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ULTRA-HAUSDORFF //-CLOSED EXTENSIONS

JACK R. PORTER AND R. GRANT WOODS

1. Introduction. A Hausdorff topological space X is
called ultra-Hausdorff if, given two distinct points p and
q of X, there is an open-and-closed (henceforth called
"clopen") subset A of X such that peA and q&A. A
Hausdorff space X is H-closed if, whenever it is embedded
as a subspace of another Hausdorff space Y, it is a closed
subset of Y. In this paper we characterize those Hausdorff
spaces that have ultra-Hausdorff H-closed extensions and
construct, for such spaces, the projective maximum of the
set of ultra-Hausdorff H-closed extensions. We compare
this projective maximum to the Eatetov H-closed extension,
and examine when continuous functions can be continuously
extended to this projective maximum.

Henceforth all hypothesized topological spaces will be assumed
to be Hausdorff.

Let ^ b e a lattice of subsets of a space X; i.e., suppose 0 6
J*f, I e ^ and that Sf is closed under finite unions and intersec-
tions. A filter base on ^f is a subset of £* of £f such that if
5f is any finite subset of Sf then Π & Φ 0 . (If gf is a collection
of sets, Π 5f will denote f){G:Ge gf}; U gf is defined similarly.)
A filter on £f is a subset ^ of ^ such that: ( i ) 0 g J ^ , (ii) if
FlfF2eJ^ then F1nF2eJ^' (iii) if FeJ?", Ge^f, and FQG
then G e J?~. An ultra filter on £f is a filter on £? not contained
properly in any other filter on Sf. By Zorn's lemma each filter
base on Sf is contained in some ultrafllter on ̂ . The adherence
of a filter ^ on £?, denoted ad (JH, is defined to be Π {clxF: Fe
&~Y ^ is said to be free if ad (^~) = 0 ; otherwise ^ " is ̂ ccβd.
An opβ^ ultrafilter (filter) on a space X is an ultrafilter (filter) on
the lattice of open subsets on X.

We will need the following collection of known facts about
jBΓ-closed spaces; see Problems 17K and 17L of [12].

PROPOSITION 1.1. (a) The following are equivalent for a space
X:

( i ) X is H-closed.
(ii) Each open filter on X is fixed.
(iii) Each open ultrafilter on X is fixed.
(iv) // ̂  is an open cover of X there is a finite subcollection

J^ of & such that U J^~ is dense in X.
(b) Continuous images of H-closed spaces are H-closed.
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(c) // U is open in X and X is H-closed then c\xU is H-closed.

A space T is an extension of a space X if X is a dense subspace
of T. Two extensions T1 and Γ2 of X are equivalent (as extensions
of X) if there exists a homeomorphism h: T1 -» Γ2 such that fc|X is
the identity function on X (henceforth denoted l x ) . We identify
equivalent extensions of a space; with this convention, the class of
extensions of X is a set (rather than a proper class).

Let & be a topological property and let &*(X) denote the set
of all extensions of a space X that have &*. An element T of
^ ( X ) is a projective maximum for &(X) if, whenever
there exists a continuous function f\T—*Y such that
Because of the above-mentioned identification of equivalent exten-
sions, a projective maximum for ^ ( X ) , if it exists at all, is unique.

Let £e?{X) (respectively ^ ( X ) ) denote the set of iϊ-closed
extensions (respectively ultra-Hausdorff iϊ-closed extensions) of X.
3ίf{X) has a projective maximum, the [so-called Katetov Jϊ-closed
extension KX (see [6] or [9]). The space KX has as its underlying
set X U {^: ^ is a free open ultrafilter on X}. It is topologized
by decreeing that a subset of X is open in KX iff it is open in X,
and that if ^ e tzX - X, then {{^} U ̂ : ^ 6 ^ } is a base of open
neighborhoods at ^ . This is a valid definition of a topology on

and it can be proved that KX is the projective maximum for

If X is a Tychonoff space, let Jy£~(X) (respectively
denote the set of compactifications (respectively zero-dimensional
compactifications) of X. (Recall that a space is zero-dimensional if
its clopen sets form a base for its open sets). 3ίΓ{X) always has

