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NOTES ON GENERALIZED BOUNDARY VALUE PROBLEMS
IN BANACH SPACES, I

ADJOINT AND EXTENSION THEORY

R. C. BROWN

Let A: X-+Y be a densely defined closed operator
where X and Y are Banach spaces. Let F be a locally
convex topological vector space and Hi I - > F a n operator
such that N(H) and D(A) have nontrivial intersection and
D(H*) is total over F. We compute A% and A% where AH

is the operator determined by A on N(H) and AH{x) —
{Ax, HxY.

We also characterize certain closed extensions of Aπ

and the adjoints of these extensions. In particular applic-
ation is made to the problem of determining self-adjoint ex-
tensions of symmetric operators restricted by boundary
conditions in a Hubert space.

K Introduction* Suppose X, Y and A are as above. Let H
be an operator having domain in X and range in a locally convex
topological vector space (l.c.t.v.s.) F. Assume that D{A) Π N(H) is
nontrivial. Then the system

Ax = f
(1.1) „

Hx = r
is called a generalized boundary value problem (b.v.p). We call the
first equation of (1.1) the operator part of the b.v.p. and the second
the boundary condition. H is the boundary operator. If r = 0 the
problem is said to be homogeneous, otherwise it is nonhomogeneous.
In the nonhomogeneous case, (1.1) determines an operator J*fH:X—>
Y x F and in the homogeneous case an operator AHaA: X—> Y on

D(AH): = {x e D(A): Hx = 0} .

In this paper we are going to construct the adjoints Afj and
J^z* and compare their structure. Knowledge of A% and j&Έ* yield
at once statements of Fredholm alternative solvability conditions
for the original b.v.p. We will also be interested in the following
extension problem. Suppose A and B: Y* -> X* are 1-1 and B*Z)A.
Let K: F* —• G (G a l.c.t.v.s) be a boundary operator. Then (rough-
ly speaking)

(1.2) AHaA<zBi.

One can now ask for the structure of all closed extensions of AH
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which are restrictions of 2? J. In the special case when X = Y=
Hubert space and H — K AH is symmetric, and the problem amounts
the determination of all self-adjoint extensions of AH.

Both the adjoint and extension problems for generalized b.v.p.
have been investigated in several recent papers, notably [5], [6], [9].
In [6] for example A is a linear relation in 1 x 7 and AH = A Π *B
where *J5 is the preadjoint of a finite dimensional subspace B in
Y* x X*. Such a representation is always possible if H is conti-
nuous on G(A) and F is finite dimensional. This "subspace" inter-
pretation of AH leads to an elegant construction of (An*B)* and also
to a solution of the extension problem when (in our notation)

dim G{Al)IG{AH) < - .

The contributions of the present paper are twofold. In the
first place we extend the theory by letting F be an infinite dimen-
sional t.v.s. Secondly there is a change in point of view distinguishes
this paper from [6]. We represent the boundary condition directly
in terms of the null space of the boundary operator given in the
problem. Thus we bypass the task of finding *B. Furthermore
because much of the theory presented here is an abstraction of
ideas in the writers earlier papers [2], [3] on Stieltjes b.v.p., our
technique gives simple formulas and characterizations which are
easy to apply both to this and other types of concrete b.v.p.

We now briefly summarize the paper. Notational conventions
and fundamental definitions are introduced in § 2. Here in parti-
cular we discuss the notion of an abstract boundary condition and
prove that every closed restriction of a closed linear relation A is
an "AH" with reference to a certain l.c.t.v.s. F and a boundary
operator H. Section 3 is devoted to the computation of A%. F is
assumed to be both finite and infinite dimensional; and significant
differences in the structure of the adjoint are pointed out. In the
infinite dimensional case we first assume that G(—A*) is complement-
ed (Theorem 3.6). However since this is an inconvenient hypothesis
in a non Hubert space setting we investigate several ways in which
it can be weakened.

The final result (Corollary 3.14) is an especially simple construc-
tion of A* when A is 1-1. We illustrate this construction by an
example. Section 4 solves the extension problem mentioned above:
first in the finite dimensional case and secondly for extensions having
closed range. Finally § 5 treats the nonhomogeneous case. J^ z * is
determined and its structure compared with A%.

Although we occasionally illustrate the theory with examples,
most applications to Stieltjes, and interface b.v.p, to evolution and
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functional differential operators, and to calculus of variations and
control theory (extending some preliminary ideas already presented
in [3]) will be reserved for a forthcoming paper.

2* Notation and preliminaries* If T is a linear operator or
relation D(T), R(T), N(T) will stand for its domain, range, and null
space respectively. T* denotes the congugate transpose, dual, adjoint
or preadjoint of a matrix, space, or linear mapping according to the
context, (we write the transpose of a matrix M as M*). The nota-
tions S or the terms "closed", "continuous" signify weak* closure of
a set SdX or weak* continuity if X is a dual space; otherwise we
are referring to the closure of S or strong continuity in the topo-
logy of X Similarly S1 means either the preannihilator, i.e.,

{seX: [s,sf] = 0, s'eS}

or the annihilator of S, i.e.,

{seΓ: [s',s] = 0, s'eS) .

If X is a space and X* is its dual [ , •] signifies the sesqui-
linear pairing on X x X* given by

[x, x*] = x*(x) .

