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EMBEDDING LATTICES INTO LATTICES
OF IDEALS

G. GRATZER, C. R. PLATT, AND B. SANDS

A lattice L is transferable iff, whenever L can be
embedded in the ideal lattice of a lattice M, then L can be
embedded in M. This concept was introduced by the first
author in 1965 who also proved in 1966 that in a transferable
lattice there are no doubly reducible elements. In fact, he
proved that every lattice can be embedded in the ideal
lattice of a lattice containing no doubly reducible elements.
In a recent paper of the first two authors, the idea emerged
that one should study transferability via classes K of lattices
with the property that every lattice is embeddable in the
ideal lattice of a lattice in K. This approach was used
to establish that transferable lattices are semi-distributive.
This investigation is carried further in this paper. Our main
result shows that every lattice can be embedded in the ideal
lattice of a lattice satisfying the two semi-distributive
properties and two variants of Whitman’s condition.

1. Introduction. It was shown by G. Gratzer ([6], [7]) that
every transferable lattice L satisfies the condition

(X) L has no doubly reducible element.

In fact, he proved a stronger result, namely, that every lattice can
be embedded in the ideal lattice of a lattice satisfying (X).

In general, if (P) is a lattice-theoretic property which is preserved
by sublattices and which satisfies the assertion

& (P): every lattice can be embedded in the ideal lattice of
a lattice satisfying (P),

then (P) is a property of all transferable lattices. In addition to
(X), properties of a lattice L for which this assertion is known to
hold include

(SF') L is sectionally finite (that is, all principal
ideals are finite);

(SD,) for a,b,ceL, a ANb=a A c implies that
aANb=a AN (®Vec);

(SD,) for a,b,ceL, a \Vb=a \ ¢ implies that
aVb=aV(®Ae).

That & (SF) holds is a consequence of P. M. Whitman’s embedding
65
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theorem [10] and the observation that the partition lattice on a set
S is isomorphic to the ideal lattice of the lattice of all finite parti-
tions of S; that &(SD,) and £ (SD,) hold is the content of a recent
paper of G. Gratzer and C. R. Platt [8].

Consider the properties

(W) for a,b,¢,deL, a Ab=<cVd implies that
[a Ab,eVdlNn{e,b,ec d} + O;

(W) for a,b,c,deL, ¢c=a Ab=cVd implies that
[a Ab,cVvdlNia,b,c dl = D;

(W,) for a,b,¢c,deL, a Nb=cV dZ<a implies that
[a Ab,ecVvdln{e, b c d} #+ @.

K. Baker and A. W. Hales [2] proved that if a lattice satisfies (W),
then so does its ideal lattice. Hence & (W) fails; however, in this
paper, we will show that (W, and & (W,) hold. In fact, we will
prove that every lattice can be embedded in the ideal lattice of a
lattice satisfying the four properties (SD.), (SD,), (W,), and (W,)
simultaneously. More succinctly, our main result is

THEOREM. Z((SD,) & (SD,) & (W,) & (W,)) holds.

It follows from the theorem and the preceding remarks that
every transferable lattice is sectionally finite and satisfies (SD,),
(SD,), (W), and (W,). By a result of R. Antonius and I. Rival [1],
we conclude:

COROLLARY. FEwery transferable lattice satisfies (W).

The proof of the theorem is contained in §2. In §3 we shall
settle the truth or falsity of & (P) for most remaining combinations
(P) of the above properties. In particular, it will be shown that
Z((SD,) & (SF) & (X)) holds and that Z((SF) & (SD,)) and
£ ((SF) & (W,)) fail. With these results, we can determine the
status of & (P) for all but two combinations (P) of the properties
(X), (SF), (SD,), (SD,), (W), and (W,). These two will be given
at the end of the paper.