v

a projective maximum, namely the Stone-Cech compactification βX
(see Chapter 6 of [4]). If ^ ( X ) Φ 0 then, as zero-dimensionality
is hereditary, X is zero-dimensional. Conversely, suppose X is zero-
dimensional, let &(X) be the Boolean algebra of clopen subsets of
X, and let βQX denote the Stone space of this Boolean algebra (see
Chapter 2 of [11] for the definition of Stone spaces). The points
of β0X are precisely the ultrafilters on &(X)f which henceforth
we call clopen ultrafilters. If xeX, put <%f(x) = {Be &(X):xeB}.
The mapping x —> ΉS(x) is an embedding of X as a dense subspace
of β0X, and thus βQX is a zero-demensional compactification of X.
Hence a Tychonoff space X has a zero-dimensional compactification
iff X is zero-dimensional. In this case βQX is the projective maxi-
mum for J^(X). In general βX Φ β0X; in fact βX = β0X (in the
sense that βX and β0X are equivalent extensions of X) iff each
disjoint pair of zero-sets of X can be separated by a clopen subset
of X (see 16.17 of [11]).
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It is well-known that a compact Hausdorff space is ultra-
Hausdorff iff it is zero-dimensional (see, for example, 29D of [12]).
Thus the class of Tychonoff spaces that have ultra-Hausdorff com-
pactifications is precisely the class of zero-dimensional spaces; if X
is zero-dimensional then J%l{X) has a protective maximum, namely
β0X. We want to find an iϊ-closed extension of a suitable Hausdorff
space X that is to fcX as βQX is to βX; in other words we want
to find a protective maximum for j%fo(X). The problem has three
parts. First, we must characterize those spaces X for which βgfo(X)φ
0 . Second, we want to prove that if SίfJJL) Φ 0 then ^ ( X ) has
a protective maximum κ0X, and we want to give an explicit construc-
tion of tcQX. Thirdly, among those X for which tc0X exists, we
want to characterize those X for which KX = κ0X. An additional
problem is this: if JgfJ(JSΓ) Φ 0 Φ β^(Y), and if /: X-> Y is contin-
uous, we want to find necessary and sufficient conditions on / for
/ to extend continuously to a function /°: κ0X —> κ0 Y.

Our characterization of those spaces X for which 3£%X) Φ 0
will be given in terms of the semi-regularization of a topological
space. Recall that a subset U of a space X is regular open if U—
int zcl z Ϊ7.

DEFINITION 1.2. (a) A space is semi-regular if its regular open
sets form a basis for its open sets.

(b) Let {X, τ) be a topological space. The semi-regularization
of (X, τ) is the topological space {X, z8) where zs is the topology
of X for which J ^ = {intΓclΓ V: V e τ} is an open base. (If we
consider more than one topology on a set X, then the closure of a
subset S of X with respect to the topology z is denoted clΓS, and
so on.)

The fact that the family *s*f defined in 1.2(b) is a base for a
topology on the set X follows from the easily-verified fact that if
U,Veτ then intrclΓ(i7n V) = intΓclrUΠ intΓclΓV. If X is a space
with no explicit symbol given for its topology, then X8 denotes its
semi-regularization. Let &(X) denote the set of regular open
subsets of X.

PROPOSITION 1.3. (a) {Ex. 1.8.20, [2]) If X is a Hausdorff space
so is X8.

(b) (2.13 [8]) &e(X) - &(X.) and ^{X) = &?{X%).
(c) {Ex. 1.8.20, [2]) Xs is semi-regular and X = X8 iff X is

semi-regular.
(d) (3.4(i), [9]) // {X, z) is dense in a space T then the subspace

topology that X inherits from Ts is just τ8.
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(e) (3.2 [8]) // X is H-closed and ultra-Hausdorff then Xs is
compact.

2* The main results. We begin by giving a necessary condi-
tion for a Hausdorff space to have an ultra-Hausdorff if-closed
extension.

THEOREM 2.1. If X is a Hausdorff space with an ultra-
Hausdorff H-closed extension, then Xs is zero-dimensional.

Proof. Let hX be an ultra-Hausdorff iϊ-closed extension of X.
By 1.3 (e) (hX)s is compact. By 1.3 (b) (hX)8 is ultra-Hausdorff
since hX is. But an ultra-Hausdorff compact space is zero-dimen-
sional, as noted earlier. Thus (hX)s is zero-dimensional. By 1.3 (d)
Xs is zero-dimensional as well.

