PERMUTATIONS OF THE POSITIVE INTEGERS WITH RESTRICTIONS ON THE SEQUENCE OF DIFFERENCES, II

Peter J. Slater and William Yslas Vélez

In this paper we discuss the following conjecture:
Conjecture: Let $D=\left\{D_{1}, \cdots, D_{n}\right\}, D \subset N, N$ the set of positive integers. Then there exists a permutation of N, call it $\left(a_{k}: k \in N\right)$ such that $\left\{\left|a_{k+1}-a_{k}\right|: k \in N\right\}=D$ iff $\left(D_{1}, \cdots, D_{n}\right)=1$.

We also consider the following question:
Question: For what sets $D=\left\{D_{1}, \cdots, D_{n}\right\}$ does there exist an integer $M \in N$ and a permutation $\left\{b_{k}: k=1, \cdots, M\right\}$ of $\{1, \cdots, M\}$ such that $\left\{\left|b_{k+1}-b_{k}\right|: k=1, \cdots, M-1\right\}=D$.

We answer the conjecture and the following question in the affirmative if the set D has the following property: For each $D_{r} \in D$ there is a $D_{s} \in D$ such that $\left(D_{r}, D_{s}\right)=1$.

In the following, we shall say that $\left(a_{k}: k \in N\right), N$ the set of positive integers, is a permutation if every integer $n \in N$ appears once and only once in the sequence $\left(a_{k}: k \in N\right)$. Set $d_{k}=\left|a_{k+1}-a_{k}\right|$.

In a previous paper, [1], we proved the following theorem.

Theorem 1. Let $\left(m_{j}: j \in N\right)$ be any sequence of positive integers. Then there exists a permutation $\left(a_{k}: k \in N\right)$ such that $\left|\left\{i \mid d_{i}=j\right\}\right|=m_{j}$.

In constructing such permutations we could use infinitely many differences. We now ask if permutations of N can be constructed where the set of differences comes from a finite set. We make the following conjecture.

Conjecture. Let $D=\left\{D_{1}, \cdots, D_{n}\right\}, D \subset N$. Then there exists a permutation $\left(\alpha_{k}: k \in N\right)$ such that $\left\{d_{k}: k \in N\right\}=D$ iff $\left(D_{1}, \cdots, D_{n}\right)=1$, where $\left(D_{1}, \cdots, D_{n}\right)$ denotes the g.c.d. of the numbers, D_{1}, \cdots, D_{n}.

In this paper we show that the condition is necessary and that it is sufficient if corresponding to each $D_{r} \in D$, there is a D_{s} such that $\left(D_{r}, D_{s}\right)=1$.

For $n=1$, the condition that the g.c.d. be 1 gives that $D=\{1\}$. For the set, $D=\{1\}$, set $a_{k}=k$. Clearly, $\left\{d_{k}: k \in N\right\}=0$.

Lemma 1. Let $D=\left\{D_{1}, \cdots, D_{n}\right\}, D \subset N$. If there exists a permutation ($\alpha_{k}: k \in N$) such that $\left\{d_{k}: k \in N\right.$) $=D$, then $\left(D_{1}, \cdots, D_{n}\right)=1$.

Proof. Set $d=\left(D_{1}, \cdots, D_{n}\right)$. If $d>1$, then by inducting on k one can show that $a_{k} \equiv a_{1}(\bmod d)$, which implies that $\left(a_{k}: k \in N\right)$ cannot be a permutation. Thus $d=1$.

Lemma 1 shows that the conjecture is true for $n=1$. That the conjecture is true for $n=2$, will follow from Theorms 2 and 3.

Theorem 2. Let $D=\left\{D_{1}, D_{2}\right\},\left(D_{1}, D_{2}\right)=1$ and set $M=D_{1}+D_{2}+1$. Then there exists a permutation $\left(b_{k}: k=1, \cdots, M\right)$ of the set $\{1, \cdots, M\}$ with the following properties:
(a) $\left\{\left|b_{k+1}-b_{k}\right|: k=1, \cdots, M-1\right\}=D$,
(b) $b_{1}=1, b_{M}=M$.