2. Proof of the theorem.

DEFINITION 1. Let L be a lattice and let <a, b,¢,d) be an
ordered quadruple of elements of L. Then we will say that

(i) <a,b,e,dy is a (W)-failure if c<aAb=<e¢Vd and
fe Ab,cVdlN{a, b ¢ d} = O;
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(ii) <a,b,¢,dy is a (W,)-failure if aANb=cVd=<a and
[a Ab,eVdlN{a, b, ¢ d} = D;

(iii) <a, b,¢,dy is an (SD,)-failure if a ANb=a ANe¢c=d and
aAN®Ve) #d;

(iv) <a,b,¢,d) is an (SD,)-failure if a Vb=aVe¢=d and
aV bAc)#d;

(v) <a,b, ¢ d)isa failure if it is any of the above four types
of failures.

DEFINITION 2. Let L be a lattice, let <a, b, ¢, d) be a failure in
L, and let ® be a homomorphism from a lattice M onto L. Then @
repairs {a,b,c,d>, or {a,b,c,dy is repaired in M by @, iff
a', ¥, ¢/, d’) is never a failure in M of the same type as {a, b, ¢, d),
for any o' e @7 (a), b’ € p7Xb), ¢’ € p~Y(c), and d’' € p(d).

LEMMA 3. Let K, L, and M be lattices, let @:M— L and
®Py: L — K be onto homomorphisms, and let {a, b, ¢, d) be a failure
in K. If {a, b, ¢, d> is repaired in L by @,, then it is repaired in
M by PyoPy.

Proof. Each of the four conditions (SD.), (SD,), (W,), and (W,)
can be expressed in the form P(z, v, z, w) = Q(=, ¥, 2, w), where P
and Q are disjunctions of polynomial equations and hence are preserved
under homomorphisms. Since {a, b, ¢, d) is a failure in K, there
exist appropriate P and @ such that P(a, b, ¢, d) holds but Q(a, b, ¢, d)
fails. Suppose that <a, b, ¢, d) is not repaired in M by @,cp,; then
there are elements a’, b', ¢/, d’€ M such that (@,o@)(2') =2 for ze
{a, b, ¢, d}, P(a’, V', ¢, d") holds, and Q(a’, V', ¢/, d') fails. Consequently,
P(p,(a’), pi(b"), @.(c"), #.(d")) holds in L. Since {a, b, ¢, d) is repaired
in L by ¢, this implies that Q(@.(a’), ¢.(b"), @.(c"), #.(d")) holds in L.

But now Q(a, b, ¢, d) = Q(P(P.(a"), P(,(b), PAPi(c"), P(P:(d"))) holds
in K, a contradiction.

Part of the proof of our theorem involves showing how to
repair all failures in a lattice. Before describing the constructions
by which this is accomplished, we make some observations.

Denote the lattice of ideals of a lattice L by .#(L). Let L and
K be lattices and let @ be a homomorphism of L onto K. For
Ie 7(K), consider the set

P(I) ={zeL | px)el}.
@ *(I)is an ideal of L, and hence @' is a map of _#(K) into .#(L)
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which is easily seen to be order preserving and one-to-one. Moreover,
since meets of ideals are defined by set intersection, @™ is also meet
preserving.

LEMMA 4. The map o7 ': A(K) — A (L) is an embedding if and
only if @ satisfies the condition

(*) of yeL, v,2,€K, and @¥y) =2, V &, then y =y, Vy, for
some Yy, Y, € L satisfying ¥, = %, P(¥Y) = @,.

Proof. To prove the “if” direction, by the above remarks we
need only show that for I, Je A (K), "IV J) S o'(I) V 7(J).
Let xep™(I Vv J); then @(x)e IV J, so there exist x, €I, x,€J such
that o(x) <, V ©,. By (*) there are y,, ¥,€ L such that ¢(y,) = z,,
P(Y) =%, and * =y, VY, But then y,ep™(I), y,ecp(J), so
rzep™(I)V o (J), as desired. '

Conversely, suppose that @™ is an embedding, and let y ¢ L and
2, ¢, € K be such that o(y) <, Vx,, Then ((%)] = (] V (x,] in
7(K), and since @' is join preserving we have that y e o '((p(¥)]) <
P7H(®]) V o7 ((x,]). Thus there exist y, €@ ' ((2.]), ¥.€ P7'((2.]) such
that y <y, V¥,. Clearly we may assume that o(y,) ==z and

P(Y,) = X,.

