) of F by lfp(F) =
Π{XeL: F(X) S X}. The least upper bound o f S c fp(F) in fp(F)
is the least fixed point of the restriction of F to the complete lattice
{XeL:({jS) Q X). An application of the duality principle completes
the proof.

This definition is not constructive and many applications of
Tarski's theorem (specially in computer science (Cousot [5]) and
numerical analysis (Amann [2])) use the alternative characterization
of lfp(F) as \J{F*(l): i eN}. This iteration scheme which originates
from Kleene [10]'s first recursion theorem and which was used by
Tarski [19] for complete morphisms, has the drawback to require
the additional assumption that F is semi-continuous (F( U S) = U F(S)
for every increasing nonempty chain S, see e.g., Kolodner [11]).
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The purpose of this paper is to give a constructive proof of
Tarski's theorem without using the continuity hypothesis. The set
of fixed points of F is shown to be the image of L by preclosure
operations defined by means of limits of stationary transfinite itera-
tion sequences. Then the set of common fixed points of a family
of commuting monotone operators on a complete lattice into itself
is characterized in the same way. The advantage of characterizing
fixed points by iterative schemes is that they lead to practical com-
putation or approximation procedures. Also the definition of fixed
points as limits of stationary iteration sequences allows the use of
transfinite induction for proving properties of these fixed points.

Finally some consequences of the additional and less general
continuity hypothesis are examined.

2* Definitions*

DEFINITION 2.1. (Upper iteration sequence.) Let L(£, 1, T , U, Π)
be a complete lattice, μ the smallest ordinal such that the class
{δ: δ e μ) has a cardinality greater than the cardinality Card (L) of
L and F a monotone operator on L into itself. The μ-termed upper
iteration sequence for F starting with D 6 L is the μ-termed sequence
(X% δ e μ) of elements of L defined by transfinite recursion in the
following way:

( a) X° = D
(b) Xδ = F(Xδ~ι) for every successor ordinal δ e μ
( c ) Xδ = \Ja<δ Xa for every limit ordinal δ e μ

(the dual lower iteration sequence is defined by:
( c') Xδ = Γ)a<δ Xa for every limit ordinal 8 e μ).

DEFINITION 2.2. (Limit of a stationary transfinite sequence.)
We say that the sequence (Xδ, δ e μ) is stationary if and only if
{3ε 6 μ: {V/2 Gft{/3^ε}=> {Xε = Xβ}}} in which case the limit of the
sequence is X\ We denote by luis(F)(D) the limit of a stationary
upper iteration sequence for F starting with D (dually llis(F)(D)).

In the following the class of ordinals, the ordinal addition, the
ordinal multiplication and the first infinite limit ordinal are respec-
tively denoted by Ord, +, and ω (the definition of + and shal)
be used in the form stated by Birkhoff [3]).

The set of prefixed points of F is prefp(F) = {Xe L: X C F(X)}.
Dually postfp(F) = {XeL: F(X) £ X). Therefore fp(F) - prefp(F)R
postfp(F).

We use Church [4]'s lambda notation (so that F is XX. F(X)).
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3* Behavior of an upper iteration sequence*

LEMMA 3.1. Let (Xδ, δ e Ord) be the Ord-termed upper iteration
sequence for the monotone operator F on the complete lattice
L(Q, ±, T, U, ίΊ) into itself starting with DeL,

(1) VP e L, {{D £ P) and {F{P) £ P}} =- {Vδ e Ord, Xδ £ P},
(2 ) [D e postfp(F)} => {Vδ e Ord, Xδ £ D}.

Proof. Let PeL be such that D £ P and F(P) £ P, then by
Definition 2.1(a) 2) = X° £ P. Assume that Va e Ord, {α < δ} =>
{Xa £ P}. If δ is a successor ordinal, then we have Xδ~ι £ P so
that by monotony F(Xδ~ι) £ F(P) £ P proving by Definition 2.1(b)
that Xδ £ P. If δ is a limit ordinal then by induction hypothesis
and definition of least upper bounds U«<ί Xα £ P proving by Defini-
tion 2.1(c) that Xδ £ P. By transfinite induction Vδ 6 Ord, Xδ £ P.
In particular when D e postfp(F) we have D £ D and 2̂ (2?) £ D
which imply Vδ e Ord, Xδ £ 2).

THEOREM 3.2. Let (Xδ, δ e Ord) be the Ord-termed upper itera-
tion sequence for the monotone operator F on the complete lattice
L(£, JL, T, U, Π) into itself starting with DeL,

(1) Vδ e Ord, let β ^ δ and n < co be respectively the quotient
and remainder of the ordinal division of δ by ω (i.e., δ = β ω + n),
V/9': βr > β, V7: βr ω ̂  7 ^ ^ ω + w, Xδ £ X r .