Next we prove the converse to 2.1. We do this by showing
that if X8 is zero-dimensional, then ^ ( X ) Φ 0 and in fact §ίf^{X)
has a protective maximum.

DEFINITION 2.2. Let (X, τ) be a space such that X8 is zero-
dimensional. Let KQX denote the set I U { ^ : ^ is a free clopen
ultrafilter on X}. Define a topology r0 on tc0X as follows: τ £ r0

and if ^eκQX- X then {{^} U U:Ueτ and there exists A e ^
such that A £ clxί7} is a τ0-neighborhood base at ^ .

It is straightforward to check that the above is a valid defini-
tion of a topology on /c0X, and that (X, τ) is a dense subspace of
(/Γ0X, To).

LEMMA 2.3. Let X be a space for which Xs is zero-dimensional.
If Ce^(X) then Q\KQXC Π CLO2Γ(X - C) = 0 . Thus in particular

Proof Let ^ e c l^C - X; then each member of ^ intersects
C. Thus C e ^ . Similarly if ^eelKoX(X - C) - X then X - Ce
^ . The lemma follows.

THEOREM 2.4. Let X be a space for which Xs is zero-dimen-
sional. Then fC0X is an ultra-Hausdorff H-closed extension of X
that is a protective maximum in the set of all ultra-Hausdorff H-
closed extensions of X.

Proof. We first prove that /cQX is ultra-Hausdorff (and therefore
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in particular Hausdorff). Let x and y be distinct points of X. As
X is Hausdorff find an open subset V of X such that x e V and
yeX~clV. As Xs is zero-dimensional find C e ^ ( X , ) ^ ^ ( X )
such that x e C Q intxelx V. Then ygC. By 2.3 e l^C is a tc0X-
clopen set separating x and y in £0X.

If x 6 X and ̂  e κ0X — X, then as ^ is a free clopen ultrafilter
on X there exists Be%S such that x ί B. Obviously % e CIKQXB9 so
by 2.3 C\KQXB is a /r0X-clopen set separating x and ^ r in κ0X.

If ^ and 7 are distinct points of tc0X - X, then there exists
Be^(X) such that j?e^/ and X - Bey. Then clKoZβ, as above,
separates <%S and 7 in tc0X. Thus Λr0X is ultra-Hausdorff.

We now show that /c0X is if-closed. Let W~ be an open ultra-
filter on ΛT0X; by l.l(a) it suffices to show that a d , o X ^ Φ 0 . This
will be the case if Π{clx(WrnX): ? e T } Φ Q), so we will assume
that n{clx(TFΠX): WeW~} = 0 . Let & - ^ ( X ) n 3T: We claim
that ^ is a free clopen ultrafilter on X. Obviously it is a filter
as "W" is a filter and &(X) is a lattice of subsets of X. Now
suppose C 6 ^ ( X ) and Cg^Λ Then C$W~ so there exists WeW"
such that C Π TF = 0 . As X is dense and open in tc0X, I f f i l e W~.
As T Γ Π X S X - C , it follows that X - C e ^ " n ̂ ( X ) - ^ .
Hence ^ is a clopen ultrafilter on X. If & 6 X, by assumption there
exists W{x)eΨ^ such that αg cλz(W(x) Π X). As Xs is zero-dimen-
sional, by 1.3(c) there exists B{x) e &(X) such that x e B(x) £ X —
clz(W(x)0X). Then W(x)ΠXQX~ B(x) so X\B(x) e <&; hence ^ is
free, and hence a point of fc0X\X. Now suppose V is open in X
and that there exists C e ^ such that C C c l x F — i.e., suppose
{"U) U F is a basic open neighborhood of ^ . If We*W then as
Ce ^ , T7ΠC^ 0 . As C S e l x F , I f f l C n F ^ 0 . It follows that
^eclKoXW and so %f ea,dKQXW". Hence ΛT0X is JEf-closed.