The next three propositions allow us to repair all failures in a
lattice. The constructions used in these results are slight modifica-
tions of constructions that have appeared elsewhere; that of Pro-
position 5 is taken from Theorem 4.4 of H. S. Gagkill, G. Gratzer,
and C. R. Platt [5], and that of Propositions 6 and 7 is taken from
Theorem 3.1 of T. G. Kucera and B. Sands [9]. We have included
Figures 1 and 2 to illustrate the constructions in Propositions 5 and
6 respectively.

PROPOSITION 5. Let x = {a, b, ¢, d) be a failure of (W) or (W,)
in the lattice L. There exists a lattice L, and a homomorphism
@, of L, onto L satisfying (*) such that x is repaired in L, by o..

REMARK. One method of repairing failures of (W, or (W,) is
already in the literature; namely, the “interval construction” of A.
Day [3]. However, it will be crucial for the proof of our main
theorem that the homomorphisms we use to repair failures satisfy
(*), and it is easy to verify that the homomorphism associated with
the interval construction does not enjoy this necessary property.

Proof of Proposition 5. Let Z be the integers with their natural
order and let £ and O denote the sets of even and odd integers,



EMBEDDING LATTICES INTO LATTICES OF IDEALS 69

respectively. Extend Z to Z, = Z U {— o, «} where — o is the least
and « the greatest element of Z,. Settingu =a Abandv=c¢ V d,
we define a subset L, of L X Z, by

L. = ([b) X {=}) U ((d] X {—eo}) U ((v] = (d]) X E)
U (& — @) Uw) —[b) x 0).

(Figure 1(c) shows L, for the case when L is the lattice of Figure
1(a) and x = {a, b, ¢,d). Figure 1(b) shows L, as a subset of
L x Z,.)) 1Itis not hard to verify that each element of L x Z, that

(@) L

(b) L X Z
FIGuRrE 1
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is not of the form (y, —«) for y £ d has a least upper bound in
L.. This and a dual observation shows that L., with the partial
order inherited from L x Z,, is a lattice. Also, the projection
.. L X Z, — L restricts to a homomorphism @, of L, onto L.

We first claim that @, satisfies (*). Let (y,t>eL, and x,, z,€ L
be such that y = ¢,((y, t)) < 2, \V @,. There exist 4, j € Z, such that
Yy, ={x, 1y and y, = {x,, jy are in L,. If y <d then t = —c, so
Yy, t) <y, V vy, as desired. Also, if », V,=b then ¥, Vy,=
{®, V %, o), whence again {y,t) <,V ¥, Thus we may assume
y%£d and x, \V x, 2 b, and without loss of generality we have both
y and z, in L — ((d] U [b), implying that ¢, ¢€Z. Since, for any
xeL and neZ, {x,n)ye L, implies {x, n + 2)€ L,, we may choose
1=1t, and so {(y,ty € ¥, V ¥, holds in any case, showing that o,
satisfies (*).

Secondly, we show that x is repaired in L, by .. Let
a',b',¢,d' e L, be such that @,(a’) =a, @.0) =0>, ¢.(c') =¢, and
o(d') =d. It follows that a’ = {a, ©) where 1€0, ¢’ = {¢, j) where
jeE, b =(b, ), and d' ={d, —). Thus a’ A b =<a A b, iy and
¢vd=<{Vd, jy, whence if a’' Ad' <c¢ VvVd we have 1 =<j. If
x is failure of (W,), assume that <{a’, V', ¢/, d’) is a failure of (W) in
L,; then ¢’ <a’ A b, yielding 7 < ¢ and thus ¢ = j, which is impos-
sible since 7 is odd and j is even. Thus <a’, ¥, ¢/, d’) cannot be a
failure of (W;). Similarly, if x is a failure of (W,), (o', ¥, ¢/, d") is
not a failure of (W,) in L,. Hence x is repaired in L, by ..