( 2 ) Tfee subsequence (Xa'ω, ae μ) is a stationary increasing
chain, its limit Xη'ω is the least postfixed point of F greater than
or equal to D.

( 3) There exists a smallest limit ordinal ξ such that ξ :g rj co
and Xζ e prefp(F)\J_postfp{F).

(4 ) If Xζe prefp(F) then the subsequence (Xδ, ξ ^ δ < ξ + μ)
(as well as (Xδ, ξ ^ δ)) is a stationary increasing chain of elements
of prefp(F), its limit luis(F)(Xζ) is equal to Xψω which is the least
of the fixed points of F greater than or equal to 2λ

( 5) If Xζ 6 postfp(F) then (Xζ+n, neco) is a decreasing chain
of elements of postfp(F) and Vδ 6 Ord, Xζ+δ = Xζ+m where m is the
remainder of the ordinal division of δ by w.

Proof.
(1) Vδ e Ord, there exist unique β and n such that δ = β ω + n

and β ^ δ, n < ω. If δ is a limit ordinal then n = 0 and V/3' > β,
βr ω > β ω = δ and βr ω is an infinite limit ordinal so that by
Definition 2.1(c) Xδ £ \Ja<β>.*Xa = Xβ'*ω. If n Φ 0 then δ is a suc-
cessor ordinal and (δ — 1) = β ω + (n — 1). Assume that V/3' such
that β' > β and V7 such that βr ω ̂  7 ^ β' ω + (n - 1) we have
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Xδ~ι £ Xr. According to Definition 2.1(b) and by monotony Xδ -
FiX8-1) £ F{Xr) = Xr+1. Also Xδ £ Xβf'ω therefore with 7' = 7 + 1
we get V/3': β' > β, V7': βr ω ̂  7' ̂  /3' α) + n, Xδ £ Xr'. By trans-
finite induction on δ Theorem 3.2(1) is proved.

(2) By 3.2(1) the subsequence (Xa'ω, a e μ) is an increasing
chain. Assume that {Vrj e Ord, {η e μ and (η + 1) e μ} => {X*'ω ^
X(3y+1)'ω}}. This implies that <Xα ω, a e μ) is a strictly increasing
chain so that the class {Xa'ω: a e μ) is equipotent with the class
{a- ω: ae μ}. Since Xa.(a ώ) is a one-one function mapping {a:: α e μ)
onto {α ωrαeμ} the class {Xa'ω: aeμ} is equipotent with the class
{a: a e /*}. Therefore by definition of μ we have Card {{Xa'ω: aeμ}) >
Card (L) and also by {Va e μ, Xa'ω e L) we obtain the contradiction
Card ({Xa'ω: a e μ}) ^ Card (L). By reductio ad absurdum {3)7: (7? 6 μ)
and ((77 + 1) 6 μ) and X '- - χ<9+« «}.

Since (17 ω) + 1 < (̂  + 1) ω and (̂  + 1) α> is an infinite limit
ordinal Definitions 2.1(b) and 2.1(c) imply that F(X^ω) = X^ ̂ ^1 £
U««*+i>.« ̂  - χ^+«- = χv». Also D=X°Q \Ja<v.ω X" = Z^ω so that
X*'ω is a postfixed point of F greater [than or equal to D. Let
PeL be such that F ( P ) £ P and DQP. Then Lemma 3.1(1) implies
that Xψω £ P proving that Xψω is the least postfixed point of F
greater than or equal to D.

Va 6 Ord, a > η implies a ω > η ω and therefore by Definition
2.1(c) X« « = Vβ<a.ω X? = X»'« U (U*.«s><*.« -ΣO But X^ω 6 ί>osί/^ (F)
so that according to Lemma 3.1(2), V/3 ̂  ^ o) we have X'3 £ X57^
proving that Z α ω = Xv'ω and that <Xαω, aeμ) and <Xα ω, α6Ord)
are stationary.

(The following Theorem 4.1 will show that Xη'ω can be constructed
more directly as luίs (XX.X U F(X))(D) = ίuis (λX.JO U F(X))(D)).

( 3 ) Since Xψω e postfp (F) and Ord is well-ordered there exists
a smallest limit ordinal ζ i^r] -ω such that Xf and JF(X*) are com-
parable.

(4) If Xξeprefp(F) then by monotony of F, Definition 2.1
and transfinite induction, it is easy to prove that {V<5, β e Ord,
{ζ £ S ̂  β} => {D £ Xδ £ Xβ £ F(Xβ)}}. By definition of μ the increas-
ing subchain (Xδ, ξ^d<ζ + μ) of elements of L cannot be strictly in-
creasing so that {lεeθrd:(ξ^e<e + l<ξ + μ) and (Xe = Xfi+1)}. Then
by transfinite induction using Definition 2.1 it is immediate that
(Xδ, ξ ^ δ < ζ + μ> and (Xδ, ξ ^ δ> are stationary of limit Xe. Since
D £ Xε = Xε+1 = F(Xδ), ^ ε is a fixed (and postfixed) point of F
greater than or equal to D. Let P e L be such that D £ P and
F(P) £ P. By Lemma 3.1(1) we have Xε £ P proving that Xs is
the least fixed (and postfixed) point of F greater than or equal to
D. Moreover Xε = Xη'ω by 3.2(2).

