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VECTOR VALUED ERGODIC THEOREMS FOR OPERATORS
SATISFYING NORM CONDITIONS

T. YOSHIMOTO

A new approach is developed in the theory of point wise
ergodic theorems. Our consideration is based upon
Ω%0 ^ p < oo), which is a linear space containing properly
the linear span of Up>1Lp(X;^f), where (X,^~,μ) is a σ-finite
measure space and ^ is a reflexive Banach space. Some
weak and strong type inequalities are proved as vector
valued generalizations of the Dunford and Schwartz's results,
and then, used to study the integrability of the ergodic
maximal function. These results do make it possible to
extend the Chacon's vector valued ergodic theorem. We
have analogous extensions for the case of continuous semi-
groups, and the local ergodic theorem is shown to hold on
Ω°μ. The results include two applications to the random
ergodic theorem and the "strong differentiability" theorem.

1* Introduction* In [6] Hopf proved an ergodic theorem for

positive operators satisfying certain norm conditions and acting in
spaces of real valued functions. This result was generalized by
Dunford and Schwartz [3] to include nonpositive operators in spaces
of complex valued functions. The principle of proof adopted by
Dunford and Schwartz consisted in majorizing the operator in ques-
tion by a positive one so that the Hopf's result could be brought
to bear on the problem. Chacon [2] proved a maximal ergodic
lemma for operators which are not necessarily positive and which
act in spaces of functions taking their values in a Banach space,
and then, used the result to obtain a vector valued ergodic theorem
as a generalization of the Dunford and Schwartz's theorem. In this
paper we intend to generalize the vector valued ergodic theorem of
Chacon to operators acting in a function space which is wider than
the usual Banach spaces. Let (X, ̂ , μ) be a α-finite measure space
and (<£?, HI |||) a reflexive Banach space throughout this paper. If
for 0 ̂  p < oo we denote by Ωp

μ the class of all functions / which
are defined on X and take their values in £f', such that

[ 111/0*0111 Λ o g 111/0*0111-(log Ill/Ml" )'dμ<

for every t > 0, then these classes constitute a generalized descend-
ing sequence of linear spaces containing properly the linear span of
Uq>1Lq(X; <%f). We prove some weak and strong type inequalities
which enable us to investigate the integrability of the ergodic
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maxmal function. One of these inequalities will permit to extend
the Chacon's theorem to functions / in the class Ω°μ. We also con-
sider the analogous extensions for the case of continuous semigroups
of operators and the local behavior of operator averages. Further,
our results have the additional advantage that they are sufficiently-
general to obtain some extensions of the Beck and Schwartz's random
ergodic theorem [1] and of the "strong differentiability" theorem of
Jessen, Marcinkiewicz and Zygmund [7] in its one-parameter form.

2* Preliminaries. Let LP(X; <%f) = LP(X, J ^ , μ; <%?), 1 ^ p< <χ>,
denote the space of all strongly measurable ^-valued functions /
defined on X for which the norm is given by

= (\ \\f(*)\\\p dμj' < <*>

and let LTO(X; gf) = LJ(X, J ^ , μ; gf) denote the space of all strong-
ly measurable ^-valued functions / defined on X for which the
norm is given by

= esssup|| |/(aO|| |< -
xex

We shall suppress the argument of a function, writing / for f(x)
when convenient. Furthermore, the relevant equations are under-
stood to hold almost everywhere. Following Chacon [2], we define
for λ > 0,

fλ+(x) = [sgn/(α?)][max(λ, |||/(a?)|||) - λ]
/'-(*) = [sgn/(^)]min(λ, |||/(a?)