If X, F are spaces and X+ is total on X and F 4 is total on Y we
define a pairing on (X x Y) x (X+ x Y+) by

[(a, V), (#+, 0+)]: = [V, Vv] + [x, £+3

If X and F are normed we define a norm as X x F by

\ \ ( χ , y ) \ \ : = \\χ\\ -

A linear relation A: X —» F where X, F are linear spaces is a
set valued mapping whose graph G(A) is a subspace of X x F.
Unless otherwise mentioned all relations are assumed closed; i.e., to
have closed graph. For a e D(A) we denote the image of a in R(A)
by A(a); the notation (α, ii«) will signify an arbitrary element in
G(A) such that AaeA(a). It is easily checked that A(0) is a sub-
space of J?(A) and elements β, a e A(ά) if and only if β = a mod
A(0); i.e., the induced mapping AΊX-+ X/A(Q) is an operator. A
relation is an operator if and only if it is single valued; i.e., if and
only if A(0) = 0. If A is a closed operator D(A) is a Banach space
with respect to the graph topology defined by the norm

A is then a continuous operator with respect to the graph topology.
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We will also write δ c i if G(B)aG(A); in this case. B is said to
be a restriction of A and A is called an extension of B.

DEFINITION 2.1. The adjoint A*: Y* -+X* of A: X-> Y is the
relation with graph

{(a, β): [y, a] - [x, β] = 0; (x, y)eA} .

DEFINITION 2.2. The preadjoint of B*: Y* -> X* is the relation
with graph

{(α, β): [a, y] - [β, x] = 0; (x, j/)eB}.

As indicated above A* means either the adjoint or pread joint
of A depending on the context. A complete discussion of the pro-
perties of adjoint and preadjoint relations may be found in [1] or
[6], We specifically mention here only a generalization for relations
of the classical Banach closed range theorem for operators (see [6]
for the proof).

THEOREM 2.3. If A:X-^Y is a closed relation then norm
closure of R(A) is equivalent to both the norm and weak* closure
of R(A*). Similarly if B: Y* —> X* is a weak* closed relation the
norm closure of R(B*) is equivalent to both the norm and weak*
closure of R(B).

Suppose B is a (closed) restriction of a relation A: X —> Y. De-
fine an operator

H:G(A)

by

H(y, Ay)o(a, β) = [Ay, a] + [y9 β], {a, β) e G(BV .

G(B)L* under the weak* topology is a l.c.t.v.s. By the definition of
this topology H is continuous. It is clear that the nullspace of H
is exactly G{B). We fix these ideas with a definition.

DEFINITION 2.4. Let A:X-+-Y be a relation and F a l.c.t.v.s.
Then an operator H: X x Y —• F such that D(H) D G(A) is called a
boundary operator provided D(H*) is total over F, and the condition
H(y, Ay) = 0 is called a boundary condition.

In terms of Definition 2.4 the previous discussion has shown.

LEMMA 2.5. B is a closed restriction of A if and only if
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B = AH. The boundary operator H is continuous with range in a
l.c.t.v.s. If A is an operator H can be viewed as an operator such
that D(H)i)D(A) which is continuous in the graph topology on G(A).

The importance of Lemma 2.5 is "existential": every restriction
of A is determined by a certain "canonical" boundary condition. In
most cases however a boundary operator H is given a priori; it and
the canonical operator supplied by the lemma may not be the same
(only equivalent in the sense that their nullspaces are the same.)
Indeed the canonical operator may be hard to find. Therefore the
results in this paper will be expressed soley in terms of an arbitrary
boundary operator considered to be given in the problem and Lemma
2.5 will be used only as a theorem proving tool.

We close this section by mentioning a simple result frequently
used in the proofs of this paper.

LEMMA 2.6. (Linear dependence principle). Let ψ:X—>C,
i — 1, , n, and ώ: X —> C be linear functionals such that

Then (provided φ Ξ£ 0)

9 = Σ Ciψt

where not all of the constants c.t are zero.

Proof. See [10] p. 62.

3* The adjoint of Aπ. Let A: X -^ Y be a closed densely de-
fined operator and let H be a boundary operator for A. In this
section we determine A% in terms of A* and if*.

As stated in Definition 2.4 I x YZ>D{H)-DG{A). Hence H*:F*->
X* x Y* is in general a relation (unless H is densely defined) and
H*(0) is a subspace of

G(-A*): = {(y, -A*y)} .

We have assumed that D(H*) is at least total over F. To see the
significance of this assumption, let (Vφ, Uφ) denote an arbitrary re-
presentative in H*(φ). Then

[H(y, Ay), φ) - [(Ay, y\ B*(Φ)]

= [Ay, Vφ) + [y, Uφ] .

Since F endowed with the weak topology relative to D(H*) is a
l.c.t.v.s (see [10] p. 62) such that F* = D(H*) the above equation
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shows that H: G(A) —> F is now "weakly" continuous. Thus (pro-
vided D(H*) is total) we can assume with no loss of generality that
H is continuous on G(A) by redefining the topology on F if necces-
sary.

DEFINITION 3.1.

*) + {VΦ:φeF*} .

Dϊ,: = D(A*) + π

where π1 denotes projection on Y*.

φ(z): = {φ:z - VΦe D(A*)}

ψ(z): = {(ψlt ψ2) ξΓRζΠ*): z - ^ e D(A*)) .

Further let Aj,, Ά^ be the relations in Y* x X* such that

G{At): = {(z, A*(z - VΦ) - Uφ):ψeφ(z)}

G{At,): = {z, A*(z - -fO - ^ 2 : (ψ,, ir2)eψ(z)} .

LEMMA 3.2. The following is true:
(1) Aji is well defined modulo representatives (Vφ, Uφ) in H*(φ).

(2) Di cZ)(A ) + {VΦ:φeF*}.
(3) A*dAtIczΆΐ1.

(4 ) JLί(O) = {A*(V>) - Uφ:φe

Άΐ,(0) = AUO)

Proof. We demonstrate only (1) since (2)-(4) are immediate from
the definition. Suppose (VΦ, UΦ), (V'Φ, U'Φ) 6H*(φ). Since

(VΦ - VI, UΦ - U;)eH*(0) = G(-A*) ,

it is clear that

uι- u; = A*(VΦ - F,O

and

A*(z - V'Φ) - U; - (A*(z - VΦ) - UΦ)

= A*(VΦ- vΦ)-(UΦ - u;) = o.

THEOREM 3.3. At,* = Au.