(5) When F(Xξ) £ Xζ it is easy, using the monotony of F, to
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prove by finite induction that the subsequence <Xf+n, neω) is a
decreasing chain. If δ = 0 then δ = 0 ω + 0 and obviously Xζ+δ =
Xf = X*+0. Assume that Vα: 6 Ord, {a < δ} => {Xζ+a = X*+m} where m
is the remainder of the ordinal division of α by ω. If δ is a suc-
cessor ordinal then 3/3 6 Ord, 3neω such that δ = β ω + w with
n Φ Q. Hence 3 — 1 = β ft) + (n — 1) so that by induction hypothesis

= χ f +(δ-D = jre+c-i) = χ(e+ >-iβ B y Definition 2.1(b), Xf+δ =
-i) = |P(χ(e+ )-i) = χe+ β if a is a limit ordinal then £ + δ is a

limit ordinal because ζ is a limit ordinal. Hence by Definition 2.1(c)

X?+δ - Ur<f+δ X' = (Ur<, XO U (U«r<e+. ̂ 0 = ^ U (Ur<δ JP+0 - JP
since Xξ e postfp (F) implies according to Lemma 3.1(2) that
V7, Xζ+r £ Xζ. By transfinite induction, Vδ 6 Ord, Xζ+δ = Xf+% where
% is the remainder of the ordinal division of δ by a).

The following corollary is immediate from 3.2(4):

COROLLARY 3.3. (Behavior of an upper iteration sequence start-
ing from a prefixed point of F.) A μ-termed upper iteration se-
quence (X\ δe μ) for F starting with Deprefp (F) is a stationary
increasing chain, its limit luis (F)(D) is the least of the fixed points
of F greater than or equal to D.

An upper closure operator p on L into L is monotone, extensive
( V i e L , X £ ρ{X)) and idempotent (Vie L, p(p(X)) = p(X)). Dually,
a lower closure operator p on L into L is monotone, reductive
(yXeL,p(X) Q X) and idempotent.

COROLLARY 3.4. The restriction of luis (F) to prefp (F) is an
upper closure operator.

Proof. VD 6 prefp (F), we have luis (F)(D) efp (P) £ prefp (F).
By 3.3, D £ luis (F)(D). By transfinite induction it is easy to show
that the upper iteration sequence (X\ δeμ) for F starting with a
fixed point P of F is such that {V<5 e μ,P — Xδ) so that in particular
for P = luis (F)(D) we have luis (F)(luis (F)(D)) = luis (F)(D).
Finally by transfinite induction it is easy to show that the upper
iteration sequences <Xδ, δeμ) and (Yδ, δeμ) starting respectively
by prefixed points D and E of L satisfying D QE are such that
{V<5 6 μ, Xδ £ Y3}. Therefore by Theorem 3.3, 3s 6 μ, 3s' 6 μ such that

Applying the duality principle, we get:

COROLLARY 3.5. The restriction of llis(F) to postfp (F) is a
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lower closure operator.

4* Constructive characterization of the sets of pre- and post*
fixed points of F*

THEOREM 4.1. The μ-termed upper iteration sequences (Xδ, δ e μ}
and (Yδ,δeμ) for XX-Xl)F(X) and XX- D U F{X) respectively,
starting with an arbitrary element D of the complete lattice L are
stationary increasing chains such that Vδ e μ, Xδ = Yδ. Their limits
luis(XX-XUF(X))(D) and luis(XX D U F(X))(D) are equal to the
least of the postfixed points of F greater than or equal to D.

Proof. 4.1.1. VDeL, D is a prefixed point of XX-XuF(X) and
XX D U F(X) which are monotone operators on the complete lattice
L into itself. Hence Theorem 3.3 implies that (Xδ, δ e μ) and
(Yδ,δeμ) are stationary increasing chains.

4.1.2. Vδ e μ, Xδ = Yδ.
By Definitions 2.1(a) and 2.1(b) the lemma is true for δ = 0 and
δ = 1. Assume it is true for every Ύ such that 2 <̂  7 < δ < μ. If
δ is the successor of a successor ordinal then Xδ — X3'1 U F{Xδ~ι) —
Yδ~ι U FiY8'1) = D U F(Yδ~2) U F(Yδ-1) = D U F(Y8"1) = Yδ by Defini-
tion 2.1(b), induction hypothesis, 4.1.1 and monotony of F. If δ
is the successor of a limit ordinal then Definition 2.1(b), induction
hypothesis, 4.1.1, Definition 2.1(c) and definition of least upper bounds
imply Xδ = Xδ~ι U F{Xδ~ι) = Yδ~ι U F(Yδ~') = ( U < M Ya) U
U<,-i (Ya+1 U ̂ (Γ5-1)) = U«<β-i CD U ̂ (Γ^UFίΓ'- 1)) = D U
Yδ. If δ is a limit ordinal then Definition 2.1(c) and induction hy-
pothesis imply Xδ = \Ja<δ X

a = U«<5 ̂  = Yδ By transfinite induc-
tion the lemma is true for every δ e μ.