where sgn/(α?) = f(x)/\\\f(x)\\\ if f(x) Φ 0, and sgn/(α?) - 0 if f(x) = 0.
Let Γ be a linear operator in Lλ(X; £f) such that H Γ I d ^ l ,
sup{|| Γ"|U: n ^ 1} ^ K for some constant K ^ 1. Then T can easily
be extended to a linear operator, written by the same notation,
which maps LP(X; £f) into LP(X; gf) for 1 < p < oo, and || Tn\\p ̂  K
for n ^ 1. Let {Tt: t ^ 0} be a strongly continuous one-parameter
semigroup of linear operators in LX(X; £f) such that | |Γ t | | i ^ 1 for
t ^ 0 and supfllTJU: t ^ 0} ^ K for some constant K^l. Then
{Tt:t ^ 0} may be regarded as a strongly continuous semigroup in
LP(X; gf) with l < ί X ° ° , and || Tt\\p ^ K for t ^ 0. For any
λ > 0, let us define E(X) = {x: \\\f(x)\\\ > λ}, E}(\) = {x: fS(x) > λ} and
E?(\) = {x: fϊ(x) > λ}, where

f*(x) = sup

ft(x) = sup

n-l

πfcy-Σ,τkf(x)
n ^=0

M*Ttf(x)dt
a Jo
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For the meaning of the integral pertaining to the semigroup
{Tt: t ^ 0}, see, for instance, [3] and [11].

THEOREM (Chacon). Let T be a linear operator in Lλ(X;
with I I Γ H ^ l and | | Γ | U ^ 1 .

( i ) If fe LP(X; <%?), 1 ^ p < oo, and λ > 0, then

jE*a)

(ii) If fe LP(X; <%f)y 1 <: p < oo, then the limit

exists strongly for almost all x e X.
(iii) If 1 < p < °°, then there exists a function /** eLp(X;

such that

-Σ>Tkf(x) II ̂  |||r*(«)||| a.e. (n^l).
n fc=o II

The continuous versions of (ii) and (iii) appearing in the Chacon's
theorem were included in the author [11]. Suppose the conditions
|| ΓHx ^ 1 and sup{|| T%|L: n ^ 1} ^ K for some constant K^ 1. Then
for fe LP(X; £f\ 1 ^ p< oo, and λ > 0,

( * )
E*UK)

This fact (*) can be obtained by duplication of the Chacon's proof
of (i) in the above theorem with trivial change. Using the appro-
ximation argument of Dunford and Schwartz, (*) also holds with
E*(XK) instead of E$(XK) (cf. Hasegawa, Sato and Tsurumi [5]).

We denote by Ωp

μ(0 <: p < oo) the class of all £?-valued func-
tions / defined on X such that

t ιιι/(χ)iiι ( l o g in/win γdμ < ̂
J{| | |/(*>lll>ί} t N t /

for every t > 0. Such classes were considered by Fava [4] in case
where p = 0, 1, 2, . Let LX(X; ^ ) + L^X; £f) denote the class
of all functions / which can be written as the sum of g in L^X ^f)
and h in L0O(X; JT7). Let L(X; J??)[\og+L(X; <%?)Y denote the class
of all functions / for which

( lll/(x)lll[log max(l, \\\f(x)\\\)]»dμ
JX
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PROPOSITION 1. For each real p ^ 0, the class Ωp

μ is a linear
space:

( i ) If feΩp

μ and X is a scalar, then Xf eΩp

μ.
(ii) If ffgeΩp then f+geΩp.

PROPOSITION 2. The following inclusion relations hold:
( i ) L1(X;^T)ξίΩo

μc:L1(X;^r) + Lv>(X;^r).
(ii) Ωβ

μ c Ωμ for any α, β with 0 ^ a <: β.
(iii) Lq(X; J?f)^Ωpc: L(X; £f) [log+ L(X; <%?)]> c LX(X; £f) +

L^X; J?f),p^Q,q> 1.
(iv) ώ? - L(X; J??)[\og+L(X; Jίf)]p(p ^ 0) if and only if

μ{X) < oo.
(v) i3? ^ Mwβαr spαπ [C79>1L,(X; ^ 7 )](p ^ 0).