Proof. Since Aj, ZD A*, Af,* c A " = A. Thus if (y, Ay) e G(A},)

[Ay, z] - [y, Aj,z] = [Ay, z] - [y, A*(z - VΦ) - UΦ)
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- [Ay, VΦ] + [y, UΦ]

= [Hy, Φ)

= 0 .

Since D(H*) is total, Hy = 0 and y e D(AH). Thus A+

H* c AH. How-
ever if y e D(Aa) (so that Hy = 0), the above computation shows im-
mediately that AHcAn*.

THEOREM 3.4. // F is finite dimensional A% — A%.

Proof. In view of Theorem 3.3 it is only necessary to prove
that G(AH) C A^. Let (a, β) e G(A%). Define the functional ψaβ:

) -> C by

ψaβ(x): = [Aa;, a] - [x, β] .

Since

N(ψaβ) 3 G(A^) = N(H) n GCA-1) ,

it follows by Lemma 2.6 that

[Ax, a] - [», /3] = [H(Ax, x), φ)

= [(Ax, x), H+(Φ)]

= [Ax, VΛ + [x, UΦ]

for some φ in F*. Transposing we conclude that a— VΦeD(A*)
and β = A*(a - VΦ) - UΦ.

We now consider the case where F is infinite dimensional.

LEMMA 3.5. // G(—A*) is complemented there exists an operator
H+: F* -+ G(-A*Y such that

[Hy, φ] = [(Ay, y), H?] .

Proof. Let

(3.2) H+(φ): = (I- P)H*(φ)

where P is the weak* continuous projection of Y*xX* onto G(—A*).
That elements of HΦ

+ satisfy (3.1) is obvious. If (VΦ+, U}), (V}', UΦ

+>) e
H+(φ) then it follows from (3.1) that

(VΦ

+ - Vt, U}' - UΦ

+')eG(-A*) .

Since

(VΦ

+ - VΦ

+f, Uy - UΦ

+')eG(-A*)
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by (3.2),

y+ = vr = ut = vr.

THEOREM 3.6. // G( — A*) is complemented AH = A%.

Proof. By Theorem 3.3 and the standard theory of ad joints
AH = At. Thus it suffices to show that A^ = ΆH. To this end
suppose that <zM> is a net in DH converging to z in the weak*
topology of 7* and that βn e AHzn is the general term of a net con-
verging to β in the weak* topology of X*. Using Lemma 3.5 we
write

(VΦ, u,) = (v;, u:) + {vΦ,uΦ)

where

(V?, U}) = (1 - PXVΦ, UΦ)eG(-A*)'

(VΦ,UΦ) = P(VΦ,UΦ)eG(-A*).

Since

2 . - VΦ

+

neD(A*)

and

β.eA*{z. - Vu) - UΦn = A*(zn - VI) - U^J ,

(c.f. Lemma 3.2(1)),

(3.4) («. - V;n, - 03. + C7/J) 6 G ( - A*) .

Adding (3.3) and (3.4) we obtain (zn, -βn). Hence

(3.5) (VI, U j = (J - P)(zn, -βn)

(3.6) («. - VI, -(Bn + UD) = P(zM, /3J .

We conclude that the net (Vφ

+

n, UfJ converges weak* to (ψu f 2) in
B(IF)(zR(ΪP). Finally (3.5), (3.6) and the closure of G(-A*) imply
that

i.e.,

(z,β)eG(Άϊ1)

and thus A ^ c A έ
To show the reverse inclusion, suppose (y, Ay) e G(AH) and

(z, A*(z - f,) - ψ2) s G(A%). Since
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[Ay, z - ψ,] = [y, A*(z ~ φj\ ,

it follows that

[Ay, z] - [y, A*(z - ψ,) - ψ2] = [Ay, ψ j + [2/, ̂ 2] .

Since (ψl9 ψ2) eR(H*) and weak* closed sets are also strongly closed,
given ε > 0 there exists (VΦε, UΦε) such that

l + i - VΦε\<eK\\Ay\\

Consequently

(recall that [Ay, VΦι] + [?/, UΦε\ = 0 for 2/ in D(AH). It follows from
(3.7) that

] ~ [y, Λέ«] - 0 ,

proving that

H ~> Ά H — Ά-H .

COROLLARY 3.7. Ά%* = AH.

Proof. Immediate from Theorem 3.6 and the fact that Άi — Ai.

COROLLARY 3.8. If R(H) is a Banach space A% = A% = A%.

Proof. By Theorem 2.3 R(H*) is closed and the assertion is
immediate from Definition 3.1.

If X and Y are Hubert spaces (?(—A*) is trivially complement-
ed. But almost nothing seems known about this concept in other
spaces. (It is not even clear for example if the fact that G(A) is
complemented implies that G( — A*) is complemented.) We can how-
ever demonstrate the following sufficient condition that G(—A*) be
complemented in reflexive Banach spaces.

THEOREM 3.9. If A is a generalized Fredholm operator; i.e.,
N(A) and R(A) are complemented spaces in X and Y, then G( — A*)
is complemented.

Proof. It is well known (e.g., [4]) that if A is a generalized
Fredholm operator then so is A* and that the class of generalized
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Fredholm operators is equivalent to the class of operators admitting
a generalized inverse, in other words a bounded linear operator
A+: Y—>X satisfying the relations

AA+A = A

A+AA+ = A+ .

Hence there exists a generalized inverse A*+ for A* — in fact
A*+ = A+*. Let J be the operator defined by J(x) — —x. Define
A*+: Γ*-+X* by

A*+ = A*+JA*A*+ .

Now

(-A*)A*+(-A*)(x) =
- JA*A*+J2A*0*0

Also

= A*+JA*A*+JA*A*+JA*A*+

= A*+JA*A*+J2A*A*+

= A*+ .