4.1.3. By 4.1.1 and 4.1.2 the limits luis (XX X U F{X))(D) and
luis (XX D U F(X))(D) exist and are equal. By 3.3 ί w ( λ ! J U
F(X))(D) is the least of the fixed points of XX-X\JF(X) greater
than or equal to D so that {VP e L, {P = P U F(P)} <=> {F(P) £ P}}
implies that Zwis ( λ J I U F(X))(D) and Z îs (λX Z) U F(X))(D) are
equal to the least of the postfixed points of F greater than or equal
to D.

COROLLARY 4.2. The set of postfixed points of F is a nonempty
complete lattice:

postfp(F)(Q,lfp(F), τ,\S-lui8(\Z-Z\jF(Z)X\jS), Π)
where the least fixed point of F is lfp(F) = luis(F)(D) — f){XeL:
F(X) S X) for every DeL such that D £ Ifp (F).
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Proof. By 4.1 and 3.4 the image of the nonempty complete
lattice L by the upper closure operator p — luis (XZ Z (j F(Z)) is
included in postfp (F). Reciprocally, VP e postfp (F) we know that
Pefp (XZ Z U F{Z)) so that the upper iteration sequence (Xδ, δ e μ)
for XZ'Zl)F(Z) starting with P is such that {Vδ e μ, P = Xδ}.
Hence p(P) = P that is postfp (F) £ p(L) and by antisymmetry we
have postfp (F) = ̂ (L).

By Ward [21] 's theorem p(L) is a nonempty complete lattice
(£,0(±), τ,λS ff(UiS), n).

Also by 4.1 luis (XZ Z U F(Z))(±) = luis (XZ- ± \J F(Z))(±) =
luis (F)(±) = Πpostfp(F) by definition of the infimum of a complete
lattice. By 3.3 Zt&iβ (JF)( JL) is the least of the fixed points of F
greater than or equal to JL, therefore it is the least fixed point of
F.

Finally let DeL, be such that DQlfp(F) and (X3, δeμ),
(Yδ,δeμ), (Zδ,δeμ) be the upper iteration sequences for F respec-
tively starting with j _ , D, and Ifp (F). By transfinite induction it
is immediate that {Vδ e μ, Xδ Q Yδ £ Zδ = Ifp (F)}. According to
3.3, (X*, δeμ) is stationary and its limit luis(F)(_L) is lfp(F).
Therefore (Yδ,δeμ} is stationary of limit lfp(F).

Applying the duality principle, we obtain:

COROLLARY 4.3. The set of prefixed points of F is a nonempty
complete lattice:

prefp(F)(Q, ±9gfp(F)t U,XS Ίlis (XZ. Z n F(Z))(nS))
where the greatest fixed point of F is gfp (F) = His (F)(D) = U{XeL:
X £ F(X)} for every DeL such that gfp (F) Q D.

Let {Ft: ie 1} be a family of monotone maps from L into L.
The unary polynomials of the algebra <L; U, Π, {F^: i e I}) are
mappings on L into L defined as follows:

( i ) The identity mapping XX X is a unary polynomial.
(ii) For every i e I, if P is an unary polynomial then so is

(iii) If {Pr: ΎeJ} is a family of unary polynomials then so are
XX'l)rejPr(X) and XX.ΠrejPr(X).

(iv) Unary polynomials are those and only those which we get
from (i), (ii), and (iii).

Since polynomials are functions of L into L they are ordered by
the pointwise ordering {FQG}~> {VXe L, F(X) £ G(X)}.

COROLLARY 4.4. Every unary polynomial of (L; U, Π , {Ft: i e J}>
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is less than or equal to XX luis (XZ Z (J (Uiei Ft(Z)))(X) and
greater than or equal to XX His (XZ Z Π (Πiei Fi(Z)))(X).

Proof. Let F be XZ-(Z ΌdJieiF^Z))) and F be λ Z ( £ n
(ΠieiFiiZ))), F and 2̂  a r e monotone maps on L into L. The proof
is by induction on the structure of unary polynomials:

( i ) luis(F) is extensive and Πis(F) is reductive so that for
every X of L we have His (F)(X) £ I S luis (F)(X).