The proofs of these propositions are simple exercises (cf. Fava
[4]).

3* The results* According to our convenience in what follows,
we shall write f*(x) (resp. E*(X)) for jfj(α) (resp. Eϊ(X)) in the
discrete time case and for f*(x) (resp. E*(X)) in the continuous time
case. We begin by giving a simple proof of the maximal ergodic
lemma.

LEMMA 1. Let T be a linear operator in Lλ{X\ J%f) with
|| Πd ^ 1 and sup{|| T%|U: n ^ 1} ̂  K for some constant K^l. Let
{Tt: t ^ 0} be a strongly continuous semigroup of linear operators
in L,(X; <%f) such that \\ Tt\\x ^ 1 for t ^ 0 and sup{|| ΓJU: t ^ 0}^iί
/or some constant K ^ 1. Lei λ > 0 αwd 0 < ί < 1. Then for every
fe LP(X; £f) with \<,p<™,

μ(E*(xK)) £
X min(ί, 1 — t)

Proof. Using the inequality (*) in § 2 and its continuous version,
it follows that

(1 - t)Xμ(E*{XK)\E(Xt))

λ - 111/^)111]^

\ |

Therefore, we have

μ(E*(XK)) ^ μ(E(Xt))
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Xt JE(λt)

+ . , / A ιιι/i+(*)iιι^
λ ( l — τ) jEUt)

^ Λ . . } Λ -A \\\f{x)\\\dμ ,
λ m m ( ί , 1 — t) JEUt)

as required.

Lemma 1 generalizes both Lemma 7 in § 3 and Lemma 6 in § 4
of Dunford and Schwartz [3] who considered the case K = 1, t — 1/2
for complex valued functions.

THEOREM 1. On the hypothesis of Lemma 1, let λ > 0 and
0 < t < 1 .

( i ) If l < p < oo and fe LP(X; Jgf), then

ί [Γ(x)]pdμ^-— *K! . . -\ \\\f(x)\\\*dμ .
Jx tp \p — l)min(ί, 1 — t) ix

(ii) If μ(X) < - and fe L^X; Jgf) n L(X; J?f)[\og+L(X; Jgf)],

then

\ f*(x
ix

ζ\μ(X)+ . \
t \ mm(ί, 1 — t)

where log+u is defined for u > 0 and log+u = logmax(l, u).

Proof. ( i ) . In view of Lemma 1 we have

[f*(x)]"dμ = pKΛ \ Xv-'
x JxJo

= pK»\

1 Λ *
mm(ί, 1 — t)

= UKΛ * Π
mm(ί, 1 — t) Jo J

Ill/(»)||| λ-2dλ. ί
JX LJo J

mm(ί, 1 — ί)

—-— Λ?
K\+ 1 - ί

ίp x(p — l)mm(ί, 1 — t) i
where lE(x) denotes the indicator function of the set E (cf. [5]).
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(ii) This case is also treated similarly as follows.

f*(x)dμ = K\ \ dXdμ
x JzJo

= ί ( ( lEHλκ)(x)dXdμ
JXJO

= K[° μ(E*(\K))d\
Jo

^ K. μ(χ) + κ[° μ(E*(XK))dX .
t Ji/t

On the other hand, by Lemma 1 again

Γ μ{E*{XK))dX
Jl/ί

^ . * — Γ X-'W ill/Will dμλdX
min(ί, 1 — t) Ji/ί LJ^(^) J

mm(ί, 1 ~ ί)

mm(f, 1 — t)

| | |/(α)| | | λ^dλ \dμ
Ĵ r LJi Jt min(ί, 1 — ί)

- , . , / , — (
t mm(ί, 1 — ί) Jx

Hence, combining these two parts, we get (ii) and complete the
proof of Theorem 1.

Theorem 1 generalizes both Theorem 8 in § 3 and Theorem 7 in
§ 4 of Dunford and Schwartz [3] who considered the same case as
before.

