DEHN'S LEMMA AND HANDLE DECOMPOSITIONS
OF SOME 4-MANIFOLDS

J. H. RUBINSTEIN

We give two short proofs of a weak version of the theorem of Laudenbach, Poenaru [3]. Also we show that an embedded $S^1 \times S^2$ in S^4 bounds a copy of $B^2 \times S^2$. Finally we establish that if W is a smooth 4-manifold with $\partial W = \#_n S^1 \times S^2$ and W is built from $\#_{n-1} B^3 \times S^2$ by attaching a 2-handle, then W is homeomorphic to $\#_n B^3 \times S^2$.

1. 4-Dimensional handlebodies. Let X, Y be the following smooth 4-manifolds:

$$X = \#_n B^3 \times S^1 \quad \text{and} \quad Y = \#_n B^2 \times S^2.$$

In [3] it is proved that if $h : \partial X \rightarrow \partial Y$ is a diffeomorphism, then the smooth closed 4-manifold $X \cup_h Y$ which is obtained by gluing along h, is diffeomorphic to S^4.

We begin with two brief proofs, one using the Dehn's lemma in [5] and the other employing unknotting in codimension 3, of the following result:

Theorem. Let X, Y, h be as above. Then $X \cup_h Y$ is homeomorphic to S^4.

Proof. (1) Let $\{x_i\} \times S^1$ be a circle in the boundary of the ith copy of $B^3 \times S^1$ in the connected sum $X = \#_n B^3 \times S^1$, for $1 \leq i \leq n$. Without loss of generality, all the loops $\{x_i\} \times S^1$ can be assumed to miss the cells which are used to construct X as a connected sum. By the Dehn's lemma in [5], it follows that all of the circles $h(\{x_i\} \times S^1)$ bound disjoint smooth embedded disks D_i in Y, for $1 \leq i \leq n$.

Let $N(D_i)$ denote a small tubular neighborhood of D_i in Y. Clearly $X \cup_h (N(D_1) \cup \cdots \cup N(D_n))$ is diffeomorphic to B^4, since $N(D_i)$ can be thought of as a 2-handle which geometrically cancels a 1-handle of X. On the other hand, let W denote the closure of $Y - N(D_1) - \cdots - N(D_n)$. Then $\partial W = S^3$ and W is contained in Y which can be embedded in S^4. By the topological Schoenflies theorem [1], W is homeomorphic to B^4. Consequently $X \cup_h Y$ is homeomorphic to $B^4 \cup B^4 = S^4$.

(2) By Van Kampen's theorem, $\pi_1(X \cup_h Y) = \{1\}$. Let Z be a bouquet of n circles which is embedded in X and is a deformation retract of X. By isotopic unknotting in codimension 3, Z is con-
tained in the interior of a PL 4-cell B in $X \cup_h Y$. Therefore, by an isotopy we can shrink X down towards Z until X is included in $\text{int } B$. Exactly as in (1), by the topological Schoenflies theorem we obtain that $X \cup_h Y - \text{int } B$ is homeomorphic to B^4 and so the result follows.

Remark. Note that if the PL or smooth 4-dimensional Schoenflies theorem was known, then these arguments would establish that $X \cup_h Y$ is PL isomorphic or diffeomorphic to S^4.

2. Embeddings of $S^1 \times S^2$ in S^4. The following result was first proved by I. Aitchison (unpublished). We present a simplification of his method, which again uses the Dehn's lemma in [5].

Theorem. Let $h : S^1 \times S^2 \to S^4$ be a smooth embedding. Then h extends to a topological embedding of $B^2 \times S^2$ in S^4.

Proof. Let V, W be the closures of the components of $S^4 - h(S^1 \times S^2)$ (by Alexander duality there are two such components). By the Mayer-Vietoris sequence, without loss of generality the inclusion $h(S^1 \times S^2) \to V$ induces an isomorphism $H_i(h(S^1 \times S^2)) \to H_i(V)$ and $H_i(W) = 0$.

