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ULTRA-HAUSDORFF H-CLOSED EXTENSIONS

JACK R. PORTER AND R. GRANT WoOODS

1. Introduction. A Hausdorff topological space X is
called ultra-Hausdorff if, given two distinct points p and
qg of X, there is an open-and-closed (henceforth called
‘““clopen’’) subset A of X such that pc A4 and gq¢A. A
Hausdorff space X is H-closed if, whenever it is embedded
as a subspace of another Hausdorff space Y, it is a closed
subset of Y. In this paper we characterize those Hausdorff
spaces that have ultra-Hausdorff H-closed extensions and
construct, for such spaces, the projective maximum of the
set of ultra-Hausdorff H-closed extensions. We compare
this projective maximum to the Katétov H-closed extension,
and examine when continuous functions can be continuously
extended to this projective maximum.

Henceforth all hypothesized topological spaces will be assumed
to be Hausdorft.

Let <&~ be a lattice of subsets of a space X; i.e., suppose O €
<, Xe ¥ and that &~ is closed under finite unions and intersec-
tions. A filter base on &~ is a subset of & of & such that if
< is any finite subset of & then N & = @. (If & is a collection
of sets, N & will denote N{G:Ge<Z}; U< is defined similarly.)
A filter on &~ is a subset & of & such that: (i) @ ¢, (i) if
F,F,e ¥ then F,NF,es (i) if Fes, Ge <, and FC G
then Ge.# . An ultrafilter on &~ is a filter on & not contained
properly in any other filter on <. By Zorn’s lemma each filter
base on &“ is contained in some ultrafllter on .&©. The adherence
of a filter & on &2, denoted ad (&), is defined to be N {clzF: F e
F}. & is said to be free if ad (¥ ) = ©; otherwise & is fixed.
An open ultrafilter (filter) on a space X is an ultrafilter (filter) on
the lattice of open subsets on X.

We will need the following collection of known facts about
H-closed spaces; see Problems 17K and 17L of [12].

ProrosiTiON 1.1. (a) The following are equivalent for a space
X:

(i) X 4s H-closed.

(ii) Each open filter on X is fixed.

(iii) Each open ultrafilter on X is fized.

(iv) If &€ is am open cover of X there is a finite subcollection
7 of & such that U 1is dense in X.

(b) Continuous images of H-closed spaces are H-closed.

399



400 JACK R. PORTER AND R. GRANT WOODS
() If U is open in X and X s H-closed then clyU is H-closed.

A space T is an extension of a space X if X is a dense subspace
of T. Two extensions T, and T, of X are equivalent (as extensions
of X)) if there exists a homeomorphism h: T, — T, such that h|X is
the identity function on X (henceforth denoted 1;). We identify
equivalent extensions of a space; with this convention, the class of
extensions of X is a set (rather than a proper class).

Let & be a topological property and let Z°(X) denote the set
of all extensions of a space X that have Z°. An element T of
P(X) is a projective maximum for P(X) if, whenever Y e F#(X),
there exists a continuous function f: T— Y such that f|X = 1,.
Because of the above-mentioned identification of equivalent exten-
sions, a projective maximum for .Z#(X), if it exists at all, is unique.

Let &~(X) (respectively 25#(X)) denote the set of H-closed
extensions (respectively ultra-Hausdorff H-closed extensions) of X.
27 (X) has a projective maximum, the 'so-called Katétov H-closed
extension £X (see [6] or [9]). The space £X has as its underlying
set X U{%Z: % is a free open ultrafilter on X}. It is topologized
by decreeing that a subset of X is open in £X iff it is open in X,
and that if 7 ekX — X, then ('} U % : % € %'} is a base of open
neighborhoods at %. This is a valid definition of a topology on
£X, and it can be proved that x£X is the projective maximum for
#(X). '

