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HEIGHT ESTIMATES FOR CAPILLARY SURFACES

DaAvID SIEGEL

In this paper estimates are obtained for any scalar func-
tion u#(x) that staisfies the equation

(1a) div (Tu) = ru in Q
and the boundary condition
(1b) Tu+vy=cosy on X =208.

Here « is a positive constant, 2 is an open domain in n#-dimen-
sional Euclidean space, v is the exterior unit normal on 2,
and Tu is the vector operator
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For n = 2, u(x) can be interpreted physically as the height of a
capillary surface above the undisturbed fluid level when a vertical
cylindrical tube with section 2 is dipped into a large reservoir. The
“capillarity constant” £ and the “contact angle” v are determined
physically; « = (0 — p,)o'g, where p is the density of the fluid, o,
is the density of the gas, g is the acceleration due to gravity, and
o is the surface tension. If the tube is homogeneous v is constant
[4].

The operator Nu = div (Tu) is n times the mean curvature of
the surface x,., = u(x). Geometrically stated, a capillary surface
has mean curvature proportional to its height above a horizontal
reference plane and it meets a vertical cylinder in a prescribed
angle.

We shall distinguish three types of domains: “interior”, “exte-
rior”, and “general exterior” corresponding to 2 bounded, the com-
plement of 2 bounded, and 3 unbounded, respectively. Existence,
uniqueness, and regularity of solutions to problem (1) have been
established under fairly general conditions on 2 and . However,
for a general exterior domain uniqueness has not been established
and for an exterior domain uniqueness has been established only
under the condition # = o(1) as |z| — < [see 6, 7, 8, 9].

For simplicity we shall only consider solutions to problem (1) in
domains with piecewise smooth boundaries, with boundary condition
(1b) holding on the smooth part X¥* of ¥. In §2, we extend the
existence theory for smooth bounded domains to the case of piece-
wise smooth bounded or unbounded domains.

We now state our main results. In what follows £« =1, and v
is constant, 0 < v < /2.
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The simplest examples of interior, exterior, and general exterior
domains are Bx(0) = {x: || < R}, Bx(0) ={x: |x| > R} and H = {x: 2, > 0}.
The solutions to problem (1) in these domains are v(r, R, 7), w(r, R, 7),
and z(x, v), with » = |xz|. An explicit formula is known for the
“one-dimensional” solution z(x, v). We have

(2) z(xly 7) ~ Cl(ﬁ/)e_xl as ¥, ——

where C,(v) is an explicitly known constant.

Chapter II is devoted to the study of v and w. General esti-
mates are given for v and w that improve upon those given by
Finn [5]. For small R, v is shown to be close to a spherical cap.
Laplace’s asymptotic formula for the center height is proved correct.
For large R, near the boundary » and w are shown to be close to
a one-dimensional solution, i.e.,

limv(R —I,R,v) =limwR + 1, R,v) =2(1,7).

R—oo R—co

Away from the boundary, estimates are also given, in particular

(3) (0, R, 7) ~ C() f};’;: as R— oo
(4) wir, B, 7) ~ G&, nERET) a5 v — o

where C(v) is an explicitly given constant and C(R, v) is determined
asymptotically as R — «. Monotonicity and continuity properties of
C(R, v) are given. Estimates on the derivatives of v and w are also
given.

In Chapter III, solutions to problem (1) are estimated in terms
of v, w, and z. This is done by use of an appropriate comparison
principle due to Concus and Finn [3].

General estimates are given that apply to any solution of equa-
tion (1a): |u(x)| < v(0, d, 0), d is the distance from « to X; |u(x)| <
w(r, R, 0) if BL(0) C 2; and [u(x)| < z(x,, 0) if HC £. Combining these
general estimates with results (2)-(3)-(4), we see that solutions to
equation (la) decay exponentially away from the boundary of the
domain. The derivatives of a solution decay at the same rate at
which the solution decays.

The third general estimate improves on an estimate given by
Gerhardt [8]. The first general estimate implies that for an exterior
domain, problem (1) has a unigue solution.

We now consider estimating solutions to problem (1). To improve
upon the above general estimates or to study solutions in general
exterior domains one needs to know when Bp(y)C 2, » = |z — y|,
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implies that uw(x) < v(r, R, v). An example shows that this is not
always true. We prove that if 2 N Bz(y) is convex, where Bz(y) is
the maximal domain of existence of w», then the assertion is true.
Alternatively, if ¥ is smooth and bounded and R < <%, where &2,
is the “interior rolling number” of 2, then the assertion is also true.
Analogously, if Bijy)c 2, r =|x — y/|, if ¥ is smooth bounded and
strictly convex, and if R = <%, where .2, is the “exterior rolling
number”, then u(x) < w(r, R, v). Again, an example shows that this
inequality is not always true when Bj(y) C 2.

Estimates for solutions to problem (1) in certain general exterior
domains are given. We show that z(x,, v) is the unique solution to
problem (1) in H. Consider the two-dimensional domain .27, =
{(®y, 2,): 2, > |x] cos a}, with 0 < a < 7. For 0 < v < 7/2 there exists
a unique positive solution to problem (1) in .2¢,. Furthermore, for
a < w/2: on 3*, u(x) = 2(0, v) and lim,, ., u(x) = 2(0, v). For a > 7/2:
on X* wu(x)<20,v) and lim,,_,u(x) =200, v). For a + v = x/2,
a < wl2:

liminf u(x) = V' 2[1 — (1 — k)]~

and
lim sup u(x) < 21/ 2[1 — (1 — k)]
x—0
where k = cos v/sin «. These inequalities show there is a “rise” at
the corner. Some higher dimensional generalizations are given.
Chapter I contains preliminaries that are needed in the other
chapters.

Chapter 1
Preliminaries

1. The comparison principle. Our basic tool will be the com-
parison principle (CP):

THEOREM 1. Let ¥ =23+ 3%+ X% be a decomposition of X, such
that 3% is C' and 2° can be covered from within 2 by a sequence of
smooth surfaces {A}, each of which meets ¥ im a set of zero (m — 1)
dimensional measure, and such that A4 — 3° and the area of A tends
to zero. Let u,veC*(2) and suppose

(i) Nu=ru and Nv < kv on 2.

(i) for amy approach to X* from within 2 lim sup [u — »] < 0.

(iii) om X, (Tw — Tv)-v < 0 almost everywhere as a limit from
points of 2.