Proof. We may assume that $D_{1}<D_{2}$. Since $\left(D_{1}, D_{2}\right)=1$, we have that $\left(D_{1}, M-1\right)=1$. Thus, D_{1} generates, under addition, the complete residue system modulo $M-1$. Set $b_{1}^{\prime}=0, b_{2}^{\prime}=D_{1}$. If b_{k}^{\prime} has been defined, then, if $b_{k}^{\prime}+D_{1} \leqq M-1$, set $b_{k+1}^{\prime}=b_{k}^{\prime}+D_{1}$. If $b_{k}^{\prime}+D_{1}>$ $M-1$, set $b_{k+1}^{\prime}=b_{k}^{\prime}+D_{1}-(M-1)$.

Since $b_{1}^{\prime}=0$ and D_{1} is a generator for the complete residue system modulo $M-1$, it is clear that $b_{M}^{\prime}=M-1$. Furthermore, if $b_{k}^{\prime}+D_{1} \leqq$ $M-1$, then $\left|b_{k+1}^{\prime}-b_{k}^{\prime}\right|=D_{1}$, and if $b_{k}^{\prime}+D_{1}>M-1$, then $\left|b_{k}^{\prime+}{ }_{1}-b_{k}^{\prime}\right|=$ $\left|b_{k}^{\prime}+D_{1}-(M-1)-b_{k}^{\prime}\right|=\left|D_{1}-\left(D_{1}+D_{2}\right)\right|=D_{2}$. Thus $\left(b_{k}^{\prime}: k=1, \cdots, M\right)$ has the properties,
(a) $\left|b_{k+1}^{\prime}-b_{k}^{\prime}\right| \in D$ and for each i, there is a k such that $D_{i}=$ $\left|b_{k+1}^{\prime}-b_{k}^{\prime}\right|$, and
($\left.\mathrm{b}^{\prime}\right) \quad b_{1}^{\prime}=0, b_{M}^{\prime}=M-1$.
Set $b_{k}=b_{k}^{\prime}+1$. Clearly ($b_{k}: k=1, \cdots, M$) has properties (a) and (b).
Theorem 3. Let $D=\left\{D_{1}, \cdots, D_{n}\right\}$ with $\left(D_{1}, \cdots, D_{n}\right)=1$. If there exists an $M \in N$ and a permutation $\left\{b_{k}: k=1, \cdots, M\right\}$ of $\{1, \cdots, M\}$ with the properties
(i) $\left\{\left|b_{k+1}-b_{k}\right|: k=1, \cdots, M-1\right\}=D$ and
(ii) $b_{1}=1, b_{M}=M$,
then there exists a permutation $\left(a_{k}: k \in N\right)$ such that $\left\{d_{k}: k \in N\right\}=D$ and each D_{i} appears infinitely often in the sequence $\left(d_{k}: k \in N\right)$.

Proof. We shall give a recursive definition for a permutation $\left(a_{k}: k \in N\right)$. Since $b_{1}=1$ and $\left|b_{2}-b_{1}\right|=\left|b_{2}-1\right| \in D$, we must have that $b_{2}-1 \in D$. Without loss of generality we may assume that $b_{2}=$ $1+D_{1}$. Set $a_{k}=b_{k}, k=1, \cdots, M$. We now define $a_{m+j}, j=1, \cdots$, $M-1$. Set $a_{M+j}=M-1+a_{j+1}, j=1, \cdots, M-1$. Clearly, $\left(a_{m+j}: j=\right.$ $1, \cdots, M-1$) is a permutation of the set $\{M+1, \cdots, 2 M-1\}$. Thus $\left(a_{k}: k=1, \cdots, 2 M-1\right)$ is a permutation of the set $\{1, \cdots, 2 M-1\}$ with the property that $a_{1}=1, a_{2 M-1}=2 M-1$.