If X is a Tychonoff space, let 27 (X) (respectively .275(X))
denote the set of compactifications (respectively zero-dimensional
compactifications) of X. (Recall that a space is zero-dimensional if
its clopen sets form a base for its open sets). .27 (X) always has
a projective maximum, namely the Stone-Cech compactification BX
(see Chapter 6 of [4]). If %y(X) # @ then, as zero-dimensionality
is hereditary, X is zero-dimensional. Conversely, suppose X is zero-
dimensional, let <#(X) be the Boolean algebra of clopen subsets of
X, and let B8,X denote the Stone space of this Boolean algebra (see
Chapter 2 of [11] for the definition of Stone spaces). The points
of B, X are precisely the ultrafilters on <£(X), which henceforth
we call clopen ultrafilters. If xe X, put ' (x) = {Be % (X): x € B}.
The mapping x — Z/(x) is an embedding of X as a dense subspace
of B,X, and thus B, X is a zero-demensional compactification of X.
Hence a Tychonoff space X has a zero-dimensional compactification
iff X is zero-dimensional. In this case B,X is the projective maxi-
mum for 2#y(X). In general 8X == B,X; in fact 8X = B, X (in the
sense that 8X and B,X are equivalent extensions of X) iff each
disjoint pair of zero-sets of X can be separated by a clopen subset
of X (see 16.17 of [11]).
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It is well-known that a compact Hausdorff space is ultra-
Hausdorff iff it is zero-dimensional (see, for example, 29D of [12]).
Thus the class of Tychonoff spaces that have ultra-Hausdorff com-
pactifications is precisely the class of zero-dimensional spaces; if X
is zero-dimensional then .2%3(X) has a projective maximum, namely
B.X. We want to find an H-closed extension of a suitable Hausdorff
space X that is to £X as B3,X is to BX; in other words we want
to find a projective maximum for 5#(X). The problem has three
parts. First, we must characterize those spaces X for which 5#(X) =
@. Second, we want to prove that if 54(X) +# @ then S5#4(X) has
a projective maximum £,X, and we want to give an explicit construec-
tion of £,X. Thirdly, among those X for which k£, X exists, we
want to characterize those X for which £X = £, X. An additional
problem is this: if 54(X) = @ # 5#4(Y), and if f: X — Y is contin-
uous, we want to find necessary and sufficient conditions on f for
f to extend continuously to a funection f% £,X —£,Y.

Our characterization of those spaces X for which 5£4(X) = @
will be given in terms of the semi-regularization of a topological
space. Recall that a subset U of a space X is regular open if U=
intgel,U.

DEFINITION 1.2. (a) A space is semi-regular if its regular open
sets form a basis for its open sets.

(b) Let (X, 7) be a topological space. The semi-regularization
of (X, 7) is the topological space (X, z,) where z, is the topology
of X for which & = {int.cl.V: Ver} is an open base. (If we
consider more than one topology on a set X, then the closure of a
subset S of X with respect to the topology 7z is denoted cl.S, and
S0 on.)

The fact that the family .o defined in 1.2(b) is a base for a
topology on the set X follows from the easily-verified fact that if
U, Vet then int.cl(UN V) =int.el,UNint.cl,V. If X is a space
with no explicit symbol given for its topology, then X, denotes its
semi-regularization. Let <#(X) denote the set of regular open
subsets of X.

ProposiTION 1.3. (a) (Bx. 1.8.20, [2]) If X is a Hausdorf space
so 18 X,.

(b) (2.13 [8]) #(X) = #Z(X,) and Z(X) = Z(X,).

() (Fx. 1.8.20, [2]) X, is semi-regular and X = X, +ff X s
semi-regular.

(d) (3.4@), [9)) If (X, 7) is dense in a space T then the subspace
topology that X inherits from T, 1s just .
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(e) 3.2 [8)]) If X is H-closed and ultra-Hausdorff then X, 1is
compact.

2. The main results. We begin by giving a necessary condi-
tion for a Hausdorff space to have an ultra-Hausdorff H-closed
extension.

THEOREM 2.1. If X 4s a Hausdorff space with an ultra-
Hausdorff H-closed extension, then X, is zero-dimensional.