Finally, we show that κ0X is a protective maximum in ^J(X).
Let feX be any ultra-Hausdorff H-closed extension of X, and let

X. Put S(<&) = Π {clAjri7: ί / e ^ } . We will show that
= 1. First note that if Uz^f then there is an open set

U' of &X such that Uf Π X = 17. Thus as {[/': C76^/} is an open
filter base on hX, since hX is ίf-elosed by l.l(a) n {clAxl/': U e ^ } ^
0 . As clA Xϊ7'= cUztT" for each Ue^S, it follows that | S , | ̂  1.
If y and « were distinct points of S ( ^ ) , as hX is ultra-Hausdorff
there is a clopen subset 4̂ of hX such that 2/ e A and 3 6 hX — .A.
As yeS(^) it follows that A n Ϊ 7 ^ 0 for each Ue^; hence An

Similarly X— i e ^ , which is a contradiction. Thus
1. Let S(<Zf) = {y(<ZS)}. We now define a function

/: /c0X-> ftX as follows: / | X - lx and /(^r) - i/(^) for each f/ e
Λ:0X\X. Then / is well-defined; we claim that / is continuous. If
xeX and fix) e ΫF, where W is open in hX, then x
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], and W Γ\ X is open in κ0X as X is open in tc0X. Hence /
is continuous at x.

Let ^e/c0X-X and let W be an ftX-neighborhood of y(^).
Since hX is an ultra-Hausdorίf iϊ-closed space, by 1.3(e) (hX)8 is
compact and zero-dimensional. Now inthxc\hxW is an (hX)8-neigh-
borhood of 2/(^0, so there is an (/&X)s-clopen set C such that
y(^)eC Qinthxc\hxW. By 1.3(b) C is ftX-clopen, and so C n X is
clopen in X. Since i/(^) e C, (C Π X) Π U Φ 0 for each Z7e ̂ / thus

. B u t C n l S l n ( i n t Λ j r c l A j r T Γ ) = i n t x c l z ( I f n l ) , so {̂ /}U
is a ΛToX-neighborhood of ^ mapped into W by /. Thus

/ is continuous at ^Λ Hence / is continuous, and so /c0X is a
protective maximum for

COROLLARY 2.5. Let X be a Hausdorff space. The following
conditions are equivalent:

(a) Xs is zero-dimensional..
(b) X feαs αw ultra-Hausdorff H-closed extension.

If either condition holds then the set of ultra-Hausdorff H-closed
extensions of X has a protective maximum.

Proof. This follows from 2.1 and 2.4.

Let X be a space for which X8 is zero-dimensional. We next
give necessary and sufficient conditions for tzX to be the "same as"
ICQX — i.e., for tcX and /c0X to be equivalent as extensions of X.
Obviously fcX — tc0X in this sense iff fcX is ultra-Hausdorff. A proof
of 2.6 below can be obtained by using Theorem 6.4 of [8], but we
will give a more direct, self-contained proof. Recall that the
boundary of a subset S of X, denoted bdxS, is defined to be

THEOREM 2.6. Let X be a space for which Xs is zero-dimen-
sional. The following are equivalent:

(a) /cX = κ0X.
(b) Each regular open subset of Xs has a compact boundary

in Xs.
(c) If B is the boundary in X of a regular open subset of X,

then every cover of B by members of &(X) has a finite subcover.

Proof. First note that by l.S(b) if U is a regular open subset
of X then bάXsU = bdxί7 as sets.

(b)<=>(c): Obviously (b)=>(c) by 1.3(b) and the above remark.
Obviously (c) ==> (b) because &(X) is a base for the topology of Xs.
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(b) => (a): Let x and y be distinct points of KX. If either x or
y is in X, then the argument used in 2.4 and the fact that X8 is
zerodimensional imply that x and y can be separated in KX by a
Λ X-clopen set. Hence suppose x = ^ and y = 7 where ^ and 7
are distinct free open ultrafilters on X. As ^ ^ 7 there is a
regular open set U of X such that Ue^ and X—cl z ϊ7e7. If
#ebdX gί7 find 17(^)6^ such that xίdxW(x). As Xs is zero-
dimensional there exists B(x)e&(X)( = &(Xa)) such that xeB(x)Q
X — c\xW(x). As bdXgί7 is compact, there exists a finite subset
{xu •••, α?Λ} of bdXgi7 such that bd X g t/£ U?=i-δ(O = B Thus J5e
«^(X) and as f\7=i W(xt) Q X - B\ it follows that I - β e ^ .
Thus (X - B) Π t/e <gΛ Now (X - B) Π Z7 is closed in X; for if
p ec l 2 [(X- J5)n £7], then peX- B and p eclx?7. But p g bάXsU as
bdXsllQ B, so p e intxclx?7 = U. Thus p e (X - B) Π C7 so (X -" J5) n
C7e^(X). It is now easy to verify that c\κx[(X - B) Π 17] is a
Λ:X-clopen set separating % and 7.