Thus —A* is a generalized Fredholm operator. Let Q be a projec-
tion on R(—A*) (e.g., —A*Ά*+). Let S be a projection on JV(—A*)

Define P: Γ* x X* -* G(-A*) by

«*) - ((I - S)A*+Qί»* +

P is obviously continuous and onto since

P(y*, -A*y*) = (i/*, - A

Furthermore

p\y*9 x*) =
+Q2x* + 0 + S%*)

= P(y*, x*) .

The inconvenience of Theorem 3.9 is that it requires that R(A)
be closed at least if Y is a general Banach space. Since we do not
know any other sufficient condition, it seems worthwhile to explore
ways in which the hypothesis that G( — A*) be complemented can be
weakened. We devote the remainder of this section to this task.

Then next theorem and its two corollaries are generalizations
of Theorem 3.9; while Theorem 3.13 and Corollary 3.14 represent a
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new approach.

THEOREM 3.10. If G(-~A + λ/)* is complemented for some X
then AH = A%.

Proof. Let Aλ: = A + XL Then by Theorem 3.9 AfH = A?H.
But A?* = A% + XL Therefore

(3.8) AH = A& - λJ .

Now

[ίfy, 0] = [Ay + Xy, VλΦ] + [y, UλΦ\

= [Ay, F,] + [y, UΦ] .

Hence

0 = [Ay, VλΦ - VΦ] + [y, XVλΦ + UλΦ - UΦ] .

And so

(3.9) * , V ,

^ F « + Uit- UΦ = A*(VΦ - Vlφ).

From (3.9) we conclude that

Dj = D+ .

Further

AUz): = 4*(α - Fw) + λ(« - F w ) - U»

= A*(z - V» + VΦ - ^ )

+ X(z - F « + VΦ - VΦ) - Ulφ

= A*(z- VΦ) + A*(VΦ- Vλφ)

+ X{z - VΦ) + X(VΦ- VιΦ) - UλΦ

= A*(z - VΦ) + XV»+ UXΦ - UΦ

+ X(z - VΦ) + XVΦ - XVλΦ - Uφ- UXΦ

= A*(z - VΦ) + Xz- UΦ

= A%z + Xz .

Since

A£ + XI = A% + XI,

it follows from Theorem 3.9 that ΆtH = Ά^ + XL By (3.8)

COROLLARY 3.11. IfA+Xlis Fredholm or a generalized Fredholm
operator (with X, Y reflexive) then
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A* 2+
H — Λ|f .

COROLLARY 3.12. Suppose A is a differential operator. Then
if A has a nonempty essential resolvent

Jiff = = Aft .

Proof. If A has nonempty essential resolvent p(A) A + XI is
Fredholm for λ e p(A) cf. [8] Ch. VI.

THEOREM 3.13. Suppose N(A*) is complemented in Y* and
H — Mo A. Assume that D(M)L is complemented in Y* and that
D(M*) is total over F. Define AH, An as in Definition 3.1 (taking
VΦeM*(φ), Uφ = 0). Then

A* 2+ Δ +

Proof. It is readily verified that Aft* = AH and that A%(z) is
independent of the choice VΦ in M*(φ). It remains to check that
AH — Άfj. Since the technique is the same as in the proof of
Theorem 3.6 we only sketch the main steps. Note first that

(3.10) G(A*) + (PR(M% 0)

where P is the projection on N(A*) is a direct sum. Let (zn) be
net converging weak* to z in D j . Let (βn) be a net such that
βn 6 AH and β% converges β weak* to β. Let Q be the projection
of Γ* onto (D(M)1)'. Then QM?eM*(φ) and is an admissible VΦ.
Now

(* , A ) - (^ - (/ - P)QMl - PQM?n, βn) + (PQMφ*n, 0) .

Since the first term of this expression is in G(A*) it follows by
(3.10) that

PQMl = R(zny βn)

where R is a continuous projection in X to ((NA*)'9 0). Therefore
the nets (PQMφ*n) and ((I-P)QMφ*n) converge weak*. Hence

-»ψ i n

COROLLARY 3.14. Suppose A is 1-1 and N(A*) is complemented.
Let A+: Y-^X satisfy A+A = /. Assume further that D(HA+)L is
complemented and D(HA+)* is total over F. Let Vφ 6 {HA+)*(φ), Uφ = 0.
Then
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A* 2 +

Proof. Let M=HA+. Then the hypotheses of Theorem 3.13
are satisfied.

Corollary 3.14 shows that in the case of 1-1 operators A the
hypothesis that G(—A*) is complemented can be replaced by weaker
conditions. Moreover HA+ and (HA+)* are usually easy to calculate.
(A+ can often by identified with a Green's function.)

The following example is intended to illustrate some of the
ideas in this section with special reference to Corollary 3.14.

EXAMPLE 3.15. Let A: Z/fO, oo)-^^ 1 ^, oo) be given by y" on

D: = {ye&lO, oo): y(Q) = y'(0) = 0; y' is absolutely continuous

and y" eZ/fO, oo)} .

Let F be the space of bounded sequences C. Let F+ be the
space Coo of sequences with finitely many nonzero terms. Define a
pairing on C x Coo by

[a, β] = Σ oiiβt , a 6 C, β 6 Coo .

Then F+ is total. Under the weak and weak* topologies ΐ 7 and F+

are l.c.t.v.s such that F* = F + and F + * = JF7.
Define H:D^F by

A is obviously 1-1. It is known see [8] (Ch. VI) that A*: L°°[0, oo)
L°°[0, oo) is given by z" on

JD*: = {̂ eZ/°°[0, oo):/ is abs. cont. and

z" 6L°°[0, oo) lim«(*)»'(«) - WTvit) = 0 , ] / 6 ΰ
t->oo

Then on i?(A) A+A = / and

HA+w = (\n(n - s)w(s)ds) , weR(A) .
\Jo /

Since N(A*) is finite dimensional it is complemented. Also

*L = R{AY = N(A*) .

