ON THE COMPLETENESS OF SEQUENCES OF PERTURBED POLYNOMIAL VALUES

Stefan A. Burr

If S is an arbitrary sequence of positive integers, define $P(S)$ to be the set of all integers which are representable as a sum of distinct terms of S. Call a sequence S complete if $P(S)$ contains all sufficiently large integers, and subcomplete if $P(S)$ contains an infinite arithmetic progression. We will prove the following theorem: Let nth term of the integer sequence S have the form $f(n)+O\left(n^{\alpha}\right)$, where f is a polynomial and where $0 \leqq \alpha<1$; then S is subcomplete. We further show that S is complete if, in addition, for every prime p there are infinitely many terms of S not divisible by p. (We call any sequence satisfying this last property an R-sequence.) We will then extend these results to considerably more general sequences.

It can be shown in various ways ([3], [4]) that if f is a polynomial which maps positive integers to positive integers, then the sequence $S=\{f(1), f(2), \cdots\}$ is subcomplete, and if in addition S is an R-sequence, S is complete. In this work we use results of Folkmann's fine paper [2] to generalize these results to perturbed polynomial sequences $f(1)+t(1), f(2)+t(2), \cdots$, where t is a function with sufficiently slow growth. We first state two results of [2].

Theorem A (Folkman). Let $A=\left\{a_{n}\right\}$ be a nondecreasing sequence of positive integers satisfying $a_{n}=O\left(n^{\alpha}\right)$ for some $0 \leqq \alpha<1$. Then A is subcomplete.

Theorem B (Folkman). Let $A=\left\{a_{n}\right\}$ be a nondecreasing sequence of positive integers with disjoint subsequences $\left\{b_{n}\right\},\left\{c_{n}\right\}$, and $\left\{d_{n}\right\}$. Suppose that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{b_{n+m}} \sum_{i=1}^{n} b_{i}=\infty \quad \text { for each } m>0 \tag{1}
\end{equation*}
$$

that $c_{n}>d_{n}$ for each n, and that the sequence $\left\{c_{n}-d_{n}\right\}$ is subcomplete. Then A is subcomplete.

We now state

Theorem 1. Let $S=\left\{s_{1}, s_{2}, \cdots\right\}$ be asequence of positive integers of the form $s_{n}=f(n)+O\left(n^{\alpha}\right)$ where f is a polynomial of degree $\geqq 1$ and $0 \leqq \alpha<1$. Then S is subcomplete.

Before proving this theorem we first state the case $k=1$ of it as a lemma. The author is grateful to Carl Pomerance of the University of Georgia for the lemma in its present form. The autho's verion of this lemma required $\alpha<1 / 2$, and Theorems 1,3 , and 4 were correspondingly weaker.

Lemma 1 (Pomerance). Let $S=\left\{s_{1}, s_{2}, \cdots\right\}$ be a sequence of integers of the form $s_{n}=a n+O\left(n^{\alpha}\right)$, where $a>0$ and $0 \leqq \alpha<1$. Then S is subcomplete.

Proof. Let t_{n} be the sequence S arranged in nondecreasing order. If $t_{n}=s_{m}$, it is clear that $|m-n|=O\left(n^{\alpha}\right)$, so that

$$
t_{n}=a m+O\left(m^{\alpha}\right)=a n+O\left(n^{\alpha}\right)
$$

Hence we may assume without loss of generality that S is monotone nondecreasing. Write $s(n)$ for s_{n} and form three disjoint subsequences of S given by

$$
\begin{aligned}
b_{n} & =s(3 n+2), \\
c_{n} & =s\left(3\left[n+M n^{\alpha}\right]+1\right), \\
d_{n} & =s(3 n),
\end{aligned}
$$

where M is large enough that $c_{n}>d_{n}$ for all n. Then $0<c_{n}-d_{n}=$ $O\left(n^{\alpha}\right)$ for all n. Let $\left\{e_{n}\right\}$ be the sequence $\left\{c_{n}-d_{n}\right\}$ in nondecreasing order. Then

$$
e_{n} \leqq \max _{1 \leq i \leq n}\left(c_{i}-d_{i}\right)=O\left(n^{\alpha}\right)
$$

and by Theorem A, $\left\{e_{n}\right\}$, and hence $\left\{c_{n}-d_{n}\right\}$, is subcomplete. Hence, by Theorem B, S is subcomplete. This completes the proof.

Proof of Theorem 1. The case $k=1$ is just Lemma 1, so we assume the theorem to have been proved for some degree $k \geqq 1$. Let S satisfy the hypotheses with f having degree $k+1$. Without loss of generality we may assume that S is strictly increasing. Form three disjoint subsequences of S given by $b_{n}=s_{3 n}, c_{n}=s_{3 n-1}$, $d_{n}=s_{3 n-2}$. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{b_{n+m}} \sum_{i=1}^{n} b_{i}=\infty
$$

for any m, and $c_{n}-d_{n}=f_{0}(n)+O\left(n^{\alpha}\right)$, where f_{0} is a polynomial of degree k. Thus $\left\{c_{n}-d_{n}\right\}$ is subcomplete by the induction hypothesis, and hence S subcomplete by Theorem B. This completes the proof.