Now let us write L(X)[log+L(X)]P for L(X; Jgf)[log+L(X;
if ^ is the real or complex linear space.

THEOREM 2. Let μ(X) < oo and feL^X ^f). Then for every
a ^ 0, fe L(X; JT)[log+L(X; ^ ) ] α + 1 implies f* e L(X)[log+L(X)]«.

Proof. According to Lemma 1, there holds

^M \\\f(x)\\\dμ.
X JEU/2)

Define F*(\) = μ(E*(\)) for X > 0. Then we have, for a > 0.
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/*(x)[log+/*(a0Nj"= -
x Jo

^ d Γ l + Γ μ(E*(XK)){log+(XK)}adX~\
L Jifii/ii! J

r g φ + Γ (log+(λJΠ)β ί-f ( \\\Ax)\\dμ\dX~\

= cTl + Γ (log+λ)«{-^ί \Wf(x)\\\dμ\dX~}
L JMK\\f\\1 ( λ J#U/2in ) J

\ \\\f(x)\\\(\og+MK\\\f(x)\\\r^dμ Ί

\ |||/(aj)|||(log+|||/(x)|||)«+1 dμ]

for some constants lf(^max(3/iίΓ, 2)), Ct = C^α, /, JBΓ)(ΐ = 1, 2, 3). The
conclusion of Theorem 2 follows directly from this and Theorem 1.

It is interesting problem to investigate the converse of Theorem
2. Such a problem has been studied by Ornstein [8] for an ergodic
automorphism and by Petersen [9] for an ergodic measurable flow.

THEOREM 3. Let The a linear operator on LX(X; <%f) + L^X;
such that I I Γ H i ^ l and sup{|| I^IU: n ^ 1} 5̂  K for some constant
K^>1. Then for every feΩμ, the limit

lim — Σ
w—oo γι fc=0

exists strongly for almost all xe X.

In proving Theorem 3, we make use of the following two lemmas.

LEMMA 2. Let T be as in Theorem 3. For any feL1(X;<£f) +

L ), put

fΐ(x) = sup - Σ τkf{χ)
n fc=on

Then there holds

μ{fi ^ 2κt) ^ j 5 { I M / ( . ) I M J l l / ^ l l l ^

for every t > 0, where C is a constant independent of f and t.

Proof. We may consider only the case that for feL^X;
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LJJί gf) and t > 0, / is (£)-integrable over the set {|||/(x)||| ^ t),
because if the right hand side is infinite then the lemma holds
trivially. Thus, putting

f\x) = (/l(iii/(.)in«,)(aO,/*(aO = (/l(iιι/(.)in<«)(ίc),

it follows that / = / ' + / , and ft ^ (/')* + Kt Therefore by
Lemma 1 we have

μ{fί ^ 2Kt}

\\\f(x)\\\dμ.
{ l l l / ( a j ) l l l ^ ί }

Hence the lemma follows.

LEMMA 3. Let T be a linear operator on L^X; <%f) with
|| T\\t ̂  1 and sup{|| Γ IL: n ^ 1} ̂  K. Then for every feLp(X;
with 1 <̂  p < oo, the strong limit

exists almost everywhere.

Proof. Note that it follows from the Riesz convexity theorem
that sup{|| Tn\\p: n ^ 1} ̂  K. For 1 < p < oo, LP(X; <%f) is reflexive
and thus, from Corollary 1.4 of [3] it results that the limit in ques-
tion exists strongly in LP(X; <^). So, by virtue of the Kakutani
and Yosida's mean ergodic theorem, the linear manifold ^ g e n e r a t -
ed by vectors of the form / = g + (h — Th) with g e LP(X; <^),
Tg = g,he LP(X; £f) Π L^X; <%f), is dense in LP(X; <%f). For such
a function /, one has

- 1

- Σ Tkf(x) - g(x)
n

as n —> oo almost everywhere, and hence

0

- lim — Σ Tkf(x) = g{x) a.e.

