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A NOTE ON TAMELY RAMIFIED POLYNOMIALS

J. P. BUHLER

Let f(x) be a monic polynomial with coefficients in a
Dedekind ring A. If P is a prime ideal and A, denotes
the completion of A at P then f(x) is said to be integrally
closed at P if A[X]/(f(X)) is isomorphic to a product of
discrete valuation rings. The purpose of this note is to
show that if f(x) appears to be tamely ramified and inte-
grally closed at P (in terms of its discriminant and
factorization mod P) then in fact it is.

If f(a) =0, where f(x) is a monic irreducible polynomial with
coefficients in Z, then the ring Z[a] is of finite index in the ring
R of algebraic integers in Q(a). The full ring of integers can be
obtained by applying a very general algorithm due to Zassenhaus
([6]). There are well known cases where this is unnecessary. If,
for instance, f(x) is an Eisenstein polynomial at p, or if »* does not
divide the discriminant of f(x), then the polynomial f(x) is integrally
closed at p (which is equivalent to saying that » does not divide
the index [R: Z[a]]). The theorem below asserts that if the power
of p that divides the discriminant of f(x) is consistent with the
factorization of f(x) mod P and the hypothesis that R is tamely
ramified at p, then f(x) is integrally closed at ».

If P is a prime ideal in the Dedekind ring A let v,: A— Z {0}
denote the corresponding normalized valuation. Let d(9) and
Disc (g) denote the degree and discriminant of a polynomial g(x).

THEOREM. Suppose that f(x)e Alx] is a monic polynomial that
satisfies

(@) f(x) = llg,(»)" mod P

(b) wp (Disc (f)) = 2; (e; — 1)d(g,)
where the g,(x) € (A/P)[x] are distinct monic, irreducible and separa-
ble polynomials. Then f(x) is integrally closed at P. Moreover,
e, and A[x]/(f(x)) is isomorphic to a product of discrete valua-
tion rings that are tamely ramified over Ap.

The proof given in the third section is an easy consequence of
a purely local result given in the second section. The first section
recalls some basic formulas concerning resultants.

REMARKS. (1) It is a standard fact that if f(x) is integrally
closed and tamely ramified at P then conditions (a) and (b) must
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hold. If the characteristic of A/P is larger than n = d(f) then the
ramification has to be tame. Thus the test above usually determines
the power of P in the diseriminant of the root field in the case in
which char (A/P)>mn: it can fail only if v,(Disc (f))=4.

(2) The condition that f(x) be integrally closed at P is equiv-
alent to saying that every ideal in A[x]/(f(x)) lying over P is
invertible, or to saying that the index (in the sense of [2], p. 10)
of A[x]/(f(x)) in the maximal order in KJ[z]/(f(x)) is prime to
P (where K is the fraction field of A).

1. Resultants. Let f(x) and g(x) be polynomials with coeffi-
cients in any ring and let R(f, g) denote their resultant (which could
be defined, for instance, as the determinant of the “Sylvester matrix”
formed from the coefficients). Let L(g) denote the leading coeffi-
cient of the polynomial g(x).

The following properties of the resultant R(f, g) are standard
and will be used freely below. Proofs can be found in [1] and [5].

R1. R(f, 9) = L(g)*" 119 f(e,) if e, ---, @y, are the roots of g(x)
= L(g)*”" if d(g) =0

R2. R(g, ) = (—=L)*"R(f, g)

R3. R(fg, h) = R(f, h)R(g, h)

R4. R(f, 9) = L(g)*""""R(r, 9) if f=4qg9 +7r

R5. there exist polynomials a(x), b(x) such that R(f, 9) = af + bg

R6. Dise (f) = (_1)d(f)(d(f)—l)/2R<f, 7

R7. Dise (fg) = Dise (f) Dise (9)R(f, 9).

REMARK. The resultant R(f, g) can be efficiently computed by
forming a “polynomial remainder sequence” ([3]) fi=/, fo=0, fo - **
with

cifi = difirs + fi+27 deg (fi+a) < deg (fiﬂ) .

The relationship R4 then can be used to express R(f;, fi+) in terms
of R(fity, firs). It is easy to check that this algorithm can be used
to compute the discriminant of a polynomial of degree m in O(n?
steps, as opposed to the usual algorithms (e.g., taking the determi-
nant of the Sylvester matrix or of the power sum matrix) which
take O(n®) steps.

2. A local result. Throughout this section A will be a discrete
valuation ring with valuation v: A — Z U {0}, uniformizing parameter
7w, and residue field & of characteristic ». Moreover let f(x) be a
monic polynomial with coefficients in A that satisfies

(@)’ f(x) = g(x)° mod =, where g(x)ek[x] is irreducible and
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separable

(b)" w(Dise (f)) = d(f) — d(g) = (e — 1)d(g).

Let B; denote the ring A[z]/(f(x)). It is easy to show ([4],
Lemma 4 of Chapter I, §6) that B, is a local ring with unique
maximal ideal (7, g(x)) and residue field k[x]/(g(x)). The goal of this
section is to show that (a) and (b) imply that B, is a discrete
valuation ring.