This discussion shows that the hypotheses of Corollary 3.14 are
satisfied. It is easily verified that D(HA+)* = Coo and that R(HA+)*
consists of the space of piece wise linear functions of compact sup-
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port with corners on a finite subset of R+. A simple limiting
argument (see [3] §5.5 for similar reasoning) implies that R(HA+)
consists of piecewise linear functions in L°°[0, °°] with infinitely
many corners.

Application of Definition 3.1 and Corollary 3.14 now gives the
following characterization of AH.

D(A%) = {z e L°°[0, oo): z' is abs. cont. on (n, n + 1), n e Z+

z' has arbitrary jumps on Z+

lim (z(t)y'(t) - (z\t) + Σ (z'(n+) - z\n'))y\t) = 0) ,

y e DAH) .

AH is given by z" on D(AH).
Note further that since

[Ay, z] - [y, A$z] = [ify, ^] .

if (and also HA+):D-^F is continuous if D is given the graph
topology and F the weak topology defined above.

It is easy to show that R(A) is dense and not surjective in
L°°[0, oo). Hence by Theorem 2.3 R(A*) is not closed. Further
R(A%) = R(A*). Applying the closed range theorem again we see
that R(AH) is not closed either, so that the closure of R{A) is not
affected by the "perturbation" H. Obviously this fact can be general-
ized to give the following result.

COROLLARY 3.16. Let the hypotheses of Theorem 3.6 or Theorem
3.13 be satisfied then R(AH) is closed if and only if R(A) is closed.

4* Extension theory• Suppose A: X-+ Y and B: Y* —>X* are
densely defined operators such that J3* => A. If JET: X-+ F, K\ Γ* -> G
are boundary operators, for A and B then

The purpose of this section is to determine the structure of all re-
lations between AH and J5|.

We make the following assumptions concerning AH and Bκ:
(1) N(A*) and N(B*) are complemented spaces.
(2) H = Mo A, K = iSΓo.B where D(M)i>R(B*) and !>(#)=> Λ(il*).
(3) Z?(Λί*) and 2)(jV*) are total over F and G.
(4) D(M)L and D(N)1 are complemented spaces.

It follows from Theorem 3.13 that A% = A£ and JSί = ^έ. In A+

H

ψ, e JB(ΛΓ*) and ^ 2 = 0. Similarly for £έ ψi e S(F*), f 2 = 0. (To
avoid confusion we write "ψi" in Bi as "57/' when we are discussing
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AH and B% at the same time.)
We consider first the case when dim G(B£)/G(AH) < °o. Two

preliminary lemmas will be required.

LEMMA 4.1. Suppose S:X->Cn and T:X->Cm are operators
such that N(T)IDN(S). Then T = MS where M is a m x n matrix.
If furthermore the component functionals of T are linearly inde-
pendent m ^ n and M is of full rank.

Proof. Let TΓ* be the projection onto the ith coordinate of Cn

or Cm. Since

ker π^T) z> N(T) => N(S) = n ker π,(S) ,

it follows by Lemma 2.6 that

π.(T) = cSS, i = 1, , m, c\ 6 Cn .

Choose M to be the matrix

Suppose the component functionals π<(T) are linearly independent.
If the rows of M are not linearly independent there exists deCm

such that d*M = 0. Hence

dιT = df(ikίS) = (d*Λf)iS = 0 ,

contradicting the independence of the component functionals of Γ.
Thus rank M = m and since row rank = column rank w ^ n.

LEMMA 4.2. (A generalized Green's identity). Suppose that
\ X-* Y9 &\ Y"*—>X* are relations such that *Stfc:έ%* and

(4.1) dim

ΓΛβ^ ίfeere βxisί an n x n nonsingular matrix 33 ami continuous
operators J": G ( ^ * ) -> C%. ^ / : G(J^*) -> C% wiίfe linearly inde-
pendent coordinate functionals such that

[έ?*y, z] - [y, J

on G(<Ssf*)xG{^*). Moreover in a Hilbert space setting (X = Y a
Hilbert space) ^?* = J ^ * , and J^f symmetric then S3 is skew-
hermitian.
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Proof. By Lemma 2.5 G(&) is the nullspace of a functional

J ? . Now

By (4.1)

Hence ( G ( ^ ) 1 ) * = C*. The components of ^ must be independent;
for otherwise it would be equivalent to a functional with range of
dimension < n. The existence of ^ follows by a similar argument.

Fix an element (α, β) in G(j*f*). Then

[^*», α] - [v, /3]

determines a functional whose nullspace contains N(^f). By Lemma
4.1 there exists fc(α, β) e C* such that

W*V, a] - [y, β] = k(a, β)*^f(y, &*y) .

Since the component functionals of ^ are independent k(a, β) is
unique. A simple calculation verifies that k: G(jy*) —> Cn is linear.
If ^ / ( α , ̂ S) = 0, k(a, β)*^f(y, J**v) = 0 on G(J^*). Since ^ F is
onto, fc(α, /3) = 0. Hence N(^)c:N(k). Applying Lemma 4.1 again

we find that Jc(a, β) = %$^f(a, β) where SB is a n x n nonsingular
matrix.

We now show that 35 is skew-hermitian if j ^ = ^ c J ^ * and
j y is defined on a Hubert space £Γ. To see this note that (4.1)
becomes

1&*V, z] - [y, ,s^*z]

Taking congugate transposes and interchanging y and z gives

[v, J**z] - [J**y, z] -

Hence

^ * s g ^ r + ^*a3*^r - o

which implies that 33* = —35.

REMARK 4.3. Note that if Ssf and & are Fredholm operators
then (4.1) is always true; for if /c denotes the index of an operator,
then
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(4.2) = -

(See [8] Theorem IV. 2.3.) (4.2) also holds if s/ and ^ have a
nonempty Fredholm resolvent. This may be demonstrated by rea-
soning similar to Corollary 3.11.