(iv) if 2 is unbounded, w — v < o(1) as |x| — oo.
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Then w = v on 2; if equality holds at any point then u = v on Q.

Proof (see [3]). We have added condition (iv), but precisely the
same proof holds.

Note. In condition (iii), v has been extended continuously into
a neighbordood of X*.

The following corollary was proved in [3] in a different way.

COROLLARY. If u(x) satisfies (1a) in 2 and Bi(y)C Q2 then
lu(x)| < 2/kR + R in Bx(y).

Proof. Letwv(x) =n/kR+ R— V' R*—|x—y|*. Then Nv = /R =
tminv(®) < kv and lim Tv-v =1. Thus limsup (Tu — Tw)-» £ 0.
By CP wu(x) < v(x) < sup v(x) = n/kR + R on Bi(y). Replace v by
—v to get the other inequality.

When 2 is contained in a symmetric domain we have the follow-
ing comparison principle (CPS):

THEOREM 2. Let 2 be bounded and 3 piecewise smooth. Suppose
u(x) is a solution to problem (1) with boundary data v(0), 0 < v(0) <7,
0= =72, on 3*.

(i) If QcC Bg(0) then v <u or v=u on 2.

(ii) If 2 c B:(0) then w < u on L.

(iii) If Q c H then z(z,) < u(x) on 2.

Here v = v(r, R, v,), w = w(r, R, 7,), and 2(x) = 2(x,, Y,).

Proof. The proofs for parts (i) and (ii) are in [5]. We present
the proof for (iii) which is very similar. We introduce the angle
Jr(2;) between the curve and the positive x, direction

%z

SIno(@) = Pt

It is known that sin+~(x,) is negative and increasing in «, (see §5).
On3*, Tu-v =cosv = cosv, = —sin4,(0) = —sin(x,) = T2-v. The
last inequality is true because | 72| = —sin 4(2,). Apply CP to obtain
z2(x) < u(x) on 2.

We shall need the following consequence of the boundary point
form of Hopf’s maximum principle [11].

LEMMA 1. Let u e CY(B,) N CABy) and v e CA(B;). Suppose u and
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v satisfy condition (i) of Theorem 1, u < v on By and w(x,) = v(x,)
at x,€0B;. Then (0u/ov)(z,) # (0v/ov)(w,).

Proof. Let w =u — v, then w satisfies
(5) Lw = 3} a;;w,.; + Zk‘, bw,, = Kw
%5
where
a; =a;Fu),  Nu=3 a;wu,.;
3

1

% 7y + t(Fu — Fo)]dt .
o 0Py
Under the hypotheses L is uniformly elliptic with bounded coefficients
on B,. Since w <0 on B, and w(x,) =0, Hopf’s theorem gives
(ow/ov)(x,) #= 0.

REMARK. The smoothness properties of # and v can be inter-
changed in Lemma 1.

2. Existence theorems. Gerhardt [9] proves the following
result:

THEOREM 3. If 2 is bounded, ¥ cC*», 0 < v(o) < m, v(o)eC*?,
then there exists a unique solution wu(x) to problem (1) with u(x) €
C>*(Q2).

Simon and Spruck [16] prove a similar theorem under the condi-
tion Y eC*. They give a local estimate of the gradient up to the
boundary. With this estimate we prove:

THEOREM 4. Let Q be a domain with a piecewise smooth bound-
ary 3. LetY =23+ 3* where X* is open in X and X* e C*. Sup-
pose that on 3*, v(0)eC"* and 0 < v(o) < w. Then there exists a
solution u(x) to (1), with boundary condition (1b) holding on X*.

Proof.

Step 1. We construct approximating domains 2, with C* bound-
aries 2,. For 2 bounded we require:

(a) if xeX and dist (z, 3°) > ¢, then €2,

(b) dist (X, %) <e,
with lim, e, = 0. For 2 unbounded we require 2, = 2 N B,(0) to
be piecewise C*, with lim,,., R, = <, and that conditions (a) and (b)
hold with X replaced by 02p,.
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Extend (o) to all of ¥, so that 0 < v(¢) < = and v(06) e C**. Let
u; be the solution to problem (1) with this data, u, e C¥Q).

Step 2. We now obtain a local Holder estimate of the gradient
of u, up to X*, independent of <.

Take x,¢ 3*, choose § > 0 so that B,(x,) N 22 U Z* choose N
so that ¢+ > N implies B, N 3I*cC J,.

We estimate |u,(x)] < M on B,(x,) N 2. By the corollary to
Theorem 1 we can choose M = n(kR)™" + R if each point of B, N 2
is contained in a closed ball of radius R lying in B, N 2. One can
choose R = min [8, (k)] if £ > 0, R = 6 otherwise, where k = max k(c)
over B,;N X*, k(o) = the maximum principal curvature of 3 at ¢
with respect to the interior normal.

By Theorem 3 of [16]: |Fu;lo, ey < {1

By the argument on pp. 467-8 of [13]: |%;|ie,n550p < [ Here
I', and I, are independent of 7.

Step 3. We now obtain interior estimates on the derivatives of
u; independent of 3.

Take x,€ 2, choose § > 0 so that B,(x,) C 2, choose N so that
1 > N implies B, C 2,.

We estimate |u,| < n(4£6)™* + 46 on B,;.

The gradient can be estimated on B,; since

[Fu(y)| < C,exp {C; sup [u; — u;(y)]/o}

where C, and C, depend on » and & sup |u;| (see [10]). This gives
[Vu, ,0,335(950) < I

The interior Holder estimate for divergence structure equations
[11, p. 265] yields |Fu,ls 5,0 < L

Finally, we apply the interior Schauder estimate, since we can
treat the equation as a linear, uniformly elliptic equation with C?
coefficients. This gives |u;|ss 5,09 < Is. Here I's, I',, and I'; are
independent of 7.

Step 4. Because of the boundary and interior estimates we can
choose a subsequence of {u,} that converges in C® on every compact
set kc 2, and in C* on every compact set k2 U X*. The limit
function u(x) will belong to C*2) N CYL U 2*) and will be a solution
to problem (1).

REMARK. If 2 is bounded the solution to problem (1) is unique.
This is an immediate consequence of CP.