Proof. Let hX be an ultra-Hausdorff H-closed extension of X.
By 1.3 (e¢) (hX), is compact. By 1.3 (b) (RX), is ultra-Hausdorff
since hX is. But an ultra-Hausdorff compact space is zero-dimen-
sional, as noted earlier. Thus (2X), is zero-dimensional. By 1.3 (d)
X, is zero-dimensional as well.

Next we prove the converse to 2.1. We do this by showing
that if X, is zero-dimensional, then 5#(X) # @ and in fact =#3(X)
has a projective maximum.

DEFINITION 2.2. Let (X, 7) be a space such that X, is zero-
dimensional. Let £,X denote the set X U{Z:% is a free clopen
ultrafilter on X}. Define a topology 7, on £,X as follows: 7 C 7,
and if ZZ ek, X — X then {{z}U U: Uer and there exists Ae%
such that A C el U} is a t,neighborhood base at Z.

It is straightforward to check that the above is a valid defini-
tion of a topology on £,X, and that (X, 7) is a dense subspace of
(ICOX’ z-O)‘

LEMMA 2.3. Let X be a space for which X, vs zero-dimensional.
If Ce Z(X) then cl,xCNelyx(X —C)=@. Thus in particular
cl,,xC € Z (£, X).

Proof. Let Z ccl,;xC — X; then each member of Z/ intersects
C. Thus Ce7 . Similarly if % ecl,x(X —C) — X then X —Ce
% . The lemma follows.

THEOREM 2.4. Let X be a space for which X, 18 zero-dimen-
sional. Then k,X is an ultra-Housdorff H-closed extension of X
that 1s a projective maximum in the set of all ultra-Hausdorff H-
closed extensions of X.

Proof. We first prove that «,X is ultra-Hausdorff (and therefore
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in particular Hausdorff). Let x and y be distinet points of X. As
X is Hausdorff find an open subset V of X such that €V and
yeX —clV. As X, is zero-dimensional find Ce Z(X,) = F(X)
such that xe€C < intyel; V. Then y¢C. By 2.3 cl;C is a «X-
clopen set separating x and v in x,X.

If xeX and % e £, X — X, then as % is a free clopen ultrafilter
on X there exists Be % such that x¢ B. Obviously % ecl,xB, so
by 2.8 cl,xB is a £, X-clopen set separating = and % in £, X.

If % and v are distinet points of £,X — X, then there exists
Be &#(X) such that Be% and X — Bev. Then cl,xB, as above,

separates 2 and v in £, X. Thus £, X is ultra-Hausdorff.

We now show that «,X is H-closed. Let %  be an open ultra-
filter on £,X; by 1.1(a) it suffices to show that ad. ;%  # @. This
will be the case if N{cl(WNX): We#'} = @, so we will assume
that N{elx(WNX):We# } = @. Let ¥ = ZF(X)N %" We claim
that % is a free clopen ultrafilter on X. Obviously it is a filter
as 7 is a filter and < (X) is a lattice of subsets of X. Now
suppose Ce Z#(X) and C¢ Z. Then C¢ % so there exists We %~
such that CN W = @. As X is dense and open in £, X, WNXe %"
As WNnXgc X—-C, it follows that X - Ce# NZFX) = %.
Hence 7 is a clopen ultrafilter on X. If x e X, by assumption there
exists W(x)e % such that ze¢cl,(W(x) N X). As X, is zero-dimen-
sional, by 1.3(¢) there exists B(x) € &#(X) such that xe Bx) € X —
cl(Wx)NX). Then W(x)N X< X— B(x) so X\B(x) e %; hence % is
free, and hence a point of £,X\X. Now suppose V is open in X
and that there exists Ce % such that C Zecl,V — ie., suppose
{#}U V is a basic open neighborhood of Z. If We % then as
Cew,WNC+~@. As CCel;V, WNCNV = Q. It follows that
# ccl,x W and so Z cad, ;%7 Hence £,X is H-closed.