Suppose

dim D(B*)/D(A) = D(A*)/D(B) =• w .

By Lemmas 2.5 and 4.2 A = B* and B = At where J, / are bound-
ary operators with range C*. Since A* and 5* are operators J and
J can be viewed as continuous operators with respect to the graph
norms on D(B*) and D(A*). Thus we will write Jy instead of
J(V, Ay).

If zeDi and ψzeψ(z) we write z for z + ψz. Similarly if
yeDiy means y + rjy for some ηyeη(y). In terms of this notation
we have the following "generalized Green's identity".

LEMMA 4.4. For all y in Di z in D£, rjy9 and ψz

[BtV, z] - [V, Aϊz] = (Jz)*f&Jy + [ηy, A*z] - [B*y, ψz] .

Proof. By Lemma 4.2

[BtV, z] - [y, Άiz] -

since Biy\ — B*y and Ά^z = A*z. Adding \ηy9 A*z] — [B*y, ψz] to
both sides gives the result.

THEOREM 4.5. Suppose s*f, & are relations such that
= n < oo. Then <s*f c ^ c & if and only if there exists a

k x n(k < n) matrix & of full rank such that

where J? is a boundary operator for jy\

Proof. Suppose Jϊf c ^ c &. Then G{^) is the nullspace of
some nonzero boundary operator Sίf\ G(&) —> Cfc, k ^ ^. Since
N( Sίf) 3 N^ΪSe? = ^ * ^ by Lemma 4.1 where ^ is a ϋ x ) j
matrix of full rank. The converse is trivial since 2f'^ is a bound-
ary operator.

It is sometimes convenient to give a "parametric" rather than
a boundary operator description of extensions ^ between όzf and
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COROLLARY 4.6. ^ is an relation between s^f and έ@* if and
only if there exists a subspace Se of Cn such that

(3.3) 5(ί f) = {y e D(έ?*): [J"(y, <&y\ φ] = 0; φ e Sc} .

Proof. Let Sc =

We now turn to the description of ^ * . We introduce the fol-
lowing notation if S is a finite dimensional space let (S) signify a
matrix whose columns form a basis of S.

THEOREM 4.7. If jzfcz <Sf c & then &* c ΐ f * c

(4.4) G(£f *) - {(», J^*^/): (N(£?)y?S*J(y, j**y) = 0} .

Proof. We consider only the last statement. Let (α,
*)• Then by Lemma 4.1 ^ / * ( α j ^ α ) is a functional on

whose nullspace includes N{^^{')). Hence on all of

where φeCn, k ̂ n. This implies

Equivalently

) = 0 .

On the other hand if (a, J^α) satisfies (4.4)

= o .
So that (α, ^^*α) e G(^*) .

COROLLARY 4.8.

/), ί] = 0 for all

COROLLARY 4.9. Suppose jzf is a symmetric relation (i.e.,
defined on a Hilbert space 3$f and

dim

Lei ί ^ 6e the boundary operator for Jzf. Then ,5/ c & c ,J^* is
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self-ad joint if and only if there exists a k x n{k < n) matrix of full
rank ϋ? such that

or equivalently

^rSβ-l^r* = 0

where S3 is the skew-hermitian matrix of Lemma 4.2.

Proof. Apply Theorems 4.5 and 4.7. It is clear that rank 3f
must be less than n.

If we can find boundary operators ^ f ^ determining AH and
Bκ as restrictions of B% and A%, Theorem 4.5 — Corollary 4.8 can be
applied verbatim to determine all extensions between AH and B% and
their ad joints. Let us assume that D(H), D(J)uG(B%). Then

where K, H are boundary operators determining B* and A* as re-
strictions of BK and A%. Clearly the only novelty is the determin-
ation of K and H.

LEMMA 4.10. Suppose R(K) = Ck and R(H) = CΛ. Then

(4.5) g(y, B$y) = [θ,9 (R(NoB))]

(4.6) ff(z, A*z) - [(R(Mo A)), ψz] .

Proof. By definition K is an operator on G(Bχ) whose nullspace
is exactly G(B*). If e, is the ith row of (R(NoB)). Choose ^ e D(B)
such that

Define

K(y,'Biy) =
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K(y, Bϊv) =

(Note that K is well defined since ηy - ηyeR(B) = #(£*).) If

[0,, (Λ(iSΓo5))] = 0, then θyeR(N<>5)-=>%eR(B)eN(B*)

<=>(y,B*κy)eG(B*)

So that N(K)aG(B*). The reverse inclusion is trivial. This proves
(4.5). The proof of (4.6) is similar and will be omitted.

THEOREM 4.11. If C is a closed relation between AH and J?l
then

G(C*) =

Equivalently

D{C*) =

where 33 is the n +
in Lemma 4.2 taking

kxn nonsingular matrix given

EXAMPLE 4.12. For fixed 1 ^ p ^ oo let

Wlp[a, 6]: = {ysy' is abs. cont., y'eLp[a, b]} ,

W\'»[a, b]: = {ye VP 'la, b): y(a) = y(b) = 0} .

Define A on Wi '[0, 1] by Ay: = -iyf and Bon W^[0, 1], 1/p + lfq = 1,
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by Bz: — —iz'. Then A* is given by — iz' on Wlq[a, b] and B* is
given by -iy' on Wlp[a, b\. Further 4 c ΰ * and BczA*. Let G =
i** = C and define

, J) + i, 1] »C by

Similarly let K: Wlq[0, 4) + TT1>f(4, 1] -» C be given by ky = »(4").
By the methods of § 3 (cf. Example 3) it is readily shown that A%
and Bξ are given by —iz', -iy' on Wlς[0, J) + W' 'Ci, 1] and
Wι '[0, J) + WU9[i, 1] respectively.

