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THE DIMENSION OF THE KERNEL OF A
PLANAR SET

MARILYN BREEN

Let S be a compact subset of R2. We establish the
following: For 1 ^ k g 2, the dimension of ker S is at least
k if and only if for some ε > 0, every f(k) points of S see
via & a common A -dimensional neighborhood having radius
ε, where /(I) = 4 and /(2) = 3. The number f(k) in the theorem
is best possible.

We begin with some definitions: Let S be a subset of Rd. For
points x and y in S, we say x sees y via S if the segment [x, y] lies
in S. The set S is starshaped if there is some point p in S such
that, for every x in S, p sees x via S. The set of all such points
p is called the (convex) kernel of S, denoted by ker S.

A well-known theorem of KrasnoseΓskii [5] states that if S is
a compact set in Rd, then S is starshaped if and only if every d + 1
points of S see a common point via S.

Although various results have been obtained concerning the
dimension of the set ker S (Hare and Kenelly [3], Toranzos [6],
Foland and Marr [2], Breen [1]), it still remains to set forth an
appropriate analogue of the KrasnoseΓskii theorem for sets whose
kernel is at least fc-dimensional, 1 ^ k ^ d. Hence the purpose of
this work is to investigate such an analogue for subsets of the plane.

The following terminology will be used. Throughout the paper,
conv S, cl S, int S, bdry S, and ker S denote the convex hull, closure,
interior, boundary, and kernel, respectively, of the set S. If S is
convex, dim S represents the dimension of S. Finally for xφy, R(x, y)
denotes the ray emanating from x through y and L(x, y) is the line
determined by x and y.

2. The results* We begin with the following theorem for sets
whose kernel is 1-dimensional.

THEOREM 1. Let S be a compact set in R2. The dimension of
ker S is at least 1 if and only if for some ε > 0, every 4 points of
S see via S a common segment of radius ε. The number 4 is best
possible.

Proof The necessity of the condition is obvious. Hence we need
only establish its sufficiency.
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By KrasnoseΓskii's theorem in R\ S is starshaped, so we may
select a point z in ker S. Moreover, we assert that every 4 points
of S see a common segment of length ε having z as endpoint (we
refer to such a segment as an ε-interval at z): For xL, x29 #3, x4 in
S, these points see a common 2ε-interval [a, b] in S, and since z e
ker S, conv {z, xίy a, b} £ S for each 1 <; i ^ 4. Hence ̂  sees conv {2;, α, b}
for every ί. Certainly one of the edges [z, a], [z, b] of the triangle
(possibly degenerate) conv {z, a, b} has length at least ε, and this edge
satisfies our assertion.

To complete the proof, we consider two cases.

Case 1. Assume that z e int S. Let N be a disk about z of
radius r ^ ε contained in S. If N = S the result is immediate, so
assume that S ~ N Φ φ. For y e S ~ N, we define Cy to be the subset
of N seen by y. Since S is starshaped, S is simply connected, so
Cy is convex. Let [ay, by] be the intersection of Cy with the line
perpendicular to L(y, z) at z, and let dy be the smaller of the lengths
of the segments [ay, z\ and [by, z], say the length of [ay, z].

If gib δy > 0, then Π Cy contains a neighborhood of z, contained
in ker S. Hence we may assume gib δy — 0.

Let {yn} be a sequence of points in S such that oyn — > 0 as n —> ^.
Let yQ"be a limit point of [yn] and assume yn converges to yQ. Set
L — L(y0, z) and call the open halfplanes into which L divides the
plane L1 and L2. Without loss of generality, we assume that for
each n, the corresponding an lies in the closed half plane cl L2 deter-
mined by L.

We now show that every two points of S see a common ε-interval
at z in cl Lγ: Otherwise, some members x1 and x2 of S would see
no such interval, and there would exist points qι and q2 in bdry
N Π L2 such that every ε-interval at z seen by both xL and x2 would
lie in the convex region bounded by rays R(z, qλ) and R(z, g2). However,
for δn sufficiently small, yn sees no ε-interval at z in this region,
impossible since x19 x2, yn see a common ε-interval at z. Thus the
result is established.