This guarantees that for every fe^f, the limit in question con-
verges almost everywhere. If feLp(X;<gf),l<ίp<co, then by
Proposition 2 and Lemma 2 we have
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0

as ί->oo and so, /*(&)< °° a.e. Therefore, for any
with 1 < p < oo, the almost everywhere convergence of (ί/w)Σϊ=o
Tkf(x) follows from the Banach convergence theorem. Moreover,
since LP(X; £f) Π Lλ(X; gf) is dense in Lτ(X; <%?), we may apply the
Banach convergence theorem again to obtain the almost everywhere
convergence in question for every / in Lτ(X;

Proof of Theorem 3. For any feL^X; <%f) + L^X; gf\ define

= lim sup

It is then clear that ω is subadditive and that ω(f) ^ 2/*. Now
for feΩl, we choose a sequence {/»} of simple functions having sup-
port of finite measure, such that limw_>0O |||/n(a?) — /(»)|| | = 0 a.e. and
lll/(») -Λ(»)lll ^ 2 111/0*0111 for each n. Since ω{f%) = 0 by Lemma
3, one gets

ω(f) £ ω(f - /.) ^

Thus, in view of Lemma 2, we have

μ{ω(f) ^ SKt} £ μ{{f - /.)? ^

for every t > 0, which tends to zero letting n —> oo by the Lebesgue
dominated convergence theorem. Consequently the theorem follows
at once from this.

COROLLARY 1. On the hypothesis of Theorem 3, if μ(X) < °°
then for every feL(X; J2f)[\og+L{X) <%f)\v with 0 ^ p < oo, the limit

exists strongly for almost all xe X.

4* The case of continuous semigroups* Let {Tt: t !Ξg 0} be a
semigroup of linear operators on Lλ(X; <%?) + L ^ X ; ^ ) , such that
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HϊMli ^ 1 for t ^ 0 and sup{|| ΓJU: ί ^ 0} ̂  i ί for some constant
K^l. We assume that

( i ) Tt is strongly continuous when restricted to I/X(X; ,^r).
(ii) Tt is strongly integrable over every finite interval when

restricted to L^X; Jgf). Define

TJdt = (Lx) \aTtgdt + (Lji* Ttkdt
Jo Jo

for / = g + h with geL^X Jzf) and Λ, eLXX"; <^). It is easy to
see that this definition is consistent. Choosing scalar representations
(Ttg)(x) and (Tth)(x) of Ttg and Ttk respectively, we obtain a scalar
representation (Ttf)(x) of Ttf

(TJ)(x) = (Γίflr)(αj) + (

and the Bochner integral

\\τtf)(x)dt = \\τtg){x)dt +
Jo Jo

Γί/dί (cf. Fava
0

[4]).

LEMMA 4. Lei {2y. t ^ 0} 6e α semigroup of linear operators on
Lλ(X; J T ) + LJiX\ J2f) with || Tt \\λ ̂  l ( ί ^ 0), sup{|| Γ t | L : ί ^ 0} ^ JΓ

/or some constant K ̂  1, which satisfies the conditions (i) αm£ (ii).
), put

fΐ(x) = sup

for every t > 0, where C is a constant independent of f and t.

The proof of Lemma 4 is exactly the same as that of Lemma 2.

LEMMA 5. Let {Tt: t ^ 0} be a strongly continuous semigroup of
linear operators on Lλ(X; £f) with \\Tt\\λ <Ξ l(ί ̂  0) and sup{|| ΓJU:
t ^ 0} ̂  K. Then for every fe LP(X; £f) with 1 ̂  p < co, the limit

Ttf(x)dt

exists strongly almost everywhere.
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Proof. For a ^ 1 and feLp(X; <%f) with 1 ̂  p < oo, it holds
that

- • £ & • £ " (S.'Γ / Λ )
[a] [a] + :

where a = [a] + r, 0 ̂  r < 1. While, a priori

\\ T frit < llfilp I T f/7/
\\ itjaτ ^ 11/UP > \ - ί j ^
1Jθ p JO p

Then these relations serve to ensure the assertion by reducing the
present lemma to Lemma 3.