(ii) Let P be a unary polynomial such that for every X of L
we have His (F)(X) £ P(X) £ ί%ΐs (F)(X). Then for every mono-
tone i^, we have F^llis (F)(X)) £ F^PiX^QF^luis (F)(X)). But

iFχX^^F^llistFχX)) and dually i^msCFXX))£
- Zwiβ (F)(X) so that by transitivity His (F)(X) S

(iii) Let {Pr: 7 6 J} be a family of unary polynomials such that
for every l e i , His (F){X) £ Pr(X) £ k i s (F)(X) then by definition
of least upper bounds we have His (F)(X) £ \J7eJ Pr(X) £ luis (F)(X)
and by definition of greatest lower bounds we have His (F)(X) £

The generalization of 4.4 to %-ary polynomials is immediate.

5* Constructive characterization of the set of fixed points of
F.

THEOREM 5.1. (Constructive version of Tarski's lattice theoreti-
cal fixed point theorem.) The set of fixed points of F is a nonempty
complete lattice with ordering £ , infimum luis (F)(A.), supremum
His (F)(T), least upper bound XS Ίuis (F)({JS) and greatest lower
bound XS His (F)( Π S).

Proof. By Theorems 3.3 and 3.4, fp(F) is the image of
prefp (F) by the upper closure operator luis (F) and by Theorem
4.3 prefp (F) is a nonempty complete lattice so that by Ward [21]'s
theorem fp(F) is a nonempty complete lattice with ordering £ ,
infimum luis(F)(±) and least upper bound XS luis (F)(US). By
duality, fp(F) is the image of the nonempty complete lattice postfp(F)
by the lower closure operator His (F) so that the supremum of F is
His(F)(T) and the greatest lower bound XS Ίlis (F)(Γ\S).

The construction of extremal fixed points of monotone operators
as limits of stationary transfinite iteration sequences may be found
in Devide [7] (where Ifp (XZ D (J F{Z)) is the limit of the sequence
X° = D, Xδ = Xδ~ι U F(Xδ-1) for successor ordinals and Xδ = \J«<S %

a
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for limit ordinals) in Hitchcock and Park [8] (where Ifp (F) is the
limit of X° = J_, Xδ = \Ja<δ F(Xa) for every nonzero ordinal) and in
Pasini [15] (where transfinite sequences are defined as in Definition
2.1).

COROLLARY 5.2. Let D be an arbitrary element of L. luis (F)o
llis (XZ Z Π F(Z)XD) and His (F)oluis (XZ Z U F(Z))(D) are fixed
points of F greater than or equal to any fixed point of F less than
or equal to D and less than or equal to any fixed point of F greater
than or equal to D. Moreover luis (F) ° llis (XZ Z Π F(Z))(D) £
llis (F)o luis (XZ Z\] F(Z))(D). •

Proof. Assume that A is a fixed point of F less than or equal
to D and B a fixed point of F greater than or equal to D, that is
F(A) = A C DQ B = F(B). Then by monotony (3.4, 8.5) and fixed
point property A = luis (F) o llis (XZoZf) F(Z))(A) Q luis (F) o
llis (XZ Z Π F(Z))(D) C luis (F) o His (XZ - Z Γ\ F(Z))(B) = B. The
same way, A £ llis (F) o luis (XZ Z (J F(Z))(D) S B.

Let P be llis (XZ Z n F(Z))(D) and Q be Zwiβ (λ^ ZU F(Z))(D).
Let S b e { I e L : P £ l S Q } . S is a complete sublattice of L with
infimum P and supremum Q. By 4.1 and its dual P C F(P) and
F(Q) C Q so that F(S) £ S. Then by 5.1 the least fixed point of F
restricted to S is luis (F)(P) and the greatest fixed point of F
restricted to S is llis (F)(Q) proving that luis (F) ° llis (XZ Z Π
F(Z))(D) S llis (F) o luis (XZ - Z (j F(Z))(D).

A lower preclosure operator p on L is monotone, idempotent and
satisfies the Zower connectivity axiom {VX e L, ρ(X 0 p(X)) = p(X)}.
An upper preclosure operator p on L is monotone, idempotent and
satisfies the upper connectivity axiom {VXeL, ρ(X U p(X)) = p(X)}'

COROLLARY 5.3. The setfp(F) of fixed points of F is the image
of L by the lower preclosure operator luis (F)o llis (XZ Z Π F(Z))
and the image of L by the upper preclosure operator llis (F) o
luis(XZ Z[jF(Z)).

Proof, luis (F) o llis (XZ Z Π F(Z)) is a lower preclosure opera-
tor since it is the composition of the upper closure operator luis (F)
and the lower closure operator llis (XZ Z Π F(Z)) (3.4, 4.1 and 3.5,
Ladegaillerie [12]). By duality llis (F)oluis(XZ Z U F(Z)) is an
upper preclosure operator.