PROPOSITION 6. Let x = {a, b, ¢, d) be a failure of (SD,) in the
lattice L. There exists a lattice L, and a homomorphism @, of L,
onto L satisfying (*) such that x is repaired in L, by @,.

Proof. Let Z,, E, and O be as in Proposition 5, and set p =a VvV
(b A\ ¢). Define a subset L, of L X Z, by

L. = ((p] X {=}) U (L — (p] U (b]) X E)
UL — (p] U (c]) x 0) .

Figure 2(c) shows L, when L in the lattice of 2(a) and x = (a, b, ¢, d),
and Figure 2(b) shows L, as a subset of L X Z,. It is easy to see
that L, is a join-semilattice, and that each element of L x Z, that
is not of the form (y, ) has a greatest lower bound in L,; whence
L., with the partial order inherited from L X Z,, is a lattice.
Furthermore, the projection z,:L X Z, —» L again restricts to a
homomorphism @, of L, onto L.

To show that @, satisfies (*), let (y, t) e L, and x,, x,€ L be such
that ¥ = ,({y, t)) < 2, V x,. There exist 14, j€Z, such that y, =
{x,, 1y and y, = (x,, jy arein L,. If y < p,thent = —oco, so (y, t) <
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(a) L

(b) L X Z
FIGURE 2

¥,V ¥,. On the other hand, if ¥y £ p, then without loss of generality
we may let z, £ p, and both ¢ and ¢ are in Z. We may now choose
7 such that (z, > e L, and ¢t £ 1, and thus {(y,t>) <y, V v, follows
in either case, proving that @, satisfies (¥).

To show that x is repaired in L, by ., let a’, ¥, ¢, d €L, be
such that ¢.(a") =a, @,0) =0b, ¢.(c) =¢, and @(d") =d. Then
b = (b, 1y where 1€0, ¢ = {c,j) where jeE, and since a < p,
a'={a, —o). Thus a" Vb =<aVbi and o V< ={<aVe, j).
Since 4 is odd and j is even, @’ Vb #=a’ V¢, so (', ¥, ¢, d"> is not
a failure of (SD,) in L,.

PROPOSITION 7. Let x =<{a, b, ¢, d) be a failure of (SD,) in the
lattice L. There exists a lattice L. and a homomorphism @, of L.
onto L satisfying (*) such that x is repairved in L. by @,.

Proof. Let p =a A (b ¢), and define a subset L, of LxZ, by

L. =(p) x {=h UL — (p) UIb) x E)
UL —(p) Ule)) x 0) .
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This construction is just the dual of the one in the previous proposi-
tion, so L, is a lattice and we have the natural homomorphism ¢,
of L, onto L. An argument dual to that in Proposition 6 shows
that x is repaired in L. by @., so we need only show that ¢, satisfies
(*). Let {y,t)eL, and x, 2,€ L be such that .y, t)) <z, V 2..
There exist ¢, j € Z, such that y, = {(x,, ©) and y, = {x,, j) are in L.,.
If ¢, Vo, = p then y, Vy, = <x1, 7'> V (@, .7.> = <x1 V &y, o) = <y, t;
therefore, we assume z, \V , 2 », which implies that ¢, 7, j€ Z. Now
we can choose 7€ Z such that {x, i) e L, and ¢ = t, whence {y, t) <
9, V 9y, follows.

Before continuing with the proof of the theorem, we recall the
following construction.

DEFINITION 8. Let (L;|7€I) be a family of lattices, let L be a
lattice, and let @,: L, — L be a lattice homomorphism for each 7¢I
Form the direct product I7(L,|72 € I), and consider the subset

K= {xellL; | p(x(1)) = @;(x(3)) for all i, jeI}.

Then K is a sublattice of 7L, and is called the pullback of the
family (@;|i€I). Letting 7;: K— L, be the restriction of the projec-
tion of IIL; onto L,, we have @,om, = @;oxm; for all %, jeI; hence
there is a natural homomorphism @ = @,ox; of K into L. If o, is
onto for all 7€, then @ is onto.