(a) ==> (b): As /rX has an ultra-Hausdorff Jtf-closed extension (i.e.,
itself), by 2.1 (icX), is zero-dimensional. By 1.6(b)(ιcX)a, being a
continuous image of KX, is iϊ-closed, so by 1.6(c) (/cX)s is a compact
space. Let U be a regular open set in Xs (and hence in X by
1.8(b)) and let U* = U[j{^efcX\X: Ue^}. It is straightforward
to verify that intβjrclΛXI/* = ί7*, so ί/# is open in (Λ:X)S. As Z7U
(X - clxZ7) is dense in X, it follows that tcX\X Q U* U (X - clxί7)#.
Thus bάZ9U = (icX). - [U* \J (X - c\zU)*\, so bdX βί7 is a compact
subset of (fcX)s. By 1.6(a) bdXslI is a compact subset of Xs.

Recall that a subset A C X is nowhere dense if X — A is an
open, dense subset. In particular, it follows that the set of nowhere
dense sets is precisely the set of boundaries of open, dense sets and,
hence, is also the set of boundaries of open sets. We now answer
the question of when tc0X and β0X are equivalent extensions of X.
For βQX to exist, our initial hypothesis must be that X is zero-
dimensional.

THEOREM 2.7. Suppose X is zero-dίmensionαl. Then κ0X=β0X
if and only if X is compact.

Proof. If X is compact, then /c0X = X = β0X. Conversely,
suppose /c0X = β0X. Since X is open in /cQX and, hence, in /30X,
then X is locally compact and β0X — X is compact. But β0X — X
is homeomorphic to tc0X — X which is discrete. So, βQX — X is
finite. Let A be a nowhere dense subset of X and U = X — A.
Since cl zί7 = X, then (β0X — X) (J U is open in £0X and, hence, in
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βQX. But A = β0X - ((β0X - X) U U) is compact. By Lemmas 5
and 6 in [7], X is the topological sum of a compact subspace Xlf

with a discrete subspace X2, i.e., X = Xx + X2. By 2.3, Λr0X = £0X1 +
/ΓoX2 = Xj. + Λ:0X2 and, similarly, /30X = /̂ Xj. + β0X2 = Xi + /50X2 Thus,
/r0X2 = β0X2 (as extensions of X2), and since X2 is discrete, β0X2 =
βX2. Since βQX2 — X2 = /30X — X is finite and /3X2 — X2 is infinite
whenever X2 is infinite, then it follows that X2 is finite. Thus,
X = Xx + X2 is compact.

EXAMPLES 2.8. (a) There are separable metrizable ultra-Haus-
dorff spaces that are not zero-dimensional—for example, the set of
rational points in real separable Hubert space (see, for example,
Problem 16L of [4]). Thus a completely regular ultra-Hausdorff
space need not have an ultra-Hausdorff ίf-closed extension.

(b) Let X be zero-dimensional and suppose fcX — tcQX. Then
βX — βQX; for suppose Zx and Z2 are disjoint zero-sets of X. Then
there is a real-valued continuous function / on X such that f[Z^\ —
{0} and f[Z2] = {l} (see 1.15 of [4]). Let V = in t x c l x / l- l /2 , 1/2).
Then bάxV is compact by 2.6. For each pebάxV find a clopen set
B(p) of X such that p e B(p) £ X — Z2 (X is zero-dimensional).
As b d x F is compact there exist p19 , pnebάxV such that bd x FC
U^i B(pt) = B. Then B U V is a clopen set of X separating ^ and
£2, so βX = β0X (see § 1).

However, there are lots of zero-dimensional spaces X for which
βX = AX but KX Φ K0X. In 16.17 of [4] it is proved that βX =
/30X whenever X is a zero-dimensional Lindelof space. Let Z
denote the integers, regarded as a subspace of the space Q of
rational numbers. Obviously Z is not compact and Z — bdQ[U {(2w,
2n + ΐ)f]Q:neZ}]. Thus βQ = β0Q but by 2.6 /cQ Φ tc0Q. Many
other such examples can be found.