Finally, we show that £,X is a projective maximum in S5#(X).
Let hX be any ultra-Hausdorff H-closed extension of X, and let
ZekX —X. Put S(z) = N{clhyU: UecZ%}. We will show that
|S(z)| = 1. First note that if Ue Z then there is an open set
U’ of hX such that UUNX = U. Thus as {U': Ue%} is an open
filter base on hX, since hX is H-closed by 1L.1(a) N {cl,,U": Ue %)=
@. As cl, U =cl,yU for each UeZ/, it follows that [S.| = 1.
If y and z were distinet points of S(%), as hX is ultra-Hausdorff
there is a clopen subset A of AX such that ye A4 and zehX — A.
As ye S(%) it follows that A N U % @ for each Ue%; hence AN
Xez/. Similarly X — Ae %/, which is a contradiction. Thus
|IS(z)] =1. Let S(%) ={y(%)}. We now define a function
fi 6, X — hX as follows: f1X =1, and f(%) = (%) for each % ¢
£, X\X. Then f is well-defined; we claim that f is continuous. If
xeX and f(x)e W, where W is open in 2X, then xe WNXC
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SIW], and WnN X is open in £,X as X is open in £, X. Hence f
is continuous at x.

Let 2 ek, X — X and let W be an hX-neighborhood of %(%).
Since hX is an ultra-Hausdorff H-closed space, by 1.8(e) (hX), is
compact and zero-dimensional. Now int,ycl,x W is an (hX),-neigh-
borhood of %(%), so there is an (hX),-clopen set C such that
Y(Z)eC < int, el W. By 1.83(b) C is hX-clopen, and so CN X is
clopen in X. Sinece y(%)eC,(CN X)N U # @ for each Uec % ; thus
CNnXez. But CNX C X N(int, el W)=intzel,(WNX), so {Z}U
(WnX) is a k,X-neighborhood of % mapped into W by f. Thus
f is continuous at %. Hence f is continuous, and so £, X is a
projective maximum for o#(X).

COROLLARY 2.5. Let X be o Hausdorff space. The following
conditions are equivalent:

(a) X, 1s zero-dimensional..

(b) X has an ultra-Hausdorlf H-closed extension.
If either condition holds then the set of wultra-Hausdorff H-closed
extensions of X has a projective maximum.

Proof. This follows from 2.1 and 2.4.

Let X be a space for which X, is zero-dimensional. We next
give necessary and sufficient conditions for £X to be the “same as”
£, X — i.e., for £X and £,X to be equivalent as extensions of X.
Obviously £X = k,X in this sense iff £X is ultra-Hausdorff. A proof
of 2.6 below can be obtained by using Theorem 6.4 of [8], but we
will give a more direct, self-contained proof. Recall that the
boundary of a subset S of X, denoted bd.S, is defined to be
el S-int,S.

THEOREM 2.6. Let X be a space for which X, is zero-dimen-
sional. The following are equivalent:

(a) kX =k X.

(b) Each regular open subset of X, has a compact boundary
n X,.

(¢) If B is the boundary in X of a regular open subset of X,
then every cover of B by members of <& (X) has a finite subcover.

Proof. First note that by 1.83(b) if U is a regular open subset
of X then bd; U = bd,U as sets.

(b) = (¢): Obviously (b) = (¢) by 1.3(b) and the above remark.
Obviously (¢) = (b) because <#(X) is a base for the topology of X..
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(b) = (a): Let x« and y be distinct points of kX. If either x or
y is in X, then the argument used in 2.4 and the fact that X, is
zerodimensional imply that « and ¥ can be separated in £X by a
kX-clopen set. Hence suppose 2 = % and y = v where % and 7
are distinet free open ultrafilters on X. As % v there is a
regular open set U of X such that Ue% and X —cl,Ucy. If
xebd, U find W(r)ez such that xz¢cl,W(x). As X, is zero-
dimensional there exists B(x) € <& (X)(=.%(X,)) such that x e B(x)<
X —clyW(x). As bdy U is compact, there exists a finite subset
{x,, ---, x,} of bdy U such that bd, U< Ui, B(xz,) = B. Thus Be
A (X) and as M. W) S X — B, it follows that X — Be%..
Thus (X —B)NUe%. Now (X— B)NU is closed in X; for if
pec[(X—B)NU], then pe X — B and pecl,U. But pebd, U as
bd; US B, so peintyel, U= U. Thus pe (X —B)NU so (X — B)N
Ue #(X). It is now easy to verify that cl;[(X — B)NU] is a
kX-clopen set separating % and 7.