PROPOSITION 9. For any lattice L, there exists a lattice L* and
a homomorphism @* of L* onto L satisfying (*) that repairs all
failures in L.

Proof. Let & (L) be the set of all failures in L. From Proposi-
tions 5, 6, and 7, we obtain a family (L. | x e &# (L)) of lattices and
a family (p,: L,— L | x € & (L)) of onto homomorphisms satisfying
(*) such that for each x e &# (L), x is repaired in L, by .. Let L*
be the pullback of {@, | x € # (L)} and let @* be the natural homomor-
phism of L* onto L. Then by Lemma 3, @* repairs all failures in
L. To show that @* satisfies (*), let pe L* and wu, ve L be such
that @*(p) < u V v. Letting p. denote the xth component of p, for
each xe¢ (L), we have that o.(p,) = o*(p) < u Vv. For each
xe 7 (L), since @, satisfies (*), there exist u., v.€L, such that
o(u,) = u, ¢.(v,) =v, and p, <u, Vv, in L,. Then the elements
u=(u,| xe (L) and v = (v, | x € & (L)) are clearly in L*; moreover
P*(u) = u, *v) =v, and p < u V v.

Finally, we are in a position to prove our main result.
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THEOREM 10. Ewvery lattice can be embedded im the ideal lattice
of a lattice satisfying (SD.), (SD,), (W), and (W.,).

Proof. Let L be a lattice. Set L, = L, and inductively let
L,., = Lf and @: L¥ — L,, n = 0, be the lattice and homomorphism
of Proposition 9. Let L. be the inverse limit of the system of
lattices (L, | » < @) and homomorphisms (@} | n < ®), and let @,:
L. — L, be the natural projection for each n.

We first claim that L. satisfies (SD,), (SD,), (W.), and (W,).
Again note that each of these four conditions is expressible in the
form P(x, y, 2z, w) = Q(x, ¥, 2, w), where P and @ are disjunctions of
polynomial equations. Let {a, b, ¢, d) be a failure in L.; then there
exist appropriate P and @ such that P(a, b, ¢, d) holds but Q(a, b, ¢, d)
fails. It follows that P(p,(a), #.(b), ®.(c), #.(d)) holds for all nc w,
and, since L is a sublattice of I1(L, | n € ®), Q(®,.(a),P,.(b), P.(C), P.(d))
fails for some mew. Therefore (@,(a),P.0b), P.(c), P.(d)) is a
failure in L,. But by construction (@, (@), Pni1(D), Puii(€), Prn+i(d))
is not a failure in L,.,, which contradicts Lemma 3. Thus there
can be no failures in L.; that is, L, satisfies (SD,), (SD,), (W),
and (W,).

Next we prove that the homomorphism @, of L. onto L satisfies
(*). LetxelL, and w, v,€ L = L, be such that ¢,(x) < u, V v,. Then
P(x) = PF(Pix)) < u, V v, and since @F satisfies (*) there exist
wy, v, €L, such that @f(w) = u, @) =12, and @(x) =wu, V v.
Proceeding by induction, assume that we have u,, v, € L, such that
@ (x) < u, Vv, Then @,(x)=9p,.(x)=Zu,\V v, and since @}
satisfies (*) there exist wu,y, v, €L,;; such that oo¥(u,..) = u,,
PEWps1) = Uy, and @, (x) £ Upiy V V1. Now let u = (u,, | » < ®) and
v={<v,|n<w)y. It follows that u,velL., ¢,m) = u, ) = », and
x < u Vv, whence @, satisfies (*).

From Lemma 4, _“(L) is embedded in _“(L.). Since L is
embedded in (L), the theorem is proved.

As mentioned earlier, we have the following corollary.
COROLLARY 11. Ewery transferable lattice satisfies (W).

REMARK. The use of homomorphisms, pullbacks, and inverse
limits to repair failures stems from a proof in a recent paper of A.
Day, namely, the proof (see Theorem 3.2 in [4]) that every lattice
is a bounded homomorphic image of a lattice satisfying (W).