(c) Recall that a space is extremally disconnected if open sets
have open closures (see 1H of [4]). Thus regular open subspaces of
extremally disconnected spaces are clopen, and therefore have empty
boundaries. Hence by 2.6 if X is extremally disconnected then
/cX = /c0X. There is a large variety of extremally disconnected
spaces; see, for example, [4] and [10].

(d) There are lots of nonsemi-regular spaces X for which Xβ

is zero-dimensional. For example, suppose N Q T £ tcN, where N
denotes the countable discrete space. By Theorem E of [5], KT—
KN, so T has an ultra-Hausdorff iϊ-closed extension (namely KN).
Thus Ts is zero-dimensional. Note that as sets, icN = βN; it is
easy to verify that T is semi-regular iff T\N is a discrete subspace
of βN. Thus there are lots of such spaces T for which T is not
semi-regular and Ts is zero-dimensional.
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Let X and Y be two spaces. In [5] Harris characterizes those
maps from X to Y that can be extended continuously to maps
from tcX to KY. A p-cover of a space Y is an open cover of Y
which has a finite subfamily whose union is dense in Y. Harris
proves that the map f:X~*Y extends continuously to fκ\κX-~>κY
iff whenever ^ is a p-cover of Y then {f*~[C]:Ce^} is a p-cover
of X. We now characterize those maps from X to Y that can be
extended continuously to maps from /c0X to tcQY (in the case where
Xs and Ys are zerodimensional). Our characterization is similar to
that of Harris, with αpo-covers" (defined below) playing the role
that p-covers play in Harris's result.

DEFINITION 2.9. A po-cover of a space X is an open cover &
of X with the following property: there is a finite subcollection
{Cii i = 1 to n} of ^ , and a finite clopen cover {Bt: i — 1 to n} of
X, such that Bt £ clxC, , i = 1 to n.

THEOREM 2.10. Lei X and Y be spaces such that Xs and Ys

are zero-dimensional. Let /:X-> Y be a continuous function. The
following are equivalent:

(a) f can be extended continuously to /°:/c0X~> £ 0 F.
(b) If ^ is a po-cover of Y then {f*~[C]:Ce<έ?} = f*W] is a

po-cover of X. {We will call such an f a "po-map").

Proof, (a) => (b): Let ψ* be an open cover of Y and suppose
that f"\T\ is not a po-cover of X. We will show that T is not a
po-cover of Y.

Let ^ = { δ e ^ ( l ) : there is a VeT such that X - J 3 £
clχ/*~[F]}. We verify that J^ is a free clopen filter base on X.
Let [Bu •••, BJ be a finite subcollection of J ^ . Find F , e ^ such
that X - JB, £ d z /"[ VJ(< = 1 to n). If Π?=i #* = 0 then (j£=i X -
Bi = X, contradicting the assumption that S*~XJT\ is not a po-cover.
Thus ^ ^ is a clopen filter base. Now suppose xeX; as y covers
F there exists F e ^ such that xef~[V]. As Xs is zero-dimen-
sional, find A,, e &{X) such that ac 6 A,, £ cl x /"[F]. Thus X - Axe
^ , and so ^ ^ is free. Thus ^ is contained in a free clopen
ultrafilter ^ , which is a point of κQX — X.

Suppose f°(f!f) e Γ. Then there exists VeT such that f°(<%f) e
F. As /° is continuous it follows easily that {^}U/ΊΎ3 is a
Λ;0X-neighborhood of ^ . Hence there exists B e ^ such that JB £
c l χ / l F ] . Thus X - Be^f which is a contradiction. Thus /°(^) 6
tcQY- Y, so /°(^) is a free clopen ultrafilter ^ ' on Y>

Now suppose T were a po-cover of Y. Then there would exist
Vlf •••, F , e ^ and Λ, - ,Ake<^(Y) such that U L i Λ - F and
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AidclrVi for i = 1 to k. As ^f is prime, one of Au •••, Ak—say
Am—belongs to ^ ' . Then {^'} U Vm is a /r0F-neighborhood of ^ ' .
As f° is continuous, it follows that {%S} (J /"[F m ] is a /r0X-neighbor-
hood of ^ , and we obtain the same contradiction as above. Hence
3^ cannot be a po-cover of F.