Cousot and Cousot [5] already used the idea of constructing (or
approximating) the fixed points of monotone operators by means of
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an upper iteration sequence followed by a lower iteration sequence.
This idea was also used by Manna and Shamir [13] and our results
3.3, 4.1, 5.2, and 5.3 improve their results obtained on the more
restricted model of continuous functional equations on functions of
flat lower semi-lattices.

6* Constructive characterization of the set of fixed points of a
family of commuting operators*

LEMMA 6.1. Let F and F be monotone operators on the non-
empty complete lattice Z/(£, 1, T, U, Π) into itself such that FΌFςz
FoFand FQ F (i.e., VXeL, F(F(X)) £ F(F(X)) and F(X)^F(X)).
The set of common fixed points of F and F is a nonempty complete
lattice:

fp(F,FXQ,lfp(F), gfp(F), XS luis(Fχ[jS), XS Uis(FχnS))
which is the image of L by luis (F)°llis (XZ Z Π F(Z)) and the
image of L by His (F) ° luis (XZ Z U F(Z)).

Proof.
6.1.1. VD 6 prefp (£), F(luis (F)(D)) = luis (F)(D).
Since D e prefp (F) and FQF we have D £ F(D) S F(D) so

that the upper iteration sequence (X\ deμ) for F starting with D
is stationary, its limit luis (F)(D) is a fixed point of F (3.3). Again
since F Q F we have Filuis (F)(D)) Q F(luis (F)(D)) = luis (F)(D).

Let us show that {Vδ e μ, Xδ £ F(Xδ)}. For δ = 0 we have X° =
D C F(X°) since De prefp (F). Assume that the lemma is true for
all a < δ < μ. If δ is a successor ordinal then in particular X3'1 £
FiX3'1). Since F is monotone and FoFςz Fop we have by Defini-
tion 2.1(b), Xδ = F{Xδ-") Q FiFiX8-1)) £ F(F(Xδ'1)) = Z(^ δ ). If δ is
a limit ordinal then X* £ Z(^α) for every α < δ. By 2.1(c) and
monotony, X3 = \Ja<δ X«Q \Ja<δ F(X«)QF([Ja<δ Xa) = ̂ (X 5 ). By trans-
finite induction the lemma is true for every δ e μ.

By 3.3, luis (F)(D) is the limit of {Xδ, δ e μ) so that luis (F)(D) £
F(luis (F)(D)). By antisymmetry we conclude that luis(F)(D) —

6.1.2. Let Z) be an arbitrary element of L, then by the dual
of Theorem 4.1, His (XZ Z Π F{Z)\D) e prefp (F) £ pre/p (F) so that
Theorem 3.3 implies that hns (F)ollis (XZ Z{J F(Z))(D) efp (F). Also
by 6.1.1 luis (F) o ZZίs (λZ ^ Π F(Z))(D) e fp (£). Consequently
ί^ΐs (JP*2 ° Wi« (λZ Z (Ί F(Z))(L) £ /p CE) ϋ / P (^) = fP (Ef F) a n d
fp(F,F) is not empty (take D equal to J_).

Let Pefp(F,F) then PeL and luis(F)ollis(xZ Z f) F(Z))(P)
is equal to P since F(P) = P and F(P) = P. Therefore /p (F, F) £

(F) o ϋΐs (xZ ^ Π F{Z)){L) so that by antisymmetry we conclude
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fP ( £ F) = luis (F) o His (XZ Zd F(Z))(L).
6.1.3. By 4.3 His (XZ Z Π F(Z))(L) is a nonempty complete

lattice prefp^(£)(£, _L, gfp (F)9 U, XS ZZis (λZ £ Π £(£))( ΓΊ S)). By
3.4 luis (F) is an upper closure operator so that by 6.1.2 and Ward
[21] 's theorem fp (F9 F) is a nonempty complete lattice with ordering
C infimum luis(F)(±) = lfp(F) and least upper bound operation

The remaining parts of Lemma 6.1 are obtained by duality,
fp(F9 F) is the image of the nonempty complete lattice postfp (F)
(Qylfp (F)9 T, XS luis (XZ Z U F(Z))( US), Π) by the lower closure
operation His (F) so that the supremum of fp (F9 F) is His (F)(T) =
gfp(F) and the greatest lower bound operation is XS -His (F)(f)S).

THEOREM 6.2. (Constructive version of Tarski's generalized
lattice theoretical fixed point theorem.) Let {Ft: ie 1} be a nonempty
family of monotone commuting operators on the nonempty complete
lattice L(£, i_, T, U, Π) into itself. The set of all common fixed
points fp ({Ft: ie /}) of all the operators {i*V ie 1} is a nonempty
complete lattice with ordering £ , infimum Ifp (XZ *\JieI F^Z)),
supremum gfp (XZ Γ\ieI Ft(Z))9 least upper bound operation
XS luis (XZ \Jiei Fi(Z))( U S) and greatest lower bound operation
XS - His (XZ Γϊiei Ft(Z))( Π S).