(a) = (b): As £X has an ultra-Hausdorff H-closed extension (i.e.,
itself), by 2.1 (kX), is zero-dimensional. By 1.6(b)(kX),, being a
continuous image of £X, is H-closed, so by 1.6(c) (£X), is a compact
space. Let U be a regular open set in X, (and hence in X by
1.3(b)) and let U*= U U{z e¢cX\X: UeZ}. It is straightforward
to verify that int,.cl.,U* = U?% so U* is open in (¢X),. As UU
(X — el U) is dense in X, it follows that kX\X & U* U (X — el,U)~%
Thus bd, U = (¢X), — [U*U (X — clyU)*], so bdy U is a compact
subset of (#X),. By 1.6(a) bd; U is a compact subset of X,.

Recall that a subset 4 £ X is nowhere dense if X — A is an
open, dense subset. In particular, it follows that the set of nowhere
dense sets is precisely the set of boundaries of open, dense sets and,
hence, is also the set of boundaries of open sets. We now answer
the question of when £,X and 3,X are equivalent extensions of X.
For 3,X to exist, our initial hypothesis must be that X is zero-
dimensional.

THEOREM 2.7. Suppose X is zero-dimensional. Then £,X=GX
if and only if X is compact.

Proof. If X is compact, then £ X = X = g, X. Conversely,
suppose £,X = B, X. Since X is open in £,X and, hence, in 3,X,
then X is locally compact and B8,X — X is compact. But B3X — X
is homeomorphic to £,X — X which is discrete. So, B8, X — X is
finite. Let A be a nowhere dense subset of X and U= X — A.
Since cl;U = X, then (3, X — X) U U is open in £, X and, hence, in
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BX. But A=p8X—(BX —X)UU) is compact. By Lemmas 5
and 6 in [7], X is the topological sum of a compact subspace X,
with a discrete subspace X, i.e., X = X, + X,. By 2.8, £, X = kX, +
£.X, = X, + £, X; and, similarly, 8,X = 8, X, + B X, = X, + B.X,. Thus,
£.X, = B.X, (as extensions of X,), and since X, is discrete, B,X, =
BX,. Since B.X, — X, = B, X — X is finite and RX, — X, is infinite
whenever X, is infinite, then it follows that X, is finite. Thus,
X = X, + X, is compact.

ExAMPLES 2.8. (a) There are separable metrizable ultra-Haus-
dorff spaces that are not zero-dimensional—for example, the set of
rational points in real separable Hilbert space (see, for example,
Problem 16L of [4]). Thus a completely regular ultra-Hausdorff
space need not have an ultra-Hausdorff H-closed extension.

(b) Let X be zero-dimensional and suppose £X = £,X. Then
BX = B,X; for suppose Z, and Z, are disjoint zero-sets of X. Then
there is a real-valued continuous function f on X such that f[Z,]=
{0} and f[Z,] = {1} (see 1.15 of [4]). Let V = intgelyf(—1/2, 1/2).
Then bd;V is compact by 2.6. For each pebd,;V find a clopen set
B(p) of X such that peB(p) < X — Z, (X is zero-dimensional).
As bd,V is compact there exist p,, ---, p, €bd;V such that bd, V<

7. B(p,) = B. Then BUYV is a clopen set of X separating Z, and
Z, 80 BX = B,X (see §1).

However, there are lots of zero-dimensional spaces X for which
BX = B,X but £X # £,X. In 16.17 of [4] it is proved that X =
B.X whenever X is a zero-dimensional Lindelof space. Let Z
denote the integers, regarded as a subspace of the space @ of
rational numbers. Obviously Z is not compact and Z = bd [U {(2n,
2n +1)NQ:neZ}]. Thus BQ = BQ but by 2.6 £Q # £,Q. Many
other such examples can be found.