Note that Theorem 1 does not require f to be integer-valued, or even to have rational coefficients. We will see later that Theorem

1 can be made considerably more general than this. We also remark that Theorem 1 can be proved for bounded perturbations by means of Theorem B alone. To get the full result we must use the powerful Theorem A.

We will prove a theorem which enables us to conclude that an R-sequence satisfying the hypotheses of Theorem 1 is complete. Some preliminary results are necessary. We first state two further theorems taken from [2] and [3] respectively.

Theorem C (Folkman). Let $B=\left\{b_{1}, b_{2}, \cdots\right\}$ be an increasing sequence satisfying (1). Then for each integer $r>0$, there is an integer $q(r)$ such that for any $k \geqq 0$, at least one of the numbers

$$
(k+1) r, \quad(k+2) r, \cdots,(k+q(r)) r
$$

is in $P(B)$.
Theorem D (Graham). Let A be an R-sequence. Then for any integer $m, P(A)$ contains a complete system of residues modulo m.

We next prove three simple lemmas.
Lemma 2. Let S be a sequence with disjoint subsequences A and B. If A is an R-sequence and B is subcomplete, then S is complete.

Proof. Since B is subcomplete, $P(B)$ contains an infinite arithmetic progression $\{r+u, 2 r+u, \cdots\}$. By Theorem D, $P(A)$ contains a complete system of residues modulo r, say $k_{1}<k_{2}<$ $\cdots<k_{r}$. Let n be any number $\geqq r+u+k_{r}$. For some k_{i} we have $k_{i} \equiv n-u(\bmod r)$. Then $\left(n-u-k_{i}\right) / r$ is an integer $j \geqq 1$. Thus $n=(j r+u)+k_{i}$. Since $k_{i} \in P(A)$ and $j r+u \in P(B), n \in P(S)$. Thus S is complete.

Lemma 3. Let the increasing sequence $B=\left\{b_{n}\right\}$ satisfy (1). Let $B^{\prime}=\left\{b_{n}^{\prime}\right\}=\left\{b_{i_{n}}\right\}$ be a subsequence of B with $i_{n+1} \leqq i_{n}+2$. Then B^{\prime} satisfies (1).

Proof. Let $b_{n}^{\prime}=b_{j}$. Then

$$
\begin{aligned}
\frac{1}{b_{n+m}^{\prime}} \sum_{i=1}^{n} b_{i}^{\prime} & \geqq \frac{1}{b_{j+2 m}}\left(b_{j}+b_{j-2}+\cdots\right) \\
& \geqq 1 / 2 \frac{1}{b_{j+2 m}} \sum_{i=1}^{j} b_{i}
\end{aligned}
$$

But the last expression $\rightarrow \infty$ as $j \rightarrow \infty$ for any m; so B^{\prime} satisfies (1).

Lemma 4. Let A be a subcomplete sequence, and let B be an increasing sequence satisfying (1). Then it is possible to form a subcomplete sequence B^{\prime} by adjoining to B a finite number of terms of A.

Proof. Let $P(A)$ contain the infinite arithmetic progression $\{r+u, 2 r+u, \cdots\}$. By Theorem C there is a q such that for any $k \geqq 0$, at least one of $(k+1) r, \cdots,(k+q) r$ is in $P(B)$. It is clear that there is a finite subsequence A_{0} of A such that $P\left(A_{0}\right)$ contains all the numbers $r+u, 2 r+u, \cdots, q r+u$. Let $j \geqq q+1$, and choose i among $j-q, \cdots, j-1$ so that $i r$ is in $P(B)$. Then $j r+$ $u=i r+(j-i) r+u$. But $(j-i) r+u \in P\left(A_{0}\right)$. Thus any number $j r+u$ with $j \geqq q+1$ is a sum of a number in $P\left(A_{0}\right)$ and a number in $P(B)$. Therefore if we form B^{\prime} by adjoining the terms of A_{0} to B, we see that B^{\prime} is subcomplete.

We are now in a position to prove
Theorem 2. Let S be an R-sequence which is increasing, with disjoint subsequences $A=\left\{a_{n}\right\}$ and $B=\left\{b_{n}\right\}$. If A is subcomplete and B satisfies (1), then S is complete.