3. Additional results. In this section we investigate the status
of & (P) for most other combinations (P) of the properties defined
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in the introduction. First, we shall indicate how certain techniques
in a paper of G. Gratzer and C. R. Platt [8] can be modified so as
to prove that #((SD,) & (SF) & (X)) holds.

Let L be a lattice. It has already been observed that there is
a lattice K satisfying (SF') such that L is embeddable in _“(K).
Hence we need only show that for every lattice K satisfying (SF)
there is a lattice M satisfying (SD,), (SF), and (X) such that _#(K)
is embeddable in A (M). \

Let K be a lattice satisfying (SF'). In [8], Gratzer and Platt
construct a lattice L(K,) satisfying (SD,) such that K can be
embedded in _#(L(K;)). From Lemma 8 and their proof it is clear
that they in fact embed _#(K) in ~(L(K;)). The lattice L(K;)
consists of certain subsets (called closed subsets) of K x Z, ordered
by inclusion.

Now we replace Z by w, and consider the set L/ (K;) of all
finitely generated closed subsets of K X w, that is, all closed subsets
which are closures of finite subsets of K X w. Since K satisfies
(SF'), each element of L,(K,) is finite. Hence L/(K;), ordered by
inclusion, is a lattice; in fact L;(K;) is embeddable in L(K;) and
therefore satisfies (SD,). Furthermore, LK) is sectionally finite.
Next, it can be proved as in [8] that _#(K) is embeddable in
A(L;(K;)), and moreover the image under this embedding of each
ideal in K is a nonprincipal ideal of L,(K,). Therefore (G. Gratzer
[7]) the elements of L,(K;) may all be “split” to yield a lattice M
satisfying (X) such that _#(K) is embeddable in A(M). It is easy
to see that M will still satisfy (SD,) and (SF). Thus we have:

THEOREM 12. &£ ((SD,) & (SF) & (X)) holds.
In contrast to the above, we now establish two negative results.

LEMMA 13. If a lattice L satisfies (SF) and (SD,), then (L)
satisfies (SD,).

Proof. Let L satisfy (SF) and (SD,), and let A, B, Ce _#(L)
satisfy ANB=ANC. Let pecAN(BV C). There exist be B and
ceC such that p b Ve By (SF), there exist largest elements
b,e B and ¢,e€C such that b, ¢, <bVec. Since ped, p ANb,cANB
and pA¢geANC=A4ANB. Thus the element q = (p A by) V
(p AN ¢e)eANB, and by the choice of b, » A¢c, =q=b. Hence
DA CGZDPAb; by symmetry we have that » A b, = » A ¢. Since
L satisfies (SD,), p Aby=2 A (b, V¢c,) =p A (bVec)y=p. We con-
clude that pe AN B, and so AN(BV C)=ANB, showing that
A(L) satisfies (SD,).
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COROLLARY 14. & ((SF) & (SD,)) fails.

LEMMA 15. If a lattice L satisfies (SF) and (W,), then _7(L)
satisfies (W,).

Proof. Let L satisfy (SF') and (W,), and suppose that (A,B,C, D)
is a (W,)-failure in _“(L). Then there exists an element xc AN B
such that ¢ C and z¢ D, and an element b¢ B such that b > « and
beC Vv D. Since L satisfies (SF), there exists a largest element
2, € ANB such that x, <b; note that a, =« and so x,¢C, %, ¢ D.
Since x,€e ANBZC VD, there exist ¢ceC, d e D such that z,<c\Vd.
However, b¢C\ D, so bZc¢\Vd. Finally, since ADCV D, we may
choose a € A such that a > ¢V d. But now a Ab=(cVd)Ab=x,
and by the maximality of x, we obtain that a A b = x,. Hence the
quadruple <a, b, ¢, d) is a failure of (W,) in L, contradicting the
hypothesis. We conclude that _#(L) satisfies (W,).

COROLLARY 16. & ((SF') & (W.,)) fails.

To end this paper we ask two questions that are still open:
(i) Does & ((SF) & (W,)) hold?
(ii) Does & ((SF) & (W,) & (SD,)) hold?
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