We follow the pattern of [4] and use the fact that a local
noetherian ring is a discrete valuation ring if its maximal ideal is
principal and is generated by a nonnilpotent element ([4], Prop. 2
of Chapter I, §2). In fact we will show that z is in the ideal
generated by g(x) so that the maximal ideal is (z, g(x)) = (¢9(x)) and
the ring must be a discrete valuation ring as claimed.

Use (a)’ to define a polynomial A(x) by

S(@) = g(x)° + wh(=) .

LemmaA. v(R(g, k) = 0.

Assume this lemma for the moment. By the definition of Ai(x),
R4, and R3 it follows that »(R(f, h)) = 0. By R5 it follows that
there exist a(x), b(x) € A[x] such that

l=af+ bh.
Now work in the ring B; = Alx]/(f(x)). We have
1 = b(x)h(x) g(x)° = —7mh(x)

so that = = — b(x)g(x)’. Hence the maximal ideal in B; is generated
by ¢(x). This reduces the proof of the assertion that B, is a
discrete valuation ring to the proof of the lemma.

Proof of the lemma. Put n = d(f), m = d(g). By (b)’ together
with R6

v(R(f, f) = v(R(g° + 7h, eg’g°™ + wh') = n — m .

Note that it is clear from this formula that e is prime to p. Indeed,
if p divides e then the second term above is divisible by = so that
by Rl and R3 the valuation would be at least m=.

Without loss of generality we can assume that A is complete.
Since

fl=eg’9" *mod

and since eg’ is relatively prime to ¢° (g is irreducible and separa-
ble) it follows from Hensel’s lemma that we can find polynomials
a(x) and b(x) such that
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Sf' = (eg’ + ma)(g°™* + wb)
with d(b) < d(g°™*). Substituting in * yields
ok n — m = v(R(g° + 7h, eg’ + mwa)) + v(R(9° + ©wh, g°* + wb)) .

Now apply the obvious fact that if the coefficients of two pairs of
monic polynomials are congruent mod = then their resultants are
congruent mod 7. This shows that the first term on the right of
** i{s zero since

v(R(g, e9")) =0 .
In the second term rearrange to take advantage of R4:

v(R(g° + mh, g° + 7b)) = v(R(9(g°™* + =b) + n(h — byg), ¢ + =b))
= v(R(z, ¢°* + 7b)) + v(R(h — bg, g°~" + =b))
= m(e — 1) + v(R(h — bg, g°* + 7b)) .

Since R(h — bg, 9°* + wb) = R(h — bg, 9)°* = R(h, g *mod 7w we are
forced to conclude that w(R(h, g)) = 0 which finishes the proof of
the lemma.

The above results can be summarized as follows:

PROPOSITION. Suppose that f(x) is a monic polynomial with
coefficients in a discrete valuation ring and that f(x) satisfies

(@) f(x) = g(x)* mod 7, where g(x) is irreductble and separable
mod 7,

(b)" wv(Dise (f)) = (e — L)d(9).
Then pye and By = Alx]/(f(x)) s a discrete valuation ring with
residue field k[x]/(G(x)) and maximal ideal (g(x)).

COROLLARY. With the above motation, f(x) is irreducible, By
18 integrally closed, and B is tamely ramified over A.

Proof. As in Chapter I, §6, corollary to Proposition 15 of [4].

REMARKS. (1) It can be shown that the irreducibility criterion
above reduces to the Eisenstein irreducibility criterion if ¢ = 1 and
d(f) is prime to p.

(2) It is clear from the proof of the lemma that the valuation
of the discriminant given in (b)’ is in fact a lower bound on the
discriminant of a polynomial that factors mod = as in (a)’.

3. Proof of the theorem. Now let the notation be as in the
statement of the theorem: A is a Dedekind ring with prime ideal
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P, v, is the corresponding valuation, A4, is the completion of A at
P, and f(x) is a monic irreducible polynomial satisfying (a) and (b).

By Hensel’s lemma we can find polynomials G,(x)e 4 [«] such
that

G(x) = g,(x)** mod P
flx) = IIGy(x) .

By remark (2) above
vp(Disc (G))) = (e; — 1d(g,) .

The iteration of R7 shows that the diseriminant of a product is
divisible by the product of the diseriminants so that

vp(Dise (f)) = Tvp(Dise (G)) = (e, — 1)d(g.) = vx(Dise (f))

(using the hypothesis (b)). Therefore we must have equality
throughout and v,(Disec (G,)) = (e; — 1)d(g;). The proposition of the
preceding section applies to the polynomial G,(x) and we conclude
that

Apla)/(f (@) = HA[x]/(Gi(x))

is a product of discrete valuation rings and that f(x) is integrally
closed at P. Also the ¢’s are prime to p and f(x) is tamely ramified
at P. This finishes the proof of the theorem.
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