Proof. Let $Q=\left\{q_{1}, q_{2}, \cdots\right\}$ be the set of all primes q with the property that there are infinitely many terms of B which are not divisible by q. We must partition B into two subsequences B_{0} and B_{1}, where for each $q \in Q, B_{0}$ has infinitely many terms not divisible by q, and where B_{1} satisfies (1). This can be done in the following manner. First put into B_{0} a term b_{i} not divisible by q_{1}. Next put into B_{0} a term $b_{i+j}, j \geqq 2$, not divisible by q_{2}. Continue to place terms b_{i} into B_{0}, where successively the terms are not divisible by $q_{1}, q_{2}, q_{1}, q_{2}, q_{3}, q_{1}, q_{2}, q_{3}, q_{4}, \cdots$; this can be done so that each term chosen has an index at least two greater than the previous one chosen. This defines B_{0}. But by construction B_{1}, formed by the terms remaining, satisfies the hypothesis of Lemma 3. Thus we have accomplished the desired partition.

We now apply Lemma 4 to the sequences A and B_{1} to form a subcomplete sequence B_{2} consisting of the terms B_{1} and a finite number of terms of A. Now form a sequence A_{1} consisting of all terms of S not in B_{2}. Then A_{1} is an R-sequence, since S is an R sequence and since any prime q which is a non-divisor of infinitely many terms of B_{2} also is a nondivisor of infinitely many terms of B_{0}, and hence of A_{1}. Thus S has the disjoint subsequences A_{1} and B_{2}, with A_{1} an R-sequence and B_{2} subcomplete. Therefore, by Lemma $4, S$ is complete.

We may now derive our desired result on perturbed polynomials as an easy corollary to Theorem 2.

Theorem 3. Let S satisfy the conditions of Theorem 1, and let S be an R-sequence. Then S is complete.

Proof. Let $S_{1}=\left\{s_{1}, s_{3}, \cdots\right\}$ and $S_{2}=\left\{s_{2}, s_{4}, \cdots\right\}$. Then s_{1} is subcomplete since it satisfies the conditions of Theorem 1 , and S_{2} clearly satisfies (1), and may be assumed without loss of generality to be increasing. Hence S is complete by Theorem 2, and the result is proved.

It is possible to extend Theorems 1 and 3 to considerably more general sequences, namely ones in which f is a "polynomial" with nonintegral exponents. Specifically, we have

THEOREM 4. Let $a_{1}, a_{2}, \cdots, a_{r}$ and $\gamma_{1}>\gamma_{2}>\cdots>\gamma_{r}$ be real numbers, where $a_{1}>0$ and $\gamma_{1} \geqq 1$. Let $f(n)=a_{1} n^{r_{1}}+a_{2} n^{\gamma_{2}}+\cdots+$ $a_{r} n^{\gamma_{r}}$. Let $S=\left\{s_{1}, s_{2}, \cdots\right\}$ be a sequence of positive integers of the form $s_{n}=f(n)+O\left(n^{\alpha}\right)$. Then S is subcomplete. If in addition, S is an R-sequence, S is complete.

Proof. The proof is very similar to that of Theorems 1 and 3, so we will not carry out all the details. The proof for $1 \leqq \gamma_{1}<2$ is the same as for Lemma 1, except that an is replaced by $f(n)$ and α is replaced by

$$
\max \left(\alpha, \gamma_{1}-1, \max _{r_{i}<1} \gamma_{i}\right)
$$

Now assume the theorem true for $k \leqq \gamma_{1}<k+1$, where k is an integer $\geqq 1$. If S satisfies the hypotheses with $k+1 \leqq \gamma_{1}<k+2$, the construction of Theorem 1 can be applied. The only additional detail is that terms like $n^{r}-(n-1)^{r}$ produce infinite series. However, this causes no difficulty, since all but a finite number of terms grow more slowly than n^{α} and can be included in the perturbation term. Thus S is seen to be subcomplete.

Finally, if S is an R-sequence, Theorem 2 may be applied to show that S is complete. This completes the proof.

We conclude with a few remarks on possible extensions of the results given. One obvious possibility is to extend the allowable functions f in Theorem 4. This can certainly be done since it is not hard to see that f may be permitted to be an absolutely convergent infinite series with terms of the form $a_{i} n^{\gamma_{i}}$. More interesting would be an extension to functions satisfying some smoothness condition. Another possibility would be to weaken the condition
on the perturbation term. A result of [1] shows that Theorem 1 is false with $\alpha>1$. It seems possible that the theorem holds for $\alpha=1$. It would be interesting to weaken the conditions of Theorem 2. Thus, in [2] it is shown that for a sequence of Theorem A to be complete, it suffices that $P(A)$ contain a complete system of residues with respect to every modulus. It seems unlikely that such a weak condition would suffice in the present case, but the author knows no counterexample.

References

1. S. A. Burr and P. Erdös, Completeness properties of perturbed sequences, to appear. 2. J. Folkman, On the representation of integers as sums of distinct terms from a fixed sequence, Canad. J. Math., 18 (1966), 643-655.
2. R. L. Graham, Complete sequences of polynomial values, Duke Math. J., 31 (1964), 275-285.
3. K. R. Roth and G. Szekeres, Some asymptotic formulae in the theory of partitions, Quarterly J. Math., 5 (1954), 241-259.

Received July 12, 1977 and in revised form May 11, 1979.
The City College
The City University of New York
New York, NY 10031