Let G denote the group which is the pushout of the homomorphisms $\pi_i(h(S^1 \times S^2)) \to \pi_i(V)$ and $\pi_i(h(S^1 \times S^2)) \to \pi_i(W)$. By Van Kampen's theorem, $G = \{1\}$. On the other hand there is a homomorphism of G onto $\pi_i(W)$ induced by the epimorphism $\pi_i(V) \to H_i(V) \cong H_i(h(S^1 \times S^2)) \cong \pi_i(h(S^1 \times S^2))$. Consequently $\pi_i(W) = \{1\}$ follows.

Now we can apply the Dehn's lemma in [5] to obtain that $h(S^1 \times *)$ bounds a smooth embedded disk D in W. Let $N(D)$ be a small tubular neighborhood of D in W. Then the closure of $W - N(D)$ is a topological 4-cell, by the topological Schoenflies theorem [1]. Therefore W is homeomorphic to $B^2 \times S^2$ and h extends to a topological embedding of $B^2 \times S^2$ as desired.

Remark. This result is analogous to the classical theorem of Alexander that any smooth embedded $S^1 \times S^1$ in S^3 bounds a smooth solid torus $B^2 \times S^1$.

3. Handle decompositions and slice links. In [2], Kirby, Melvin proved that if a smooth 4-manifold M has boundary $S^1 \times S^2$ and is constructed by attaching a 2-handle to B^4 along a curve C with the 0-framing, then M is homeomorphic to $B^2 \times S^2$ and C is a slice knot. We prove the following generalization of their result:
THEOREM. Let W be a smooth 4-manifold which is obtained by adding n 2-handles to B^4 along the curves C_1, \ldots, C_n. The 2-handles induce a framing of the link $C_1 \cup \cdots \cup C_n$. Assume that framed surgery on the sublink $C_1 \cup \cdots \cup C_i$ in S^2 yields $\#_i S^1 \times S^2$, for all i with $1 \leq i \leq n$. Then W is homeomorphic to $\#_n B^2 \times S^2$ and $C_1 \cup \cdots \cup C_n$ is a slice link.

COROLLARY. Let W be a smooth 4-manifold such that ∂W is diffeomorphic to $\#_n S^1 \times S^2$ and W is built by attaching a 2-handle to $\#_n S^1 \times S^2 \times I$ along $C_1 \times \{t\}, C_2 \times \{t\}, \ldots, C_n \times \{t\}$ and then adding a 4-handle. Then W is homeomorphic to $\#_n B^2 \times S^2$.

Proof of theorem. By the assumption that surgery on the link $C_1 \cup \cdots \cup C_n$ gives $\#_n S^1 \times S^2$, it immediately follows that ∂W is diffeomorphic to $\#_n S^1 \times S^2$. If the handle decomposition of W is turned upside down, then W is constructed by attaching n 2-handles to $(\#_n S^1 \times S^2) \times I$ along some curves $C_1 \times \{1\}, C_2 \times \{1\}, \ldots, C_n \times \{1\}$ and then adding a 4-handle. We will assume that the 2-handle glued along $C_i \times \{1\}$ is dual to the 2-handle added along C_i to B^4.

Let W_i or W_i' denote the 4-manifold which is obtained by adjoining i 2-handles to B^4 or $(\#_n S^1 \times S^2) \times I$ respectively along the curves C_i, \ldots, C_n or $C_{n-i+1} \times \{1\}, \ldots, C_n \times \{1\}$ respectively. Then ∂W_i is diffeomorphic to $(\#_n S^1 \times S^2) \times I$ since surgery on $C_1 \cup \cdots \cup C_i$ gives $\#_i S^1 \times S^2$. Also $W - \text{int} W_i'$ is diffeomorphic to W_{n-i} and therefore W_i' is a cobordism between $\#_i S^1 \times S^2$ and $\#_{n-i} S^1 \times S^2$. Note that W_i' can also be constructed by adding $n-i$ 2-handles to $(\#_n S^1 \times S^2) \times I$.