Assume that the points of bdry N Π cl Lx are ordered in a clock-
wise direction from s0 to tQ, where s0 and tQ denote the endpoints of
the interval N f] L. For each y in S, there exist sy and ty on bdry N Π
cl Lλ such that y sees [sy, z] U [ty, z] via S and such that sy and ty

are, respectively, the first and last points on bdry N Π cl L having
this property. Finally, let Ey denote the convex hull of all segments
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[z, ay] seen by y, where ay e bdry N Π cl Lγ. Certainly y sees Ey via S.

We say a < b on bdry N Π cl Li if α precedes 6 in our clock-
wise order. Since every pair of points of S sees a common ε-interval
at z in cl L19 it follows that lub sy <I gib ^ Let 8X = lub sy and ίx =
gib ty. Then for each y we have s0 ^ 8,, ^ 8X ^ tx <i £„ ̂  ί0. If s0 = sx

or ^ = ί0, the proof is complete. Hence we assume that s0 Φ s1 and
tγ Φ t0, so that conv {slf z, ί j Π L = {2;}. If for some positive number
r', the set n 23Ί, contains an interval of length r' in convfo, z, ί j ,
the proof is finished. Otherwise, for every 1/n there is some wn in
S for which EWn = 2ϊΛ does not contain M(z, 1/ri) Π conv {8!, z, t j , where
ikf(̂ , 1/w) denotes the 1/w-disk centered at z. Hence the sequence of
sets En converges to [s0, ίo]

In this case, every point of S sees some ε-interval at z on L:
Suppose on the contrary that for some x in S, x sees neither [s0, z]
nor [z910] via S. Then there exist points pί and p2 in bdry N Γ\ Lt

and points pi and p'2 in bdry N Π L2 such that every ε-interval at 2
seen by x lies either in the convex region bounded by R(z, pj U
R(z, p2) or in the convex region bounded by R(z, p[) U R(z, p2). However,
for n sufficiently large, the points yn and wn defined previously see
no common ε-interval at z in either of these regions, impossible since
every 4 points of S see a common ε-interval at z. Thus the assertion
is proved.

Finally, we have to show that for at least one of the segments
[s0, z] and [z, t0], every point of S sees this segment via S: Otherwise,
there would exist points u, ve S, p19 p2 e bdry N Π Lί and p[, p2 e
bdry N ΓΊ L2 such that the ε-segments at z seen by both u and v would
be either in the convex region bounded by R{z, px) U R(z, p2) or in
the convex region bounded by R(z, p[) U R(z, p2). This contradicts
the fact that u, v, wn, yn see a common ε-segment at z for each value
of n. We conclude that kerS is a full 1-dimensional, and the proof
for Case 1 is complete.

Case 2. Assume that zebdryS. There are two possibilities to
consider.

Case 2a. Suppose that there exist points 8, t, u in S such that
ze int conv{s, ί, u). Then for two of these points, say s and t, no
point of [s, z) sees any point of [£, z) via S. Then s and t see a
common ε-interval at z in the closed region Rf bounded by rays
R(t, z) ~ [t, z) and R{s, z) — [s, z). We define R to be that minimal
sector of a circle containing all ε-intervals at z seen by both s and
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t. Then R is bounded by segments [z, s0] and [z, tQ] in S, and since
s, t, s0, t0 see a common ε-interval at z in R, certainly conv {s0, a;, to}QS.
As before, order the points of bdry R ~ ([z, s0) U [25, ί0)) in a clockwise
direction, and say a < b on bdry i? ~ ([2, s0) U [z, ί0)) if α precedes 6
in our clockwise ordering.

Assume that sQ and ί0 are first and last points in our ordering.
For each y in S, define Dy to be the convex hull of all ε-intervals
at z in R seen by y, and let sy and tv be the first and last points of
Dy in bdry R ~ ([0, s0) U [z9 <0)). Clearly sx Ξ lub sy <£ glb£y = tγ.
Furthermore, a simple geometric argument reveals that every y in
S sees the region conv {s0, s, £0} Π Dv via S. But s0 ^ sy ^ sλ ^ tι ^
ty S t0 on bdry R, so conv {s0, z, t0} (Ί conv {s1? 2, ί j £ conv {s0, z, t0} f] Dy,
and y sees conv {s0, 2, t0} Π conv {ŝ  2, ί j via S. This set is at least
1-dimensional and so dim ker S ^ 1, the required result.