LEMMA 6. On the hypothesis of Lemma 5, let

m = \Mβ TJdt: 0 < β < 1 , feL^X; £
ί β Jo

( i ) m is dense in LX{X\
(ii) For every Fern, the equality

lim — \*TtF(x)dt = F(x)
a-^o+ a Jo

holds strongly almost everywhere.

The proof of Lemma 6 may be done similarly as in Terrell
[10] (cf. Yoshimoto [11]). Making use of Lemma 6, we have

LEMMA 7. Let {Tt: t ^ 0} be as in Lemma 5. Then for any f
in Lγ{X\ J%?), there holds

limMTJ(x)dt = f(x)
a-+o+ (X Jo

strongly for almost all x e X.

Proof. Let / be in L,(X; and define

O)(f)(x) = lim Ttf(x)dt - M' Ttf(x)dt\\\ .
α Jo β Jo I I I

Clearly ω is subadditive. Now we select a sequence {/J of functions
in m with l im,^ \\f - /J | x = 0. Then ω{f) ^ 2(/ ~ /Jβ* + ω(/J and

= 0 because of (ii) of Lemma 6. Thus by Lemma 4 we have
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μ{ω{f) ^ 4Kt} ^ μ{(f - /„)„• ̂  2Kt}

for each t > 0, letting n —> oo. On the other hand, the repeated use
of Lemmas 4 and 6 yields that for each t > 0,

μ |lim sup —1 Ttf(x)dt — f(x)\\u
( α->0+ HI (X Jθ HI

+ μ{(f - /„)?(*) ^

as n-+coy since

limsuplll—Γrt/(a?)dί -/(a?)I
«-o+ III a Jo I

almost everywhere. Accordingly, the conclusion of Lemma 7 follows
at once from what the above fact shows.

LEMMA 8. Let {Tt: t ^ 0} be as in Lemma 5. Then for every f
in LP(X; ^) with 1 < p < <>o, ίfce equality

limMTJ(x)dt = f(x)
α-->o+ α Jo

strongly almost everywhere.

Proof For any feLp(X; ^f) we choose a sequence {/H} of simple
functions having support of finite measure such that l im,^ |||/(^) —
Λ(a:)| | |=0 a.e. and |||/(a;) - fn(x)\\\ £ 2 |||/(aj)||| everywhere for all
n ^ 1. Since α>(/Λ) = 0 by Lemma 7, we have ω(f) ^ ω(/ — /Λ) ^
2(/ — /„)?. Therefore ω(f) = 0 by Lemma 4 using the same argu-
ment as in the proof of Theorem 3. This guarantees the existence
of the limit in question. On the other hand, since we can select the
functions fn such that lim^^ | |/ — /J|£ = 0, we have that for each
t > 0,

μ ilim sup III—\" Ttf(x)dt - f(x)
V. α - > 0 + I I I Oί J o

>iKt

μ{(f - f.)ΐ(x) ^ 2Kt}
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as n—» °o, which, together with the above fact, concludes that
Lemma 8 follows immediately.

By combining the last two lemmas just observed above, we have
established the following theorem.

THEOREM 4. Let {Tt: t ^ 0} be a strongly continuous semigroup
of linear operators on Lλ{X\ ^) with || Tt\\λ <; l(ί ^ 0) and sup
{||2\||«>: t ^ 0} <̂  K for some constant K^l. Then for every fe
LP(X; J2f} with 1 <* p < °°, ίfcβ local ergodic equality

.±\ Ttf(x)dt = f(x)
«~>o+ Oί Jo

holds strongly for almost all xeX.

Now, from Lemmas 4-6 and Theorem 4, we can derive the fol-
lowing theorems.