Let $\langle \cdot \rangle$ denote the homotopy class of a loop C relative to some base point and let $\langle * \rangle$ denote the normal closure of the set of elements \ast in some group. By Van Kampen's theorem applied to the two handle decompositions of W_i', we conclude that

$$\pi_i(W_i') \cong \pi_i(\#_i S^1 \times S^2)/\langle \{C_{n-i+1}\}, \ldots, \{C_n\} \rangle$$

and $\pi_i(W_i')$ has rank $\leq n - i$. Consider the case when $i = 1$. By a classical theorem of Whitehead (see Exercise 20 on p. 283 of [4]) and by Corollary 5.14.2 on p. 354 of [4], it follows that $\pi_i(W_1')$ is free and $\{C_n\}$ is primitive, i.e., is contained in a free basis of the free group $\pi_i(\#_n S^1 \times S^2)$.

Next, $\pi_i(W_2')$ has a presentation consisting of a set of free generators of $\pi_i(W_2') \cong \pi_i(\#_n S^1 \times S^2)/\langle \{C_n\} \rangle$ and the one relation $\{C_{n-1}\}$. Hence by the results on p. 283 and p. 354 of [4] again, $\pi_i(W_2')$ is free and $\{C_{n-1}\}$ is primitive. Therefore we obtain that $\{\{C_{n-1}\}, \{C_n\}\}$ is contained in a free basis for $\pi_i(\#_n S^1 \times S^2)$. Continuing on with this argument, we conclude that $\{\{C_{n-1}\}, \ldots, \{C_n\}\}$ is a free basis of $\pi_i(\#_n S^1 \times S^2)$. So by Lemma 2 of [3], there is a diffeomorphism $h: \#_n S^1 \times S^2 \to \#_n S^1 \times S^2$ such that $h(S^1 \times \{x_i\})$ is homotopic to C_i for
all i, $1 \leq i \leq n$, where $S^1 \times \{x_i\}$ is contained in the ith copy of $S^1 \times S^2$ used to form $\#_n S^1 \times S^2$ and is disjoint from the 3-cells employed for the connected sum.

Let M be the smooth 4-manifold with $\partial M = S^3$ which is built by adding n 3-handles and 4-handles to W_n, using the component $(\#_n S^1 \times S^2) \times \{0\}$ of ∂W_n. The 3-handles can be attached along the 2-spheres $h_i(\{y_i\} \times S^2) \times \{0\}$, for $1 \leq i \leq n$, where $\{y_i\} \times S^2$ is in the ith copy of $S^1 \times S^2$ used to obtain $\#_n S^1 \times S^2$ and $\{y_i\} \times S^2$ misses the 3-cells utilized for the connected sum. Turning the 3- and 4-handles of M upside down, we find that M can be constructed with a 0-handle, n 1-handles and n 2-handles. Note that each 2-handle of M algebraically cancels one of the 1-handles, since C_i is homotopic to $h(S^1 \times \{x_i\})$.

The Mazur trick can now be applied. $M \times I$ is a 5-manifold composed of a 0-handle, n 1-handles and n 2-handles. By the Whitney trick, the 2-handles geometrically cancel the 1-handles. Consequently $M \times I$ is diffeomorphic to B^5 and $2M = \partial (M \times I)$ is diffeomorphic to S^4. By the topological Schoenflies theorem [1], M is homeomorphic to B^4.

Let N denote the smooth closed 4-manifold which is obtained by gluing a 4-cell to M along $\partial M = S^3$. Then N is homeomorphic to S^4. Since $N = W \cup \#_n B^2 \times S^1$ it follows that W is homeomorphic to $\#_n B^2 \times S^2$, either by isotopic unknotting in codimension 3 or by using the Dehn’s lemma in [5] plus the topological Schoenflies theorem as in §2. This proves the first part of the theorem.

Finally, exactly the same argument as in [2] applies to show that $C_1 \cup \cdots \cup C_n$ is a slice link.

Proof of corollary. If W satisfies the conditions of the corollary, then W can be constructed by adding n 2-handles to B^4 along the curves C_1, \ldots, C_n where $C_1 \cup \cdots \cup C_{n-1}$ is a trivial link of $n-1$ components in S^3. Hence W satisfies the hypotheses of the theorem and so W is homeomorphic to $\#_n B^2 \times S^2$.

Note. I would like to thank C. F. Miller for very helpful advice on the group theory in the above theorem.

References

Received March 30, 1979 and in revised form September 4, 1979.

MELBOURNE UNIVERSITY
PARKVILLE, VICTORIA, 3052 AUSTRALIA