Clearly Ẑ y = y(h+) — y(i~) and a boundary operator ^ defining
AH as a restriction of B% is

Similarly 2?x c

V(0)

1/(1)

W(4+)
S is determined by

2(0)

A short calculation reveals that 33 is the skew-Hermitian unitary
martix

0 0 0 -i

0 i 0 0

0 0 - i 0

-i 0 0 0

Thus if

is spanned by

I 0 1 0

o 2 0 l

1

0

- 1

o .
>

01

1

0

- 1 /

and application of Theorem 4.7 gives the ajoint boundary conditions
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-2(1) + Z(i+) = 0

for C*.
If G(Bκ)/G(AH) is not finite dimensional the foregoing extension

theory breaks down because the linear dependence principle is not
available.

We conclude this section with a new approach which works in
the infinite dimensional case for extensions with closed range, and
a new characterization of self-ad joint extensions in Hubert space.

LEMMA 4.12. Let S be a subspace of Y* and Nc be a closed
subspace of N(B*). Let

D(β): = {ye (D(B*) Π #(£*)') + Nc: [B*y, φ] = 0 ,

ψ e S} .

Define G((£) by J3* on £>((£). Then (£ is closed.

Proof If yn -> y and B*yn -> z y e D(B*) and z = B*y since B*
is closed. Further [B*y, ψ] = 0 VψeS by the continuity of the
pairing and y must lie in the closed set N(B')' + Nc.

Let Sc be a subspace of R(N*), St a closed subspace of R(M*)f

Nc a closed subspace of N(B*) and iV? a subspace of iV(A*). Define

D(C): = {ye (D(B*) n

(4.8) B*y±Sΐ + N?}

): = {{y,B*y):yeD(!S)}.

We call C the relation determined by Se, SfNc and ΛΓf. Clearly
AHaCciBl and

(4.9) G(C) - G(<£) - (QSC, 0)

where (EcB* is defined relative to Nc and JSΓ(B*)' + iSΓc by (4.7) and
Q is a projection on i\Γ(JS*)'. Since (?((£) is closed by Lemma 4.12
and (4.9) is equivalent to a direct sum, C is closed. This proves
the following result:

THEOREM 4.13. Let the hypotheses of Theorem 3.13 hold. Let
Sc, S:, Nc and N? be subspaces of R(N*), R(M*), iV(J5*) and N(A*)
such that Sc and Nc are closed. Then there exists a unique closed
relation between AH and BK determined by Sc, S*f Nc and Nf.

The following is a partial converse to Theorem 4.13:
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THEOREM 4.14. Suppose C is a closed relation between AH and

Bl then there exist closed subspaces NccN(B*), NfaN(A*)9 S*aR(M*)

and Sc c R(N*) such that

Sc = ψ: D(CY

(4.10) R{CY = S? + N*

N(C) = SC-^NC.

Moreover if C has closed range C is determined by Se, S*, Ne and
N?.

Proof. Set S?: =R(Cy Π EζSF), N*: =R(C)L Π N(A*), Se: =N(C) f]

R(N*), Nc: = N(C) n N(B*). Since C c Bϊ, Se = ψ: D(C). Clearly
R(Cy^S: + NT and N(C)^)SC + NC. However since AH<zC and
C<zB%

%Y = N(A%) = R(M*) + N(A*)

N(C) c ΛΓ(B*) = RjN*) ψ N(B*) .

Applying the definitions of S?, N*, Sc and Nc gives the reverse-
inclusions. Now suppose C has closed range. Let C be the rela-
tion determined by Sf, N*, Sc and Ne according to Theorem 4.13.
Obviously C'Z)C. Since

R(cy = R(cy = s: + N:

and R(C) is closed, RjCFj = R(C). Thus R(C) = R(C). Prom (4.8)
and (4.10) N(C) = N(C). Let (a, β) e G(C). Then there exists a' e
D(C) such that (a', β) e G(C). Hence a - a' e tf(C) = N(C). Thus
« 6 D(C) and /3 = C(α).

THEOREM 4.15. If C is a relation with closed range between AH

and BK, G* is a relation with closed range between Bκ and A% and
C* is determined by Sc = S , S? = Sn iVf. = JVC, and N$ = Ne.

Proof. We verify only the last statement

S..: = N(C*) Π R(M*) = R(C)λ n R(M*): = S?

)λ n S(3n = iV(C) n
Ne. . = N(C*)Γ\N(A*) = R{CY n N(A*) = N?

m: = R(C*V n N(B*) = N(C) n N(B*) = J/, .

The following result is an alternate characterization of D(C*)
without the space 2V,,. that is available if A is a finite dimensional
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restriction of B*

COROLLARY 4.16. Suppose dim D(B*)/D(A) < ©o. Then

D(C*) = {zeΰ£:ψ.eSΐ;A*z±SΛ;

' (JzY^Jy = 0, Vy in D(C)} .

Proof. If zeD(C*), ψzeS? and A*z J_ Sc by Theorem 4.15. If
yeD(C), by (4.8) yeD(&) for any ηy. Similarly by Theorem 4.15
and (4.8) if z e D(C*) z e D{C*). Since C and C* are mutually adjoint,
by Lemma 4.4 (Jz)*®Jy = 0 (taking ηh ψj = 0). Therefore D(C*)
satisfies (4.11). Conversely if z satisfies (4.11), application of Lemma
4.4 and the definitions of S* and Se gives

[Biv, z] ~ [V, Aϊz] = 0

for all y in D(C). Hence zeD(C*).

REMARK 4.17. The analogue of (4.11) can in the same way be
proved for C, i.e.,

D(C) = {yeΰi:η1feSc;B*y ± Sϊ

(Jz)*1&Jy = 0,V^

We turn now to the characterization of self-adjoint extensions
in a Hubert space setting. Here the hypothesis that C has closed
range is no longer needed, the next two theorems give simple neces-
sary and sufficient conditions for the existence of a rich supply of
self-ad joint extensions between AH and A%.