Note that $d_{M}=\left|a_{M+1}-a_{M}\right|=\left|\left(M-1+D_{1}+1\right)-M\right|=D_{1}=d_{1}$, and for $M-1 \geqq j \geqq 1, d_{M+j}=\left|a_{m+j+1}-a_{M+j}\right|=\left|a_{j+2}-a_{j+1}\right|=d_{j+1}$. Thus $\left(d_{j}: j=1, \cdots, M-1\right)=\left(d_{M+j}: j=0, \cdots, M-2\right)$, as sequences. Thus, each D_{i} occurs twice as many times in the sequence ($d_{k}: k=$ $1, \cdots, 2 M-2$) as in the sequence ($d_{k}: k=1, \cdots, M-1$).

We now apply the procedure again and define $a_{2 M-1+j}=2 M-$ $2+a_{j+1}, j=1, \cdots, M-1$. Continuing this process one obtains a permutation ($a_{k}: k \in N$) with the properties that $\left\{\left|a_{k+1}-a_{k}\right|: k \in N\right\}=D$ and each D_{i} occurs infinitely often in the sequence ($d_{k}: k \in N$).

Corollary 1. The conjecture is true for $n=2$.
Proof. Apply Theorems 2 and 3.
We can also verify the conjecture for a large class of sets $D=$ $\left\{D_{1}, \cdots, D_{n}\right\}$, as the following result shows.

Theorem 4. Let $D=\left(D_{1}, \cdots, D_{n}\right)$, where $\left(D_{1}, \cdots, D_{n}\right)=1$ and for each r there exists a s such that $\left(D_{r}, D_{s}\right)=1$. Then there exists an M and a permutation $\left(b_{k}: k=1, \cdots, M\right)$ of $\{1, \cdots, M\}$ with the properties,
(i) $\left\{\left|b_{k+1}-b_{k}\right|: k=1, \cdots, M-1\right\}=D$ and
(ii) $b_{1}=1, b_{M}=M$.

Proof. For each r there is a s such that $\left(D_{r}, D_{s}\right)=1$. Set $M_{r}=D_{r}+D_{s}+1$. Then there exists for each $r=1, \cdots, n$, by Theorem 2, a permutation ($b_{k}^{(r)}: k=1, \cdots, M_{r}$) of the set $\left\{1, \cdots, M_{r}\right\}$ such that $\left\{\left|b_{k+1}^{(r)}-b_{k}^{(r)}\right|: k=1, \cdots, M_{r}-1\right\}=\left\{D_{r}, D_{s}\right\}$ and $b_{1}^{(r)}=1$, $b_{M_{r}}^{(r)}=M_{r}$.

Set $b_{i}=b_{i}^{(1)}, i=1, \cdots, M_{1}, b_{M_{1}+j}=\left(M_{1}-1\right)+b_{j+1}^{(2)}$, for $j=1, \cdots$, $M_{2}-1$. Thus $b_{1}=1, b_{M_{1}+M_{2}-1}=M_{1}+M_{2}-1$ and $D \supset\left\{\left|b_{k+1}-b_{k}\right|: k=\right.$ $\left.1, \cdots, M_{1}+M_{2}-2\right\} \supset\left\{D_{1}, D_{2}\right\}$.

Suppose that we have defined ($b_{k}: k=1, \cdots, R_{l}-(l-1)$), where $\left(b_{k}: k=1, \cdots, R_{l}-(l-1)\right.$) is a permutation of $\left\{1, \cdots, R_{l}-(l-1)\right\}$, $l<n$ and $R_{l}=M_{1}+\cdots+M_{l}$, with the following properties:
(i)

$$
D \supset\left\{\left|b_{k+1}-b_{k}\right|: k=1, \cdots, R_{l}-(l-1)-1\right\} \supset\left\{D_{1}, \cdots, D_{l}\right\}
$$ and

(ii) $\quad b_{1}=1, b_{R_{l}-(l-1)}=R_{l}-(l-1)$.