3. Two normalizations. From now on we shall take £ to be
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one. This is no loss in generality because of the following lemma:

LeMMA 2. Let u(x) satisfy Nu =u in 2 and Tu-v = cosy on
3. Define v(x) = AV & )u(V kx). Let 2, 3', and ' be the images
of 2, 3, and v under the transformation x — (1/V & )x. Then Nv = kv
in 2 and Tv-vY =cosvy on Y.

Proof. From the expression

_Au@ A Ful) — SUy U U
@+ [Fuf)”

Nu

we see that Nw(@) =V & Nu(V kx) =V ru(V £x) = kv(x). Also,
To@/V ) = Tu(x) in 2 and v'(x/V' k) =) on 3. Thus, Tv-y =
cosy on 3.

If v is constant we shall assume 0 < v < #/2. This is no loss
in generality because if u(x) satisfies Nu =« in 2 and Tw -y = cos v
on ¥, then v(x) = —u(x) satisfies Nv = v in 2 and Tv-v = cos(x — 7)
on X.

4. Solutions to the linearized equation. We examine the solu-
tions to the linearized equation du = u that depend only on #» = |z];
# must satisfy

(6) ey + =L, =

The general solution is u(r) = AI(»; n) + BK(r; n); A and B are arbi-
trary constants, I(r; n) = r"L,(r), K(r; n) = r " K,(1), m = (n — 2)/2,
I, is a modified Bessel function of the first kind, and K, is a
MacDonald’s function.

To be explicit (see [14]):

e (r[2)m
(7) L) = s Dm0

oo

(8) K, (r) = S ¢~ cosh (mu)du .

0

The following recurrence relations hold:
(9 ) (,r—m m)'r = ,r——m m+1
(10) (r"Kp)e = =1 " Kniy -

From equations (7) through (10) we conclude:
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I,.>0 and I>0 for r=0; I.>0 for »>0;

() I0) =0 and I(0) = [2"2"'(n/2)]*

K, >0, K. <0, and K>0 for r»>0;
lim K(r) = 11m K.(r)=0.

r—00

(12)

We shall employ I and K to estimate v(r, R, v) and w(r, R, 7).
In fact, AI and AK, for any positive constant A, satisfy a super
solution condition:

LEMMA 3. For any constant A, A >0, N(AI) < AI, and
N(AK) £ AK.

Proof. For a function u = u(r)

) o= 2= ().

We use the properties listed under (11) and (12):

AL, (n—1) Al
[1 + (AL)T" r [+ AL)y]”

<AL + =D A7 _ a1
r

4K, + 2L AK)n + (4K
[1 + (AK )2]3/2
Ak + @ =D gy

r
= AK .
L r AR

N(AI) =

N(AK) =

The asymptotic behavior of I,, and K, has been studied (see [14]).
As a consequence of these estimates we obtain

(14) 1) = A=—2 1+ 0Qm] as r— e
(15) K@) = \/.g ;%V [1+01/r)] as r—> oo
(16) L(r) = —[1 + 01/r)] as r—— oo

1/2 7'("—1)/2

) K@= I mroum]  as e
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We now give explicit estimates on I,/I and K,/K. For any
solution % of equation (6), v = u,/u satisfies a nonlinear first order
differential equation

(18) v, =10 =D e
r
Let
P = {(r,v):q~>o and 1~(_’”:—11v~02>0}
r
={(r, v):r >0 and v,(r) < v < v,()}

where
and

With this notatidn, we have:

LEMMA 4. For r > 0:

(1) L/ and K,/ K are strictly increasing in 7.
(i) 0 < L/I < wy(r).

(iii) »(r) < K,/K < —1.

Proof. Part (i) is equivalent to saying that (», I,/I) and (», K,/K)
are contained in &7, thus we need only prove parts (ii) and (iii).

We note that v,(r) and v,(r) are increasing functions of 7.

Let v = I,/I, then »(0) =0 and v(r) >0 for » > 0. Suppose
v(r,) = vir,), then v(r) = v,(r) >0 for » < 7, contradicting that
v(0) = 0. This proves part (ii).

Let w = K,/K, then w < 0. Since K, <0, we have K,, = K —
((n — 1)/r)K, > K and K,K,, < K,K. Integrating from » to « gives
K? > K* and hence K,/K < —1.

Suppose w(r,) < v,(ry), then for r > »r, wr) < v,(r) = —a, with
a >1. Integrating from », to » gives K(r) < K(r,) exp a(r, — r) for
for » > r,. This contradicts equation (15) as » — «. The proof of
part (iii) is complete.

REMARK. The upper bound on I,/I and the lower bound on K,/K
are asymptotically exact to order 1/» since

bor-tzbiof) w o
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and

IIf{,:_l__(nz";l)_;_O(i) as r— o,

5. The one-dimensional solution. There is only one explicitly
known solution to problem (1). We denote by z(x;~v) the unique
solution to

2, _ oo
(19a) <T7I‘TTZ?> —z for 0<z<
(19Db) 2,(0+) = —coty
(19¢) lim 2(z) = 0 .

Z—00

Here, z can be interpreted physically as the height of a capillary
surface on one side of an infinite vertical plate.
An explicit solution with z as a function of z is given by

:_2\/1_

D =121 Fsmy) + In \/1—”_2%‘1_1 —ln(l n \/Ltzsl‘l)

n—+ln<1 ‘/1_12)+D
(20)

THEOREM 5. For 0 < v < w/2:

(i) There is a unique solution z to problem (19) given by (20),
2(x) € C*0, =) N C[0, =), with z > 0 and z, < 0.

(ii) 2z =C(™e[1 + O(e*)] as © — o« with C(v) = 4exp (D — 2).

(iii) sin4y(@) = —Ci(M)e*[1 + O(e™*)] as x— = and cos ¥, (x) =
1+ O(e™) as x— oo,

(iv) z< ze™® for x>0, z, = 2(0,v) = V2L — sin ).

(v) 2@)eCq0, =) if 0 < v < w/2.
Here sin 4, (x) = 2,11 + 22.

Proof.

Part (). From equation (20) z is defined for 0 < z < z, and

22 — 1

(21) xr, = M——;———zz—/z .

Thus z, < 0 for 0 < 2 < 2, Inverting, z is defined for 0 < x <
and z, < 0. From equation (21):
(22) sinq, = —21V/1 — 2%/4

and
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(23) cosy, =1 — 252 .
We can rewrite equation (19a) as
—(cosyy), =2 .