Proof.
6.2.1. Let F be XZ \JiBJFt(Z) and F be XZ - ΓiiβIFt(Z). F

and F are monotone operators on L into itself such that F Q F.
VXe L, Vi e I, we have F(Fi(X)) - Uiβz W V X ) ) = Uiez Ft(Fά(X)) £
^ ( U i e i ^ C ^ ) ) = Fi(F(X)) by monotony and the commuting property.
Therefore vXeL, F(F(X)) - F(Π i €z ^(X)) £ Γhez ^(^(X)) S

6.2.2. _ Clearly fp ({F,: ieI})Q fp (F, F) since {Vi e I, i^(X) - X}
implies F(X) - Uj i ^ i W = UieiX = X and dually £(X) = X.
Whenever Xefp(F9F) we have Vie/, X = ̂ (X) - Π i e i ^ X ) C
F,(X) and dually Ft(X) S Uie/_^ (X) = F(X) = X so that by anti-
symmetry X = Ft(X) and /p (F, F) Qfp ({Ft: i 61}). By antisym-
metry fp (F, F) = /p ({F*: i e I}) so_that by Lemma 6.1, fp ({F,: i e I})
is a complete lattice ( £ , Ifp (F), gfp (F), XS luis (F)([jS)9 XS
Πis(F)(f]S)).

COROLLARY 6.3. Let D be an arbitrary element of L9 then
luis (XZ \Jiei FIZ)) o His (XZ - Z Γ\ (Γiίei F,(Z)))(D) and His (XZ.
Πΐez Fi(Z)) o luis (XZ Z U (Uiei Fi(Z)))(D) are common fixed points
of the Fί9 ie I which are greater than or equal to any common fixed
point of the Ft less than or equal to D and which are less than or
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equal to any common fixed point of the Ft greater than or equal to
D. Moreover

luis (XZ U Ft(Z)) o His (XZ Z Π (Π Ft(Z)))(D)
iel iel

£ His (XZ- Π Ft{Z))oluis (XZ ZU (U Ft(Z)))(D).
iel iel

COROLLARY 6.4. The set fp ({Ft i e I}) of common fixed points
of the family {Ft iel} is the image of L by the lower preclosure
operator luis (XZ \JίBI Ft(Z)) ° His (XZ Z Π (Γϊiei Ft(Z))) and the
image of L by the upper preclosure operator UisXZ f\ieI Ft(Z))o
luis(xZ'ZU(\JieiFί(Z))).

Let {Ft: i 6 /} be a finite family of monotone commuting operators
on the complete lattice L into itself. If we assume that I is
well-ordered (i.e., I — {ia: a <; 7} where yeω) then we denote
XZ.Fi0(Fh(..>Fiγ(Z)...)) by O*βi-P*.

Applying Theorem 5.1 to OieiFt and Theorem 6.2 to {Ft iel}
a natural question is whether fp (OieIFt) = fp ({Ft i e I}). The
answer is affirmative thanks to the following:

THEOREM 6.5.

luis (XZ U Ft(Z)) o His (XZ ZΠ (Π Ft(Z)))
iel iel

= luis (O Ft) o His (XZ ZC) (O Ft)(Z))
iel iel

His (XZ Π FIZ)) o luis (XZ Z U (U Ft(Z)))
i l i l

= His (O F<) o luis (xZoZ (J (O Ft(Z))) .
iel iel

Proof. It is sufficient to prove that if D is a prefixed point of
each Fi such t h a t i e l then luis (XZ U*e 1 Ft(Z))(D) = luis (OieI F%)(D).

Since {Vi e I, D Q Ft(D)} we have by monotony and the commuting
property DQ(OteIFt)(D) and Theorem 3.3 implies that P =
l u i s ( O i e i F % ) ( D ) = ( O i e I F i ) ( P ) a n d D £ P . F o r e v e r y j e l w e h a v e
D £ ^(D) S ^ ( P ) - ^ ( ( C β i F,)(P)) - (O<β/ F^F^P)). Therefore
jPy(P) is a fixed point oί OieI Ft greater than or equal to D so that
by Theorem 3.3 {Vj e I, PQF3 (P)}. Then by monotony and transitivity
P £ Fίγ(P) £ F€l(. Fiγ(P) .) £ (O<βi F€)(P) = P so that Vi e J, P =
FS(P). P is a common fixed point of the family {Ft iel} greater
than or equal to D. Let Q be another common fixed point of
{Ft iel} greater than or equal to D. Then (OieiFi)(Q) = Q so
that by Theorem 3.3 we have P £ Q. Hence P is the least common
fixed point of the family {Ft iel} greater than or equal to D.
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By Corollary 6.3, R = luis (XZ [JieI Fi(Z))(D) is a common fixed
point of {i*V i e 1} greater than or equal to D. Let Q be another
common fixed point of {Fτ: ie 1} greater than or equal to D. Then
\JieiFt(Q) = Q so that by Theorem 3.3 we have R C Q. Hence R
is the least common fixed point of the family {Ft: i e 1} greater than
or equal to D.