THEOREM 5. Let {Tt: t ^ 0} be a semigroup of linear operators
on L,(X; £f) + L^X; <%f) with \\ Tt \\± ^ l(ί ^ 0) and sup{|| Tt |U:
ί ^ 0} :g if /or some constant K ^ 1, which satisfies the conditions
(i) am? (ii) m ίfce beginning of §4. Tfcew /or ever7/ feΩ°μ the limit

lira MaTtf(x)dt
a-»°° a Jθ

exists strongly for almost all xeX.

The proof of Theorem 5 is omitted, since the argument is es-
sentially the same as that in Theorem 3.

THEOREM 6. On the hypothesis of Theorem 5, if f is in Ωμ then
the local ergodic equality

lim-M"TJ(x)dt=f(x)
«-*°+ Oί Joa Jo

holds strongly for almost all xeX.

Proof With the semigroup Tt and a function / in Ω°μ, we de-
fine a subadditive operator ω as in Lemma 7. For feΩ°μ, choose a
sequence {fn} of simple functions having support of finite measure,
such that limn^\\\f(x)-fn(x)\\\ = 0 a.e. and \\\f(x) - fn(x)\\\ ^ 2
IH/OOIII everywhere for all n ^ 1. Then ω(f) ^ 2(/ - /.)? + ω(Λ)
and o)(/w) = 0 on account of Theorem 4. Thus, after a simple cal-
culation using Lemma 4, we have α>(/) = 0, from which follows the
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existence of the limit in question. Moreover, noticing that by virtue
of Theorem 4

SIT - X\m±Xτtfn{x)dt = fn(x)
α—0+ Ci Jo

for almost all xeX and every n ΞΞ 1, we have

μ jlimsup M"Ttf(x) - f(x)\
a Jo

μ{(f - /.)

which tends to zero as n —> °° by the Lebesgue dominated conver-
gence theorem. This completes the proof of Theorem 6.

COROLLARY 2. On the hypothesis of Theorem 5, suppose the
measure is finite. Then both conclusions of Theorems 5 and 6 re-
main true for every feL(X; <£f)[\og+L(X; £f)\v with 0 <; p <• oo.

5* Applications* The general results of §§3-4 can readily be
applied to give some generalizations of the vector valued random
ergodic theorem of Beck and Schwartz [1] and the "strong differ-
entiability" theorem of Jessen, Marcinkiewicz and Zygmund [7] in
its one-parameter form. We first state and sketch the proof of the
random ergodic theorem.

THEOREM 7. Let there be defined on X a strongly measurable
function Ux with values in the B-space i?(<^Γ) of bounded linear
operators on <%f. Suppose that \\\UX\\\ ^ 1 for all xeX. Let φ be
a measure preserving transformation in (X, J^, μ). Then for every
feΩ°μ the strong limit

\imλ± UxUφx" Uφ^xf(φkx)

exists for almost all xe X.

Proof. For every feΩ°μ, define

Uf(x) = UJ{φx) .

Then it can easily be seen that U satisfies the conditions of Theorem
3 and hence the conclusion follows at once from Theorem 3.

Let R be the one-dimensional Euclidean space equipped with the
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Lebesgue measure m. The integral of a function / i n L 1 (i2;^) +
L^R; <£?) is said to be strongly differentiable at the point x e R if
the limit

1 fβ

lim 1 f(u)dm(u)
"iβ β - au

exists and is finite, where a < x < β. The limit function is then
called the strong derivative of the integral of / at x. Using the
method of § 4, applied to concrete analytic situations, we have

THEOREM 8. ( i ). For each fe Ωi, the integral of f is strongly
differentiate at almost every point x e R and the derivative is equal
to f{x) almost everywhere, (ii). Let I be the unit interval. Then
for every feL(I; JT)[log+L(I; Jif)]p with 0 ^ p <oo, the integral of
f is strongly differentiate at almost every point x e I and the
strong derivative is equal to f(x) almost everywhere.
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