(b) => (a): If ^ 6 tc0X - X, define a " to be {A e ^{Y)\ f[A\ e
%f}. It is easy to show that ^ ' is a clopen ultrafilter on F. If
Π ^ ' ^ 0 , then as F s is zero-dimensional there is a unique point

in Π ̂ ' . Define f\<%f) to be 2/(^0. If <Zf' is free, define
to be ^ " , a point of Λ;0F - F. Let f°\X = / ; we show that

if (b) holds, the function f°:tc0X->/c0Y so defined is continuous.
Suppose that /°(^) = y(%f) e Y. Let V be open in Y with

2/(^0 e F. As F s is zero-dimensional, there exists A e ^ ( F) such
that j / ( ^ ) e i g c l F F . For each yeA-V, choose C(y)e&(Y)
such that 2/ e C(y) and y(&r) £ C(y). Then {C(y): ye A- V} U {F, F -
A} is a po-cover ^ of F. Thus by hypothesis / r [ ^ ] is a po-cover
of X. Therefore there is a finite subcollection ^ of /*"[^] whose
closures are refined by members of a finite clopen cover of X. But
C(y) and Γ - A are not in ^ ' , so f^[C(y)] and /*"[Γ- A] are not
in ^f. Hence if f~[V]ί &, then & is a finite clopen cover of X
no member of which belongs to the clopen ultrafilter ^ . This is
impossible, so f*~[V]e&. Hence there exists Be^(X) such that
B Q dχΓ~[V] and B U [U {G e %?:G Φ /IF]}] = X. As no member
of 5f- l f~[F]} is in ^ , 5 e ^ . Thus { ^ } U Γ [ F ] is a £0X-
neighborhood of ^ contained in (/°)"[F], so/ 0 is continuous at ^Λ

Suppose that /°(^) = ^'e/cQY - Y. Let F be open in Γ, and
suppose that i e ^ ' and A c cl^F. Then {^'J (J F is a basic ΛΓ0F-
neighborhood of ^ . Since ^ ' is free, for each y eA — V we can
choose C(y)e^(Y) such that yeC(y) and <%/) g ^ ' . Then {<%/):
2 / e i - F} U {F, F — A} is a po-cover of F, and we can repeat the
above argument to show that {^}U/"[7] is a /c0X-neighborhood
of <%s contained in (f°Γ[{^} U F]. Thus again /° is continuous at

We next give some examples of continuous functions t^at are
not p-maps nor po-maps. First we need a general result.

PROPOSITION 2.11. Let X be a space, let D(X) be the discrete
space of the some cardinality as X, and let j : D(X) —> X be a
bijection. The following are equivalent:

(a) j extends continuously to j κ : ιcD(X) —> KX.
(b) Each closed nowhere dense subset of X is compact.

If Xs is zero-dimensional each of the above conditions is equivalent to:
(c) j extends continuously to j°: ιcD(X) —> /cQX.
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Proof (a) => (b): Suppose (b) fails. Let S be a noncompact
closed nowhere dense subset of X. Let g 7 be a cover of S, by
open subsets of X, with no finite subcover. Let <&' = {X— S } U ^ ;
then <&• is a p-cover of X. But Γl&']( = {Γ[V]: Ve%?'}) is not a
p-cover of D(X) for if it were then it would have a finite subcover
as D(X) is discrete. This would imply that <£* has a finite sub-
family covering S, contrary to hypothesis. Thus j is not a p-map
and so by Theorem A of [5] (see the remarks preceding 2.9), (a)
fails.

(b)=>(a): Let ^ be a p-cover of X; then there exist Clf ,
Cne^ such that U*=i Ct is dense in X. By hypothesis X — U?=i C*
is compact, and it follows that ^ has a finite subcover. Thus
jΓ[^] has a finite subcover, so j is a p-map and so (a) holds by
Theorem A of [5].

Now suppose Xs is zero-dimensional. Replace "p-cover" and
"p-map" by "po-cover" and "po-map" in the above argument, and
use 2.10 instead of Harris's theorem, and one obtains a proof of the
equivalence of (a) and (c).

EXAMPLES 2.12. (a) Let Q denote the space of rationale. No
bijection j : D(Q) —• Q can be continuously extended to j κ : fcD(Q) —•
/cQ (or to j°: /cD(Q) —> tcQD(Q)) since Q contains noncompact closed
nowhere dense subsets (e.g., the set of integers).