Thus, by equation (23) we see that z satisfies equation (19a). By
equation (22) we see that z satisfies equation (19b). That z satisfies
condition (19¢) comes from equation (20).

Part (ii). We rewrite equation (20) as

(24) 2 _ LT 4 exp2 —vVI— D) .

C.(7) 2
By Part (i) this quantity is 1 4+ o(1), thus z = O(e™®); putting this
back into equation (24) gives

e’z
=14 0(e™).
Ci(7) S

Part (iii). These estimates follow from Part (ii) and equations
(22) and (23).

Part (iv). Let v(x) = z,e7%, then
2" o _
Ny = W < 2e " =
v(0) = 2(0), and 2z —v = 0o(1) as ¢ — . By CP z < v for « > 0.

Part (v). For 0 < v < w/2, equation (21) shows that z, € C[0, )
and by equation (19a) z,, = z(1 + 22)**e C[0, o).

ReMARK. If v = /2, z(x, ©/2) = 0 is the unique solution to prob-
lem (21). This is an immediate consequence of CP.

Chapter II
Solutions in Symmetric Domains

6. General estimates—interior case. We obtain estimates for
the funection »(r; R, v) that satisfies

1 r* v, _
(25a) ”F_(*TfT—F) —v  for 0<r<R
(25b) v,(04) =0

(25¢) v(R—) = coty .
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Johnson and Perko [12] prove by the method of successive
approximations:

THEOREM 6. Problem (25) has a unique solution v(r, R, v) which
18 continuous in (r,R,v) for 0=r=R, R>0, and 0 <~ < /2.
If 0 =v<mx/2 them v >0, v,>0, and v,. >0 for 0<r<R. If
v = w/2 then v = 0.

Note. Johnson and Perko give the proof for n = 2, but the same
proof holds for » > 2.
Introducing sin(r) = v,/1/1 + ¥ we have

(262) L (pnising), = v
(26Db) siny(0+) =0
(26¢) siny(R—) = cos 7 .

Equation (26a) can be rewritten as

(27) (sin ), + n—1) sinyg = v .
r

Partially inverting equation (27):

28) —(cos ¥), + (l’“—‘;—ll sing = .

We shall estimate sin +/» and then use equations (28) to estimate v.

LEMMA 5.

Sm r*o(r)dr = ry 7 sin P(r,) — 77" sin () .

1

Proof. Multiply equation (26a) by 7"~ and integrate.

LEMMA 6.

(1) Sy % o 0<r=<R
r n

(ii) (Smw) >0 for 0<r=R.
r r

Proof.

Part (i). From Lemma 5 and Theorem 6:
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retsin 4 = S s*w(s)ds < T o(r) .
0 n

Part (ii).

<sin«]f) _ r(siny), —sinyp _ —nsinyg + 7 -0

r 7 r

The last equality comes from equation (27); the inequality comes from
Part (i).

LEMMA 7.

v(O) sin { v cos 7}
2=+ < min ,
¥ n R

Jfor 0 < r < R.
Proof. From Lemma 6 (ii)

. . _ .
lim SI0 Jr(8) < sin (1) < lim S0 +r(8) ]
s>+ 8 r soB— 8

We note that

lim SI0Y(8) _ hm [sin 4 (s)], .
§—04 S

Thus, using equation (27):

n - lim sin y(s) _ hm v(s) = v(0) .
s—0+ S

By condition (26b)

3 /
lim S0 V¥ (8) _ cosy )
s—B— s R

We have shown

(0) < sin (1) < cosy
n r R

Combining this inequality with Part (i) of Lemma 6 gives the stated
inequality.

THEOREM 7. For 0 = v < @/2:

(1) max «{1/2(1 — sin7), —n;?i} <R, R,7) .
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R2
(i) 201 — sin7y) + 2(—""52 [6(R) — v(0)]0(0) < v*(R) — 50)
< 2n(1 —sinvy) .

(ii) (B, R, M <(n—1) C(}SB’Y + \/2(1 _ siny) + 987

Proof. Parts (i) and (iii) are due to Finn [5]. Integrate equa-
tion (28) from v(0) to v(R):

(29) M:l~sinv+(n—1)§”‘R’§il‘—“ﬁdv.
2 »(0) r

Employ the estimates of Lemma 7:

2(R) 3
30) S SNy gy > 20 1y(R) — w(0)]
v(0) r n
(31> EW(R) Sin‘llf‘ dv < Sncos T/R_v_dv + Sv(R) cos Y dv
20 P v(0) n ncos7T/R R

_m (eosv\ _ v*(0) R) Cos Y
- 2(R> o B TR

Part (i). Equation (29) gives v(R) > V21 — sinv); Part (i) of
Lemma 6 with » = R gives v(R) > n cos v/R.

Part (ii). Combining equation (29) and inequality (31) gives

v(R) o 1 Loy _ n(n — 1)cos’y
5 <1l-—sinvy + o 2%(0) s

+ v(R)(n — 1) "";7 )

Solving this quadratic inequality:

cos?y 1]2(0) 1/2
= Tl

o(B) < (0 — 1) BT 4 [2(1 —siny) + (1 — n)
Estimating v(0) < n(cos v/R) gives the stated inequality.

Part (iii). Combining equation (29) and inequality (30) gives the
left-hand side of inequality (iii). The right-hand side is obtained by
employing sin «+/» < v/n; this estimate yields

S”(R’ sin 4 dv < v (R) — v%0)
v P : 2n )

Combining this with equation (29) gives the result.
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Inequalities (i) and (ii) are sharp for small and large R, more
precisely:
COROLLARY.
v(R, R, v) = 2(0,v) + O(1/R) as R—— o
v(R, R, ) = nc";” +O(R) as R—0.

7. The narrow tube. A study is made of v(r, R, v) for small
R. We show that the solution is close to a spherical ecap.
First, we prove a technical lemma:

LeEMMA 8. Suppose Nf(r) = Ng(r) for 0= r < R, then [f(r,) —
fry) =z 9(ry) —g(r) for 0 =7, <7 < R.

Proof.

= i) 2 e o).

Multiply by #*' and integrating from 0 to » gives

" f - 17y,

Vit Vitg '

Simplifying: f, = ¢,. The conclusion follows upon integrating from
r, to 7,
We take 0 < v < 7/2 in what follows. Introduce

cos ¥
k

S(r) = Rtanv — 1V (Rsecvy)} — 7 +n

and
Sy(r) = S, (r) + Rsecy(l — sin~y) .