Let $R_{l+1}=M_{l+1}+R_{l}$ and $b_{R_{l}-(l-1)+j}=R_{l}-(l-1)-1+b_{j+1}^{(l+1)}, j=$ $1, \cdots, N_{l+1}-1$.

Thus, we have that if $M=M_{1}+\cdots+M_{n}+(n-1)$, then $\left(b_{k}: k=\right.$ $1, \cdots, M$) has properties (i) and (ii).

Corollary 2. Let $D=\left\{D_{1}, \cdots, D_{n}\right\}$, where $\left(D_{1}, \cdots, D_{n}\right)=1$ and for each r there exists a s such that $\left(D_{r}, D_{s}\right)=1$. Then there exists
a permutation ($a_{k}: k \in N$) such that $\left\{d_{k}: k \in N\right\}=D$ and each element in D occurs infinitely often in ($d_{k}: k \in N$).

Theorem 2 gives rise to the following questions.
Question 1. Given $\left(D_{1}, \cdots, D_{n}\right)=1$, does there exist an $M \in N$ and a permutation $\left(b_{k}: k=1, \cdots, M\right)$ of $\{1, \cdots, M\}$ such that

$$
\left\{\left|b_{k+1}-b_{k}\right|: k=1, \cdots, M-1\right\}=\left\{D_{1}, \cdots, D_{n}\right\} ?
$$

Question 2. Same as Question 1 but we require that $b_{1}=1$, $b_{M}=M$?

Theorems 2 and 4 yield some information concerning these two questions. Of course, an affirmative answer to Question 2 would yield an affirmative answer to our conjecture, as Theorem 3 shows.

Consider the set $\{6,10,15\}$. Even though $(6,10,15)=1$, we cannot apply the procedure of Theorem 4 to this triple. However, Question 2 can be answered in the affirmative for the triple $\{6,10,15\}$, as the following construction shows.

Note that $(6,10)=2(3,5)$. For $D=\{3,5\}$, construct the sequence $\left(b_{k}^{\prime}: k=1, \cdots, 9\right)$ of Theorem 2. We obtain, ($0,3,6,1,4,7,2,5,8$). Multiply every element by $2=(6,10)$, obtaining ($0,6,12,2,8,14,4$, 10, 16). Now, 16 just happens to be $1+15$. Thus, add 1 to the sequence $(0,6,12, \cdots)$ and juxtapose it with ($0,6,12, \cdots$) obtaining $(0,6,12,2,8,14,4,10,16,1,7,13,3,9,15,5,11,17)$. Now add one to the sequence, obtaining ($1,7,13,3,9,15,5,11,17,2,8,14,4,10,16,6$, $12,18)$, and call this new sequence ($b_{k}: k=1, \cdots, 18$). Note that $\left\{\left|b_{k+1}-b_{k}\right|: k=1, \cdots, 17\right\}=\{6,10,15\}$ and $b_{1}=1, b_{18}=18$.

From the above construction, one can glean a proof for the following lemma.

Lemma 2. Let $D=\left\{D_{1}, D_{2}, D_{3}\right\}$, where $\left(D_{1}, D_{2}, D_{3}\right)=1,\left(D_{1}, D_{2}\right)=$ $d \neq 1$ and $D_{3}+1=k\left(D_{1}+D_{2}\right)$, for some positive integer k. Then Question 2 and our conjecture can be answered in the affirmative for the set $\left\{D_{1}, D_{2}, D_{3}\right\}$.

Reference

1. P. J. Slater and W. Y. Vélez, Permutations of the positive integers with restrictions on the sequence of differences, Pacific J. Math., 71 (1977), 193-196.

Received January 20, 1978 and in revised form November 6, 1978. The first author was supported by the U.S. Energy Research and Development Administration (ERDA) under Contract No. AT(29-1)-789. By acceptance of this article, the publisher and/or recipient acknowledges the U.S. Government's right to retain a non-exclusive, royaltyfree license in and to any copyright covering this paper.

Sandia Labs
Albuquerque, NM 87118
AND
University of Arizona
TUSCON, AZ 85721