(¢) Recall that a space is extremally disconmected if open sets
have open closures (see 1H of [4]). Thus regular open subspaces of
extremally disconnected spaces are clopen, and therefore have empty
boundaries. Hence by 2.6 if X is extremally disconnected then
£X = k,X. There is a large variety of extremally disconnected
spaces; see, for example, [4] and [10].

(d) There are lots of nonsemi-regular spaces X for which X,
is zero-dimensional. For example, suppose N < 7' < £N, where N
denotes the countable discrete space. By Theorem E of [5], «T=
kN, so T has an ultra-Hausdorff H-closed extension (namely xN).
Thus 7T, is zero-dimensional. Note that as sets, kN = gN; it is
easy to verify that T is semi-regular iff T\N is a discrete subspace
of BN. Thus there are lots of such spaces T for which T is not
semi-regular and T, is zero-dimensional.
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Let X and Y be two spaces. In [5] Harris characterizes those
maps from X to Y that can be extended continuously to maps
from kX to kY. A op-cover of a space Y is an open cover of Y
which has a finite subfamily whose union is dense in Y. Harris
proves that the map f: X — Y extends continuously to f*:kX—kY
iff whenever % is a p-cover of Y then {f[C]:Ce &} is a p-cover
of X. We now characterize those maps from X to Y that can be
extended continuously to maps from £,X to £,Y (in the case where
X, and Y, are zerodimensional). Our characterization is similar to
that of Harris, with “po-covers” (defined below) playing the role
that p-covers play in Harris’s result.

DEFINITION 2.9. A po-cover of a space X is an open cover &
of X with the following property: there is a finite subcollection
{Cii=1to n} of &, and a finite clopen cover {B;:7 =1 to n} of
X, such that B, < cl;C;, 71 =1 to =.

THEOREM 2.10. Let X and Y be spaces such that X, and Y,
are zero-dimensional. Let f: X — Y be a continuous function. The
Jollowing are equivalent:

(a) f can be extended continuously to f% £,X — k,Y.

(b) If & s a po-cover of Y then {f[Cl:Ce¥} = f[&] is a
po-cover of X. (We will call such an f a “po-map”).

Proof. (a)=(b): Let 7" be an open cover of Y and suppose
that f[7°] is not a po-cover of X. We will show that 7" is not a
po-cover of Y,

Let .« ={Be#(X). there is a Ve7 such that X - BC
clyf[V]}. We verify that & is a free clopen filter base on X.
Let {B,, ---, B,} be a finite subcollection of &# . Find V,€7 such
that X — B, S el f [V]Ji =1 to n). If N~ B, = @ then Ui, X —
B; = X, contradicting the assumption that f7[7"] is not a po-cover.
Thus # 1is a clopen filter base. Now suppose x € X; as 7" covers
Y there exists Ve7 such that xe f[V]. As X, is zero-dimen-
sional, ‘ﬁnd A, e ZF(X) such that xe A, S clyf[V]. Thus X — 4,¢
&, and so & is free. Thus .# is contained in a free clopen
ultrafilter %, which is a point of £, X — X.

Suppose f(Z)e Y. Then there exists Ve 7 such that f(%)e
V. As f° is continuous it follows easily that {Z%}U f[V] is a
k. X-neighborhood of %. Hence there exists Be 7/ such that B<
clxf[V]. Thus X — Be.#, which is a contradiction. Thus f(%)e
kY — Y, so f(%) is a free clopen ultrafilter %’ on Y.

Now suppose 7~ were a po-cover of Y. Then there would exist
Vy -, V,e7 and A, ---, 4,6 Z(Y) such that U, 4, =Y and
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A, ceclyV, for i =1 to k. As %’ is prime, one of 4,, ---, A,—say
A,—Dbelongs to Z’. Then {%'} UV, is a k,Y-neighborhood of Z.
As f° is continuous, it follows that {Z} U f[V.] is a £, X-neighbor-
hood of %/, and we obtain the same contradiction as above. Hence
7" cannot be a po-cover of Y.