LeMMA 9. Si(7) < v(r) < Sy(r) for 0 < »r < R.

Proof. To apply CP, we check that

NS, == °‘§” > S,(r)

NS, =n C‘;;” < Sy(r)

for 0 << R, and TS,y =TS,-v =cosv for »r = R.
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Two special cases of Lemma 9 are

(32) nfo—fsel <v(R,R,7) < Rsecy(l —sinvy) +n c°137
(33) n c";“f >0, R,v) > n c"};” — Rsecvy(l —sin7) .

Introduce R, = R sec 7[l — (R*/n) sec*v(1 —sin )] and R, =
R secy[1 + (R*n) sec?v(1 — sin )]

THEOREM 8. (0 =7 < 7w/2) v(r, R, 7) > Ss(r) = Hy(R, v) + R, —
VR — 7 and v(r, R, v) = Sy(r) + O(R®) as R — 0, where

R e
H(R, ) =n c‘fz"’ — R, + }’j’—” So 1/ BT rdr

for v # 0, and

H{(R, 0) =%(1 +£:->—R(1 +—1§—)“ — R,

R.
-+ }'g'n Soz "V R: — ridr .
2

Proof.
Case v #0. Let fi(r) =R, —V'R:— 7 and f,(r) = R, — V' R: — »~.

Clearly, R, > R and R, > R for R £ R,, with R, sufficiently small.
By estimates (32) and (33)

Nf(») = g < v(0) < v(») = Nw

1

Nf(r) = % > 9(R) = v(r) = Nv .

2
Hence, by Lemma 8
(34) R —VE—¢r<vr)—v0) <R, — VR, —1*.
Let

R e
H(R,v) =n "";’Y — R + 7’;; S /B — rdr .

Multiplying estimate (34) by »*~! and integrating from 0 to R gives
(35) H, < v»(0) < H, .
Let
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S;(r) = H; + fi(r)
and

S,(r) = H, + fir) .
By inequalities (34) and (35): S;(») < v(r) < S,(r). Now

S(1) = S() = R~ B, + 2 S VT = — VT = Pdr
0

+ (VR - VR — ).
Clearly R, — R, = O(R®*) as R— 0, and

Ry _ (R, — R)(R, + R,) s
VR =7 — VE =7 = e S = O(R)

as R— 0. Hence S,(r) — Si(») = O(R*) as R — 0.

Case v = 0. We must modify the above proof. We still have
v(0) < Hy(R, 0) and B, — V'R — 7* < v(r) — v(0); however, B, < R and
v(r) — v(0) < B, — V'R — 7* only for 0 < » < R,. We obtain

-

(36) 2(0) > _g- sin y(R,) — R, + _g; 5 VR — v

2 0

Here

RI:R<1—%>_1 and RZ:R<1+5>_1.

We estimate sin »(R,); Lemma 5 gives

sinr(R,) = <£—>n‘1 _ 1 SR r*“o@r)dr .

R, 5 Imy
Thus
sin ¥ (Ry) > (%) - (% +r) R;}‘e‘gfg
=1— i( + %)n_l.

Putting this into estimate (36) gives v(0) > H,(R, 0). Thus v(r) > S,(»).
Now

e (T VR,
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(I Dz .2,
+ T SRZ "/ RE — ridr
= O(R?) as R—0.

We estimate v(R, R, v) by Part (iii) of Theorem 7:

_ 2n 2n _ _ R\
BN o(R) = 90) < s < P R( 2n>
R R
(38) o(R) = v(0) > [ 2B A0 (=D 01"
2 n

2 1\
>R[1+R (1 n)} .
We have employed estimates (32) and (83) for v(R) and »(0). Esti-
mates (37) and (38) show that v(R) = v(0) + R + O(R®) as R— 0.
Since Nv = v > NS, for 0 £ » < R, Lemma 8 gives v(R) — v() >
S:(R) — S;(). Thus v(r) < v(R) — Sy(R) + Sy(r). We note that S,(R) —
S0) =R, — VR —R*=R + OR®) as R— 0. Therefore

v(r) < [v(0) + R] — [Sy(0) + R] + Si(») + O(R®)
= Sy(r) + [v(0) — S(0)] + O(R?)
< Si(r) + O(R?) as R—0.

We have used that v(0)— S,(0) =v(0)— Hy(R, 0) < H\(R, 0)—H,(R, 0) =
O(R®). Since we started with S;(7) < v(r) the proof is complete.

COROLLARY. For n =2, H,(R,v) can be calculated explicitly,
yielding

39) w0, R, v)=298Y _ _E _(;_21-si0'7), op
@) o0, &) R cos7< 3 cos’y >+ (&)

as R —0.

REMARK. The formula (89) is known as Laplace’s formula.
Ferguson has given a formula differing from formula (39) [1]. We
have settled the question.

8. The wide tube.

8A. Estimate mear the boundary. We show that near the
boundary the solution » approaches the one-dimensional solution as
R— oo,

LEMMA 10. For 0 =v <7/2 and 0 =1l = R:
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(40) V(R — 1) < v(R) + 2siny — 2cos (R — 1)

(41) sin (R — 1) < —sinn(l) + -]% (n — 1) cos v .

Proof. Integrating equation (28) from »(R —1) to »(R) and
estimating sin > 0 gives inequality (40).

By CPS, z(x, v) < v(z — y|, B, v) in By(y) if Bz(y) © H. Choose
y=(R,0,---,0) and © = (2,0, ---, 0). Thus

(42) 2@, V) <v(R —ux, R, 7v) for 0<x, ZR.

Let » = R —«,. Then [sin(z,)],, = —[siny(2,)],. Therefore (sin ), +
(m — 1)(sin 4p/r) > —[sin ¥ (x,)],. Integrating from R — ! to R and
estimating sin /7 < cosv/R gives inequality (41).

THEOREM 9. For 0 =v <xw/2 and [ = 0:
(i) v(R —1, R, ) is strictly decreasing in R.
(ii) limgp..v(R — 1, R, v) = 2z, 7).

Proof.

Part (i). By CPS, v(lz — 9., By, 7) < v(|x — w,|, By, ¥) in B, (y,)
if By, (y,) C Bg,(y:). Choosing y; = (R;, 0, ---,0) 4 =1 or 2, and « =
@0,---,0 gives v(R, —~ 1, R,,7) < v(R, — 1, R,,v) for R, < R, and
0<Il=R,.