(b) Let D be an infinite discrete space. Then tcD — D is a
closed, nowhere dense, noncompact subset of tcD, so a bijection
j : D(/cD) —> KD cannot be continuously extended to j κ : κD(κD) —• KD.

(c) If X is compact then a bijection j : D{X) —> X can be contin-
uously extended to j κ : κD(X) —> X.

REMARKS 2.13. (a) If X8 is zero-dimensional and Condition
2.11(b) holds for X, then by 2.6 tcX = κ0X. Thus there cannot
exist a situation in which X8 is zero-dimensional, Λ X Φ /CQX, and a
bijection j : D(X) -> X extends to j°: κD(X) -> fc0X but not to j*:
κD(X) -> Λ:X

(b) There are examples of spaces S and T, and a continuous
bijection /: S-> Γ, for which Γ but not S satisfies 2.11(b). In such
a situation a bijection j : D{T)-^ T can be extended to j κ : ιcD(T) ->
KT but iΛ cannot be "factored through" KS, even though j factors
through S. First note that there is a compactification ΎN of the
countably infinite discrete space N such that yN — JV is homeomor-
phic to the one-point compactification of N. Thus there is a con-
tinuous function g: βN-^yN such that g[βN — N] = yN — N (see
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Chapter 6 of [4]). Then U {g*~(x): x is isolated in yN - N} is a
proper cozero-set C of βN — N and therefore not dense in βN — JV
(see 6S of [4]). Thus there is an infinite discrete subset S of βN—
N such that cl^S Π cl^C = 0 . Choose px e g*~(x) for each isolated
point x of jN—N, and let H = Nil S\J {px: x is isolated in jN—N}.
Then g\H: H—>jN is a bijection, each closed nowhere dense subset
of yN is compact, but S is a noncompact closed nowhere dense
subset of H.

Next we exhibit an important class of continuous functions that
are p-maps (and, in certain cases, po-maps). Recall that a continu-
ous closed surjection f: X —> Y is called irreducible if, whenever A
is a proper closed subset of X, then f[A] is a proper closed subset
of Y.

PROPOSITION 2.14. Each continuous irreducible closed surjection
is a p-map. If the domain is extremally disconnected and the
range admits an ultra-Hausdorff H-closed extension, then it is a
po-map.

Proof. Let / be a continuous irreducible closed surjection. It
is well-known, and straightforward to verify, that if S is a dense
subset of the range then f*~[S] is a dense subset of the domain.
This immediately implies that / is a p-map. If the domain X is
extremally disconnected then by 2.8(c) KX — ιc0X so / extends con-
tinuously to f°: KQX —> fcY. As K Y is a projective maximum for
Sίf{JC\ there is a map g:tcY->/c0Y such that g\ Y = 1F. Thus gof°
extends / to a map from tcQX to /c0Y, so / is a po-map.

EXAMPLE 2.15. If X is a regular space then there is an
extremally disconnected space E(X), called the absolute or pro jec-
tive cover of X, and a perfect irreducible surjection kx: E{X) -> X;
E{X) is unique up to homeomorphism (see [10] or Chapter 10 of [11]).
By 2.14 kx is a p-map (and also a po-map if X is zero-dimensional).
Thus kx extends continuously to kκ

x: κE(X) —> tcX.

REMARK 2.16. We do not know if, whenever f:X->Y is a
closed irreducible surjection with Xs and Ys zero-dimensional, / must
be a po-map.

REMARK 2.17. We conclude this paper by noting that it is
possible to define our ultra-Hausdorff iϊ-closed extension κ0X by
another method. Flachsmeyer [3] has developed a method of gener-
ating many of the iϊ-closed extensions of a given Hausdorff space;
in fact, he develops a Katetov-like, H-closed extension tc^X for each
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7Γ-basis & on a Hausdorff space X {0 is rc-basis means & is open
basis for X that is closed under finite intersections and for each
Ve&, X" dxVe^). If X is zero-dimensional and ^ = {V: V
open, c l x F clopen}, then & is ττ-basis for X and it is straight-
forward to show that tcQX and KXX are equivalent extensions of X,

Added in proof. The authors and E. von Douwen have inde-
pendently shown that the answer to 2.16 is "yes".
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