(b)=1(a): If ZZekX — X, define ¥’ to be {Ae Z(Y): f[4] ¢
Z'}. It is easy to show that %’ is a clopen ultrafilter on Y. If
NZ' + @, then as Y, is zero-dimensional there is a unique point
Y(Z) in N Z’'. Define f(%) to be y(%). If Z' is free, define
fAZ) to be ', a point of £, Y — Y. Let f°|X = f; we show that
if (b) holds, the function f% £,X — £,Y so defined is continuous.

Suppose that f(%)=y(Z)eY. Let V Dbe open in Y with
y(#)eV. As Y, is zero-dimensional, there exists Ae £ (Y) such
that y(zx)eA Ccl, V. For each ye A — V, choose C(y)e Z(Y)
such that y e C(y) and y(Z) ¢ C(y). Then {C(y):ye A — V}IU{V, Y—
A} is a po-cover & of Y. Thus by hypothesis f~[Z&"] is a po-cover
of X. Therefore there is a finite subcollection & of f7[&] whose
closures are refined by members of a finite clopen cover of X. But
C(y) and Y — A are not in %/, so f[C(y)] and f[Y — A] are not
in Zr. Hence if f[V]¢ &, then & is a finite clopen cover of X
no member of which belongs to the clopen ultrafilter 2. This is
impossible, so f[V]e &. Hence there exists Be.Z(X) such that
BcCelyf[V] and BU[U{GeZ:G # f[V]}]]=X. As no member
of @ —{f[V]} is in %, BeZ. Thus {Z}U f[V] is a kX-
neighborhood of % contained in (f°)7[V], so f° is continuous at Z .

Suppose that (%)= '€k, Y — Y. Let V be open in Y, and
suppose that AeZ”’ and A Cecl,V. Then {Z’}U V is a basic «,Y-
neighborhood of Z/. Since %’ is free, for each yc A — V we can
choose C(y) e <Z(Y) such that yeC(y) and C(y)¢ %’. Then {C(y):
yeAd — VIU{V, Y — A} is a po-cover of Y, and we can repeat the
above argument to show that {Z}U f[V] is a k,X-neighborhood
of Z contained in (f)[{Z’}U V]. Thus again f° is continuous at
.

We next give some examples of continuous functions that are
not p-maps nor po-maps. First we need a general result.

PropOSITION 2.11. Let X be a space, let D(X) be the discrete
space of the some cardinality as X, and let j: D(X)— X be a
bijection. The following are equivalent:

(a) J extends continuously to j*: kD(X) — kX.

(b) Each closed mowhere dense subset of X is compact.

If X, is zero-dimensional each of the above conditions is equivalent to:

(e) 7 extends contimuously to 7% kD(X) — k. X.
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Proof (a) = (b): Suppose (b) fails. Let S be a noncompact
closed nowhere dense subset of X. Let & be a cover of S, by
open subsets of X, with no finite subcover. Let &' ={X-—-S}U%;
then &’ is a p-cover of X. But j[&'I(={77[V]: VeZ"}) is not a
p-cover of D(X) for if it were then it would have a finite subcover
as D(X) is discrete. This would imply that & has a finite sub-
family covering S, contrary to hypothesis. Thus 7 is not a p-map
and so by Theorem A of [5] (see the remarks preceding 2.9), (a)
fails.

(b) = (a): Let & be a p-cover of X; then there exist C, ---,
C,e % such that U7, C; is dense in X. By hypothesis X — U, C;
is compact, and it follows that & has a finite subcover. Thus
J7 %] has a finite subcover, so j is a p-map and so (a) holds by
Theorem A of [5].

Now suppose X, is zero-dimensional. Replace “p-cover” and
“p-map” by “po-cover” and “po-map” in the above argument, and
use 2.10 instead of Harris’s theorem, and one obtains a proof of the
equivalence of (a) and (c).

ExampLES 2.12. (a) Let @ denote the space of rationals. No
bijection j: D(Q) — @ can be continuously extended to j*: xD(Q)—
£Q (or to 7% £D(Q)— k,D(Q)) since @ contains noncompact closed
nowhere dense subsets (e.g., the set of integers).