For [ = 0 we have v(R,, R,,v) £ v(R, R,,v). If v+ 0 Lemma 1
rules out equality.

A special argument is needed for the case v =0 and I = 0:
Let w,(r) =v(r, R, 0) and u,(r) =9 + R, — R, R, 0). Suppose
(R, Ry, 0) = v(R,, B, 0), then u,(R) = uy,(R;). Also u,(7) > uy() for
0=r<R,. At R,

(n—1) ;.. (n —1)

I (sin @,), + TR
since Nu, = Nu, at R,; here ¢, (1 =1 or 2) is the angle between the
curve given by u;(r) and the positive r direction. Thus, (sinp,), <
(sin @,), at R,. This inequality must hold for B, — ¢ =< r» £ R,, for
some ¢ > 0. Integrating from r to R, gives sin @,(r) > sin @,(#); this
implies that u,(r) < u,(r) for R, — e < r £ R, after another integration.
This is a contradiction.

(sin @,), +

Part (ii). For R such that

(n + 1)l cos vy
(43) E> 1 + sin 4, (1)
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the right-hand member of inequality (41) is <1. Combining ine-
qualities (40) and (41) and noting by equation (23) that 2[sin~vy —
cos ¥r,(1)] = 2*(l) — 2%(0) gives
(44) v (R — 1) < v(R) — 2%0) + 2*(l) + 2y(, R)

7(l, R) = cos y(1) — [cos® (1) + 2e siny(l) — &'
where ¢ = (n — 1)(I/R) cosv. Clearly, lim,_. 7(l, R) = 0. By the cor-
ollary to Theorem 7 limg_. v*(R) = 2*(0). Thus lim,_ ., v(R —1, R, 7) <
2(1, v). By inequality (42) »(R — I, R, v) = 2(l, 7). Hence Part (ii) is
proved.

8B. Estimate of v(r, R, v) from above.
THEOREM 10. For 0=v<=x/2: v(r, R, 7)< H(R, v)I(r)[L+O(1/R"?)]
for 0Zr=R—(1/)InR as R — <, where

R('n——l)/z

H(R, v) = V2xC\(7) oy

Proof. By CP and Lemma 3, v(r, R) < (I(r)/I(R — D))»(R — 1, R)
for 0 < < R —l. By inequality (44)

(B — 1) <2(D{1 + [22(0]"[v*(R) — 2%(0) + 2n(, R)]}” .

Choose I = (1/4)In R, for R sufficiently large condition (43) shows
that 7 is defined. By the estimates of Chapter I we find

IR —-1)= 1/;7 GX%EEUZ 2 [1 +0 (1_I.IRE>]

and

2(l) = C,(v) exp (—1) [1 +0 (_R}_)] .

To estimate 7, we note that
0 < 7, R) < e[—2sin y,() + €][cos ¥ ()] .

Thus
In R)

Also v*(R) — 2%0) = O(1/R) by the corollary to Theorem 7. Combining
estimates and noting that z(l) = O(1/RY*) gives the result.

7, R) = o(

8C. Estimate of v(r, R, v) from below.

THEOREM 11. For 0=v<=z/2: v(r,R,v)>H(R,7)I(r)[1+0(n R/R)]
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for 0=r=R—(5/2)InR as R— oo,

Proof. By Theorem 9, »(R — 1, R,v) > =2(l,v")for0 =1 =< R. We
construet a subsolution u(7) for 0 < » < R — | with w(R — 1) = z(l, ),
where [ will be chosen later. Let

W) = h (1 — >I(7~) = BB()I(r)

€
"+ a

where h, ¢, and a are positive constants with ¢ < a.
2er
“, :h[B'rI, +———I].
™ ”* + a)?
We note: w >0 and %, =0. The subsolution condition Nu = »

becomes

w, + uui = u(l + u2)**.

4, + @=L
r

We require the stronger inequalities

(452) w,, + P =1
. r

u, = u(l + 2u?)
(45b) maxu, <1.

These are stronger because (1 + 2)* <1 + 2x for0 <z < 1. Condi-
tion (45a) reduces to

AB™!
46 wp < S48
(46) ” + a)
Al) =20 & & “_2_“3_7’2

”+a

7 +(n—-1).

By Lemma 4 we can choose b so that

» LO)

5—mn
1(b) )

2

V

Let a = 38b®. With this choice for a, A(r) > 1 for all » =0, as can
be seen by checking the cases » >b and r <b. Choose h =
2[R — D)B(R — )]™*. Let

¢ = max —27.———— .
o (1 4 a)’

By Lemma 4 we can estimate I, < I, thus
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,max u, < h|B(R — 1) + ec]I(R — 1)
— 2(D[L + cB-Y(R — 1)]
e\ !
(47 < ) [1 ¥ o (1 — ;) ]

min cAB™! S eB~(R) -
osr=R—1 (12 + @) (R* + a)

We can satisfy condition (46) by choosing ! so that

(48) 26 [1 +eo (1 - —a‘i)'T < %}IZ—; .

We have estimated z(l) < V' 2¢*. Finally, choose ¢ = In R/R and
l=6/2)lnR, then > (1/2)In[2R(R* + a)}/In R] + o(1) as R — oo.
Thus condition (48) is satisfied for R sufficiently large. With estimate
(47) we check that condition (45b) holds for R sufficiently large.
By CP, u(») <v(r) for 0<r < R — . Thus
v(1) > hB(r)I(r)

2D yp _
> mB(O}B (R —DI(r) .

By the estimates in Chapter I we find
20 = Coe |1+ 0(3) |

@b e SE[: 055

Combining estimates and noting that B*(R — 1) =1 + O(n R/R)
gives the result.

COROLLARY 1. w#(r, R,v) = H(R, V)I(r)[1 + OQA/R"®] for 0 = r <
R —(5/2)InR as R — oo.

Proof. Combine Theorems 10 and 11.
We can estimate the first derivative as follows:

COROLLARY 2. For 0<r<R—(5/2InR

sin y(r) = H(R, 7)L(r) l:l +0 (ﬁ):l

Jor R — oo,

Proof. By Lemma 5,
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1

,r'rb—l

sin @ (r) =

S: s"'w(s)ds .