Case 2b. Suppose that z e bdry conv S. Then there must exist
a line i ί supporting S at 2, with S in the closed halfplane c l i^
determined by H. Order the points {x: x e cl H1 and dist (2, x) — e}
in a clockwise direction, and assume that s0 and t0 are the first and
last points of S in our ordering. Then conv {s0, z, t0} Q S, since s0

and t0 see a common ε-interval at z.
If points s0, 2, t0 are not collinear, then the argument in Case 2a

above may be used to complete the proof. Hence consider the case
in which sQ, z, tQ lie in H. If sQ = tQ9 the proof is trivial, so assume
s0 < z < ί0. If s0 and ί0 see a common interval at 2 in Hι U M, then
for some neighborhood N of z, N Π S is convex, and the argument
of Case 1 may be adapted to finish the proof. In case s0 and t0 see
no such interval, then using the fact that every 4 points see a common
ε-interval at z, it is easy to show that for at least one of the segments
[s0, z] and [t0, z], every point of S sees this segment via S. Hence
we conclude that dim ker S ^ 1 in Case 2, and the proof of Theorem
1 is complete.

The following example illustrates that the number 4 in Theorem
1 is best possible.

EXAMPLE 1. Let S be the set in Figure 1. Then every 3 points
of S see via S at least one of the segments [z, αsj, 1 ^ i <i 4, yet
k e r S - {z}.

Example 2 shows that the uniform lower bound ε on the segments
seen by 4 points is necessary.

EXAMPLE 2. Let S be the set in Figure 2. Then every 4 points
see a common segment on the x-axis, but ker S is the origin.
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FIGURE 1

(0,1) \n> ( 3 , 1 )

(0,0) (1.0)

FIGURE 2

Our second theorem is not limited to the plane and is essentially
a quantitative version of KrasnoseΓskii's theorem.

THEOREM 2. Let S be a compact set in R2. The dimension of
ker S is 2 if and only if for some ε > 0, every 3 points of S see via
S a common neighborhood of radius ε. The number 3 is best possible.

Proof. Again we need only establish the sufficiency of the
condition. Clearly S is starshaped, so select z in ker S. We observe
that for every 3 points xlf x2, xz in S, there corresponds a connected
subset T of S such that dist (z, t) = ε for each t in T and conv(TΊj {z}) is
a 2-dimensional subset of S. To verify this, let N be a neighborhood
of radius ε seen by xlf x2, x3. Then since z e ker S, conv ({xt, z}UN)ζZS
for each i, so xt sees conv ({z} U N) via S. Letting T = {y:y e
conv {{z} U N), dist (z, y) = ε}, T satisfies the requirements given above.

Furthermore, letting D denote the closed ε-disk about z, notice
that conv(ΓU{^}) is either D o r a nondegenerate sector of D. If
we associate with each set T the corresponding arc length d(T) along
bdry D, since S is compact, the numbers δ(T) are bounded below by
some positive number δ. Therefore, for each y e S, we may consider
the collection Gy of all sectors of D seen by y for which the corre-
sponding arc length on D is at least δ. Then using the sets Gy, the
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argument in Theorem 1 may be appropriately modified and in fact
simplified to complete the proof. The details are straightforward
and hence are omitted.

To see that the number 3 of Theorem 2 is best possible, consider
the following easy example.

EXAMPLE 3. Let S be the set in Figure 3. Then every two
points of S see one of the regions At via S, 1 ^ i ^ 3, yet ker S = φ.

A/
FIGURE 3

In conclusion, it is interesting to notice that both Theorems 1
and 2 fail completely and in fact no f(k) is possible without the
requirement that S be compact.

EXAMPLE 4. To see that our set must be closed, let S denote
the unit disk with its center removed. Then every i-member subset
of S sees via S an open sector having arc length 2τr/2', and every
denumerable set of points sees a radius of S. Yet the set is not
starshaped.

EXAMPLE 5. To show that S must be bounded, consider the
following example by Hare and Kenelly [4]: Define Tn = {(x, y):
n — 1 ^ y ^ n, n ^ x + y}, and let S = U Tn. Then every finite
subset of S sees via S a common disk of radius 1/2 in Tί9 yet S is
not starshaped.
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