(b) Let D be an infinite discrete space. Then £D— D is a
closed, nowhere dense, noncompact subset of xD, so a bijection
J: D(kD) — kD cannot be continuously extended to j*: kD(kD) — kD.

(e) If X is compact then a bijection j: D(X) — X can be contin-
uvously extended to j*: kD(X)— X.

REMARKS 2.13. (a) If X, is zero-dimensional and Condition
2.11(b) holds for X, then by 2.6 £X = k,X. Thus there cannot
exist a situation in which X, is zero-dimensional, X # £,X, and a
bijection j: D(X) — X extends to j% £D(X)— £,X but not to j*
£D(X) — kX.

(b) There are examples of spaces S and T, and a continuous
bijection f: S — T, for which T but not S satisfies 2.11(b). In such
a situation a bijection j: D(T) — T can be extended to j*: kD(T)—
kT but j* cannot be “factored through” £S, even though j factors
through S. First note that there is a compactification YN of the
countably infinite discrete space N such that YN — N is homeomor-
phic to the one-point compactification of N. Thus there is a con-
tinuous funection g: BN — YN such that g[BN — N] =vN — N (see
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Chapter 6 of [4]). Then U{g (x): 2 is isolated in YN — N} is a
proper cozero-set C of BN — N and therefore not dense in BN — N
(see 6S of [4]). Thus there is an infinite discrete subset S of BN —
N such that cl;zSNel,zC = @. Choose p,€9 (x) for each isolated
point © of YN—N, and let H = NU S U {p,: = is isolated in YN—N}.
Then ¢g|H: H— YN is a bijection, each closed nowhere dense subset
of YN is compact, but S :is a noncompact closed nowhere dense
subset of H.

Next we exhibit an important class of continuous functions that
are p-maps (and, in certain cases, po-maps). Recall that a continu-
ous closed surjection f: X — Y is called irreducible if, whenever 4
is a proper closed subset of X, then f[A] is a proper closed subset
of Y.

PROPOSITION 2.14. Fach continuous irreducible closed surjection
s a p-map. If the domain is extremally disconmected and the
range admits an wltra-Hausdorff H-closed extension, then it is a
poO-Mmap.

Proof. Let f be a continuous irreducible closed surjection. It
is well-known, and straightforward to verify, that if S is a dense
subset of the range then f7[S] is a dense subset of the domain.
This immediately implies that f is a p-map. If the domain X is
extremally disconnected then by 2.8(c) £X = k,X so f extends con-
tinuously to f% kX —>kY. As kY is a projective maximum for
S~ (Y), there is a map ¢: kY — k,Y such that ¢g|Y = 1,. Thus gof°
extends f to a map from £,X to £,Y, so f is a po-map.

ExampLe 2.15. If X is a regular space then there is an
extremally disconnected space FE(X), called the absolute or projec-
tive cover of X, and a perfect irreducible surjection ky: E(X) — X;
E(X) is unique up to homeomorphism (see [10] or Chapter 10 of [11]).
By 2.14 k; is a p-map (and also a po-map if X is zero-dimensional).
Thus %k, extends continuously to k%: kE(X) — kX.

REMARK 2.16. We do not know if, whenever f: X—Y is a
closed irreducible surjection with X, and Y, zero-dimensional, f must
be a po-map.

REMARK 2.17. We conclude this paper by noting that it is
possible to define our ultra-Hausdorff H-closed extension £,X by
another method. Flachsmeyer [3] has developed a method of gener-
ating many of the H-closed extensions of a given Hausdorff space;
in fact, he develops a Katétov-like, H-closed extension £,X for each
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w-basis <Z on a Hausdorff space X (<7 is w-basis means <7 is open
basis for X that is closed under finite intersections and for each
VegZ, X —clxyVe#). If X is zero-dimensional and <& ={V: V
open, clyV clopen}, then <& is m-basis for X and it is straight-
forward to show that £, X and k. X are equivalent extensions of X.

Added in proof. The authors and E. von Douwen have inde-
pendently shown that the answer to 2.16 is “yes”.
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