Estimating v(») with Theorem 10 gives

sin () < H(R, 7)L(r) [1 1o (}}/_)]
for 0<r< R — (1/4In R. Estimating v(r) with Theorem 11 gives

sin y(r) > H(R, v)I(7) [1 +0 (mTRﬂ

for 0 »< R — (5/2)In R. Combining estimates gives the result.

REMARK. One expects the error in Corollaries 1 and 2 to be
O(In R/R). Perko [15] obtains this error estimate for v >0 by a
completely different method. The case v = 0 is important in view
of the general estimates of Chapter III.

9. The exterior problem. We obtain estimates for the func-
tion w(r, R, v) which satisfies

1 i, _ .
(49a) = (T/Eﬁ) —w  for r>R
(49b) w,(R+) = —coty
(49¢) lim w(#) = 0.

r—00

Johnson and Perko [12] prove by a “shooting argument”:

THEOREM 12. Problem (49) has a unique solution w(r, R, v) which
is continuous in (r,v) for r Z R and 0 < v =2 7x/2; w >0, w, <0 4f
0==v<xn/2; w=0 of v=xu/2; wr, R,0) =lim,_.; w(r, R, v); andj
lim,_. w, = 0.

REMARK. The note after Theorem 6 applies here as well.

9A. Continuity with respect to (r, R,v). We fill in a gap in
the continuous dependence properties.

LEMMA 11. For 0 = v < 7w/2, Ry < R, and r > R,

_ R, (B
(50) wr + R, — R, R, v) < w(r, Ry, 7) < i w ( i r, R, 7) .

Proof. Let v, = w(r, R,;,v) and r, = |2z — y,| for i =1 or 2. If
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B;,(y,) C B;(y,) then the proof of Theorem 2 shows that Tw,-v <

cosv = Tw,-v on §Bg;,. Since v, =o(1) and v, = o(1) as [&| — o, CP

gives v, < v, on B;. Choosey, =0, y, = (R, — R, 0, ---,0),and x =

(,, 0, - -+, 0); thus w(x, + R, — R;, R, v) < w(x,, R,, 7) for x, > R,.
Let

uz—ﬁ—jm(—g—:r, R1,7>.

Then by Lemma 2
— (B
Nu = <R2> u < U
in B;,(0) and Tu-v = cosv on 0B;,. Thus by CP, u > w in Bz(0).
LEMMA 12. For 0 < v = /2
—_— 63
0<e<V'2, a(e)=§.
If |r, — 7| < 0(e) and 7,7, = R then |w(ry, R, v) — w(r, R, )| < e.

Proof. See [5].

THEOREM 18. For 0 < v < n/2: w(r, R, 7) is continuous in (r, R)
independent of .

Proof. We show continuity at (r, R,).
For R > R,: By inequality (50)

W(’r, Rl, 7) < 'w(’r, R; 7) < ""R— w (_E}_fr’ Rly 7) .

R, R
Suppose
[r —n] < ae)
(51) I—%r—rl <o) |-
By Lemma 12

62w, By — e <wlr, By7) < K fwlr, By ) + el
For R < R,: By inequality (50)

—% w (% r, R, 7) <wlr, R,7) <w, B, 7).
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Supposing condition (51):

(53) —g} [w(ry Ry, 7) — €] < w(r, B, v) < w(ry Ry ¥) + ¢ .

1

Inequalities (52) and (563) show continuity at (», R,) independent of
.

COROLLARY. w(r, R, ) is continuwous in (v, R,v) for » =R,
R >0, and 0 < v = /2.

Proof. We show continuity at (r, R, 7).

Note:

lw(r, B, v) —w(ry, By, v)| = |wl, R, v) — w(ry, By, 7)|
+ I’I,l)(’l‘l, Rly '7) - w(,}'l’ Rl; 71)'
=I+1II.

For |v —v,| <d;: II<e by Theorem 12. For | — | < 6, and
|R — R,| < 6,2 I <& by Theorem 13. Hence I + II < 2¢.

9B. General estimates—exterior case. Introducing sin ¢(r) =
w,/V'1 + w2 we have

(b4a) — (r*'sinp), = w for » >R
>
(54b) sinp(R—) = —cos 7 .
Equation (54a) can be rewritten as
(55) (sin @), + (=1 gin P=w.

Partially inverting equation (55):

(n —1)
r

(56) —(cos @), + sinp =w .

LeMMA 13. For 0 = v < 7/2 and » > R, (sinp), > 0 and

57) _cosy _sing g
R 7

Proof. Since sinp < 0, (sin @), = w — (n — 1)/rsine > 0. Thus
—cos v < sinp(r) < 0 for » > R implying inequality (57).

THEOREM 14. For 0 £ v < w/2:
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(i) w(R, R, v) < V21 —sinv) .

. (a 1,COSY o (n—1)cosy
(i) Wk, B> —(n—1)%% + 420 sm’Y)-!-[———R T

Proof. Part (i) is due to Finn [5]. Integrate equation (56) from
w(r) to w(R):

(58) w(R) — wr) —=

wR oin @
dw .
2

w(r) r

—sin 7y +cos¢+(n—1)§

Let 7 — oo:

w(R) = 21 — sin7) + 2(n — 1) S”‘R’ Si‘;‘?’ dw .
0

Estimating with inequality (57) gives
wH(R) < 2(1 — sin )
w*(R) > 2(1 — sinv) — 2(n — 1) °°§7 w(R) .

Solving this quadratic inequality gives part (ii).
COROLLARY. w(R, R,7) =1V21 —sinv) + O1/R) as R — oo.
9C. FEstimate near the boundary.

LEMMA 14. For 0 = v < 7/2:
(59) w(r, R,v) < z(r — R, ") for r>R
60) sin@(R + 1) < siny(@) + (0 — 1) l_‘i;’_;-l for 1>0.

Proof. Let u(x) = z(x, — R,v). By the proof of Theorem 2:
Tw-v<cosy=Tu-v on {x: 2, = R}. Since w =o(1) and u >0 we
have w —u < o(1) as |#| — . By CP,

w(r, R,v) < z(x, — R,v) < z(r — R, 7) for »>R.
Let ©, = » — R, then (cf. Lemma 10)

Ging), + 2= sinp < —[sin @, .