THEOREM 4.18. Let A be a symmetric operator defined on a
Hilbert space H. Then if A has a self-adjoint extension (£, for
each closed subspace S of R(M*) there exists a self-adjoint extension
Cs of AH such that

1 2 ) w . ) foe D(-^ - S: A*y1

G(Cs) = {(y,A*y):yeD(Cs)}.

Proof. Let AHaCscA% be the relation determined by (4.12).
Then

[C.y, z) - [y, C,z] = [A*y, z] - [y, A*z\

- [A*y, VJ + iVv, A*z]

where y = y + ηy, z = z + ψ. and r)y, fz e S. By (4.12) and the self-
adjointness of (£ the right side of (4.13) is zero, showing that Cs is
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symmetric. Now suppose {a, β) e G(Cf). Since Cf c A*, β — A*a.
Further

[C.V, a] - [y, A*a] = 0

(4.14) = [A*y, a] - [y, A*a]

- [A*y, ψa] + [Vυ, A*a] .

Since

t) n R(M*) - R(csy n
= s

and

the last two terms in (4.14) vanish and hence

(δ, A*α) e G((E*) = (?((£) .

Thus α e JD(<£) — S. Since 57̂  is arbitrary in S, A*α _L S. We conclude
that (or, /S) 6 G(C.) and that Cs = Cf.

THEOREM 4.19. Lei A 6e α symmetric operator defined on a
Hilbert space £ίf\ Suppose C is a self-adjoint extension of AH.
Then A has a self-ad joint extension (£. Moreover if S: — i?(K), C
is the self-adjoint extension Cs determined by £ and S given by
Theorem 4.18.

Proof. Define (£ by

Obviously by E D i . It follows at once from (4.13) that K is sym-
metric since ηyf ψz e iSΓ(C) ± R{C). Suppose (a, A*α) e (?((£*). Let

>: D(C) = N(C). Then by (4.13) again

l(Cy, a-ψ]~ [y, A*ά] = [Vy, A*α] .

Hence

[Cy, a - ψ] - [y, A*ά] = 0 ,

so that

(ά - ψ, A*a) G G(C*) = G(C) .

We conclude that α - f e Z)(C), (α, A*α) e E. Thus K* c £ and (£ is
self-ad joint.

Since JB((£) - #(C) and Λ(C)1 c ΛΓ(AJ) = jR(Λf*)f S is a closed
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subspace of R(M*). By Theorem 4.18 there exists a self-ad joint
extension Cs determined by (£ and S. By (4.12) C = Cs.

COROLLARY 4.20. Suppose A is a symmetric operator on a
Hilbert space Sίf with equal deficiency indices. Let Jt(H) be a
Banach space and let the hypotheses of Corollary 3.14 be satisfied.
Further let S be a closed subspace of R(H). Then AH has a self-
adjoint extension determined by the boundary conditions

[HA+{A*z\ φ] = 0, φeS

where K is a self-adjoint extension of A.

Proof. Since A has equal deficiency indices there is a self-
adjoint extension (£ of A. By Corollary 3.8 A% = Ai. By Corollary
3.14 M = HA+. Now apply Theorem 4.18.

EXAMPLE 4.21. We use Corollary 4.20 to find self-adjoint ex-
tensions of AH in Example 4.12 when p = 2. Here

A+ = i\
Jo

on L2[0, 1]. Further

S l/2
zdt

0

S i
ziMo.

0

so that (HA+)*φ= -iX[0>1/2](t)φ. Since z = z + (HA+)*φ is absolutely
continuous z(i+) = ^(i~) and we obtain φ = i(z(|+) — ̂ (i~)) Moreover

ί =

and

HA+A*z =
o

Thus if S = C applying Corollary 3.20 we find that one boundary
condition is s(J~) = z(0). Since self-ad joint extensions © of A satisfy
the boundary condition z(0) = z(ΐ) we have also
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so that z(i+) = z(X). On the other hand if S is trivial the boundary
conditions are z(l) = 2(0) and z(^+) — z(i~) = 0.

This method is a general one and can be applied to more dif-
ficult examples which we will consider systematically elsewhere.

5* The adjoint of .S&H. We end the paper with some remarks
on the adjoint theory of (1.1) when r Φ θ.

DEFINITION 5.1. Let JtfH\ D(A) -> Y x F and J ^ + : Di x F*->X*
be given respectively by J^y = (Ay, Hy)* and J^H

+(z, φ) = A*z where
φβφ(z).

It is trivial that SsfH and ,S/H

V are densely defined operators.

LEMMA 5.2. [J^y, (z, φ)] = [y, .J^H

+(z, φ)] on D(A) x D(Ajί).

Proof. Immediate from Definition 5.1, Theorem 3.3, and the
definition of an inner product on ( 7 x F ) x ( 7 * x F*) (see §2).

The main result of this section is the following:

THEOREM 5.3. j ^ f * = j ^ + and J^ z

+ * = J ^ .

Proof. By Lemma 5.2 j*fu

+c: J*fH* and ^ C J ^ / * . Suppose
((a,φ),β)eG(J*Ή*). Then

(5.1) [Ay, a] + {Hy, φ] = [y, β] .

On the other hand φeφ(z) for some z in D%. By Lemma 5.2

(5.2) [Ay, z] + [fly, rf - [y, A*z] .

Subtracting (5.2) from (5.0) we find that

[Ay, a - z] = [y, β - A*z] .

Thus a - % e D(A*), VaeD£ and

/3 - A*£ + A*(α - z)

= A*(a) .

We conclude that G ( ^ / ) c G ( , j / / ) . Since ί ί is continuous on G(A)
when F is endowed with the weak topology, j&H is easily verified
to be closed. Hence

REMARK 5.4. Note the adjoint theory for nonhomogeneous b.v.p.
is much simpler than for AH in that ,J^7

+ are always closed oper-
ators and that there are no analogues of Άi.
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