By existence and unicity of the least common fixed point of
the family {F^. i e 1} greater than or equal to D, we conclude
luis(OίeI Fτ){D) = P - R = luis {XZ \JieI

7. Fixed point theorems for continuous operators* An
operator F on the complete lattice L into itself is upper-semi-con-
tinuous if and only if for every ordinal δ ̂  o) and every δ-termed
increasing chain (Ca, aeδ) of elements of L we have F([Jae§C

a) =
\Jaeδ F(Ca). The dual notion is the one of lower-semi-continuous
operator. An operator is continuous when it is lower and upper-
semi-continuous.

Since semi-continuity implies monotony the results of paragraphs
3, 4, and 5 can be applied to continuous operators. However the
proofs are simplified since one can consider (ω + l)-termed iteration
sequences. For example, Theorem 3.3 can be reformulated as
follows:

THEOREM 7,1. Let F be an upper-semi-continuous operator on
the complete lattice L into itself. An upper iteration sequence
(X\ δ 6 min (μ, ω + 1)> for F starting with D e prefp (F) is a
stationary increasing chain, its limit luis (F)(D) is the least of the
fixed points of F greater than or equal to D.

Proof. When μ > ω + 1 Definition 2.1, Theorem 3.3 and upper-
semi-continuity imply X*+ι = F(X«) = F{\Ja<ωXa) - \Ja<nF(X°) =
\Ja«o Xa+ί £ \J««o Xa = Xω Also by Theorem 3.3, Xω Q Xω+1 so that
by antisymmetry Xω — Xω+1. Then by transfinite induction it is
easy to show that {V/5: ω ̂  β < μ, Xω - Xβ}.

When considering a family of commuting monotone operators
the results of paragraph 6 can be perfected as follows:

LEMMA 7.2. Let F and F be upper-semi-continuous operators
on the complete lattice L into itself such that FoFQ F°F and
FQF. Then for every prefixed point D of F we have:

{F(D) - F(D)} => {luis (F)(D) - luis
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Proof. Let (Xδ, δ e min (α> + 1, μ)) and < Y\ δ e min (α> + 1, μ)}
be respectively the upper iteration sequences for F and F starting
with the prefixed point D of F and F.

For δ = 0 we know by hypothesis and 2.1(a) that D = X° = Y° Q
F(X°) = F(Y°).

Assume that δ e min (α> + 1, μ) is a successor ordinal such that
jp-i = y*-i a n d jϊ(χ*-i) = £( y«-i). Then by 2.1(b) Xδ = l^X*"1) =
J^Γ'"1) and i^X5"1) = i^F 3" 1) - Yδ so that by induction hypothesis
and transitivity Xδ = F% Also since FξZF and Xδ = Yδ we know
that F( Yδ) S F(X5) Since FOFQFOF and X5"1 - Yδ~ι we know that
F(F(Xδ-1)) Q FiFiY8-1)) so that by Definition 2.1(b) we get F(Xδ) Q
F(Yδ). By antisymmetry we conclude F{Xδ) = F(F5)

Assume that δ e min (α> 4- 1, μ) is a limit ordinal then δ = ω. If
by induction hypothesis {V/S < α), X^ = Γ^ and F(Xβ) = F(Γ^ then
by 2.1(c) and definition of least upper bounds we have Xω =
Uα<α> Xa = \Ja<ω Y" = ^ The same way by upper-semi-continuity,
F(X«) = F(U«<ω ̂ α ) - U«<ω F{Xa) - U«<ω Z( ̂ α) - K{\Ja<ω Y«) = F( Y%

By transfinite induction and Theorem 7.1 we conclude
luis (F)(D) = luis (F)(D).

As an application of Lemma 7.2 for D = l , we get:

THEOREM 7.3. Lei {Ft: ie 1} be a family of commuting operators
on the complete lattice L into itself. Then {{Vi e I, Ft is upper-semi-
continuous} and {Vi, jel, Ft( 1) = Fά{_L)}} => {Vi, je I, Ifp (Ft) =

8. Remark. In our proofs it is the existence of lower or
upper bounds of chains and not the existence of lower or upper
bounds of arbitrary sets that is crucial. The same remark was
made by numerous authors who generalized Tarski's fixed point
theorem to weaken the completeness hypothesis (see among others
Abian and Brown [1], Hδft [9], Pasini [15], Pelczar [16], Markowsky
[14], Ward [20], Wolk [22]). This was also the case for Tarski's
fixed point theorem on commuting maps (see a.o., DeMarr [6],
Markowsky [14], Pelczar [17], Smithson [18], Wong [23]). Along
the same lines our results could be strengthened to be applicable
to partially ordered sets which are not complete lattices.
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