Integrating from R to R + ! and employing inequality (57) gives
inequality (60).
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THEOREM 15. For 0 v <7/2 and 1 = 0:
(i) w® +1, R, ) is strictly increasing in R.
(ii) limp..,wR + 1, R, v) = 20, 7).

Proof.

Part (i). For Il >0 and R, < R,, take » = R, + | in Lemma 11:
wR, + 1, R, v) <w(R, + 1, R,,v). For [ =0 we have w(R,, R, v) =
w(R,, R,, 7). If v+ 0 Lemma 1 rules out equality. The case [ =0
and v = 0 is handled as in the proof of Theorem 9.

Part (ii). From equation (58): w*(r) > w*(R) + 2[siny — cos @(7)].
Let » =R + 1 and combine this with inequality (60) noting that
2[sin v — cos 4, ()] = 2*%(1) — 2%0):

(61) wi (R + 1) > wi(R) — 2%0) + 2*()) + 2y(l, R)

where 7 is the function introduced in §8. Now, by the corollary
to Theorem 14 lim,_., w*(R) = 2%(0). As before limg .., (I, R) = 0, thus
limg.., w(R + 1, R,v) = 2(l). By inequality (69): wR + 1, R,7) =
z(l,v). Thus lim,_..wR + 1, R, v) < 2(, 7).

9D. Behavior at infinity. We study w(r, R, v) for » large.

THEOREM 16. For 0 < v < 7/2:
(1) CR,v) = lim YY) prists and CR, ) >0 .
o K(7)
(ii) w(r, R, v) = CR, V)K(r){1 + O[K*(r)]} as # - .
(iii) C(R, v) < V2/zC,(7v)R™""e*[1 + O(ln R/R)]
C(R, v) > V2[zC,(v) R "¢"[1 + O1/R")] as R — co.

Proof.

Part (i). Since K(r) is a supersolution (Lemma 3) CP gives

wRy) 77,
w(r) < WKO) for » > R, .
Thus w(r)/K(r) is monotone decreasing in 7 and positive. Hence
C(R, v) exists and C(R, v) = 0.

We now construct a subsolution. Let u(r) = AK()[1 + aK*(r)]
for » > R, = R. Let A =wR, R, V){KR)[1 + aK*(R)]}*. We will
determine a(R, R,) > 0 so that u satisfies the subsolution condition
Nu =u for »r = R,. By CP we will then have w < v for » > R,.

We calculate u, = AK,(1 + 3aK*) and note that u,< 0. We
estimate u, by noting
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wkR) — wR) < V2
KR) ~ K{R) " KR)'

Thus

B T K(R)1 + 3aKR)
U <V'2 [ K(R) ] 1 + aK'R)

<z (@D i (1Y - um.

The last inequality comes from Lemma 4. The subsolution condition
becomes upon dividing by u:
(62) 1+ 2a(K* + 3K)(A + aK?»)™*

(n_l)K (1 + 3aK?) w = (1 + u2) .
r K L+ak) =

We will require the stronger inequality obtained by replacing
(1 + u2)** with 1 + ¢(R)u2, with

[b*(R) + 1] —

c(R) =

b*(R)

We require
(63) wif < 2a9(1 + aK*!
where

— (m—1)(_K,\(1+3aK®

F=e+ r < K><l+aK“‘>
g=K*+ 3K:.
Rearranging condition (63);
(64) 20 > A’K:fg7' 1 + 3aK**1 + aK?) .
As above,
V2 _
A< 21 K*(R)]™.
< K(R)[ + aK*(R))]
Thus
6
A1 + 8aK*(1 K*
1 + 3aK)A + aK?) < ——— K“’(R)
Also
F_ n—1/( K,

f<F=e+222(-E)@.

Thus

max KX fg—' < max K:fg™ = d(R) .

TZR
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Choose a = 3d(R)/[K¥R) — 9d(R)K*R,)] and condition (64) will be
satisfied. We note that b(R), ¢(R) and d(R) are decreasing in R.
Take R, sufficiently large, then w(r) > w(r) for » > R, and thus

= 1im ()
CR, v) = lim ) =A>0.

P00

Port (ii). From Part (i) C(R, v) < w(r)/K(r) or
(65) C(R, )K(r) < w(r, R, ) for »>R.
Next, note

w(k,) K[l + aK*(7)]
K(R) 1+ aK*"R)]

for » = R, = R. Divide by K(r) and let » —

Nz WE B
T T KR + aK(R))]

w(r) >

(66) C(R

Replacing R, by r gives
(67) w(r, B, v) < C(R, )K)[1 + a(R, r)K*(r)] .

Combining estimates (65) and (67) gives Part (ii).

Part (ili). We find an upper bound as follows:

w(By B,7) 2, 7)
R AR A

where | = R, — E. The second inequality comes from Lemma 14.
Choose I = (1/2)In R, then by the estimates of Chapter I:

2(0) = C(7)e! [1 +0 (%)]

K(R) = V'z[2 S&RWQE/TJFQ [1 L0 (h;% R)]
Thus

I%:V%CK'VWRRW_DM[ _l_O(lI;ER)}

We find a lower bound by combining inegualities (61) and (66)
with R, =R + I:

2() {1 + 2w R) — 2%0) + 290, RA)IF"”
K(R,) [1 + a(R, R)K*(R))]

C(R, v) >
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Choose | = (1/4)In R, then

20) = Ce 1+ 0(3) | = 0(Z)

KXR)K-*(R) = O (%)

70, R) = O (%Tff) .

By the corollary to Theorem 14: w*(R) — 2*(0) = O(1/R). Noting that
d(R) is decreasing in R we have

C(R, ¥) > V2RC\(7)e*R"-1" [1 +0 (_Rl_)} :

We can determine the asymptotic behavior of the derivatives of

COROLLARY.

(i) w, =CR, VK, (r)1 + O[K¥ ")} as r — oo,
(ii) w,, = C(R, MK, (r){1 + O[K*()]} as r— .
Proof.

Part (i). Integrate the equation (" 'sin @), = r*~'w from 7 to

n—1

—sin @(r) = /rl r s*'w(s)ds .

Estimate the integral with w(s) < w(r)(K(s)/K(r)) and

w(r)K(s)[1 + aK*(s)] > w(r)K(s)

O E TR + k)] KoL + aK<]
Note:
Sw s" ' K(s)ds = —r"" K, () .
Hence
K < snp<-K
KA +oky U= S0P =g wn).

Thus sin@ = C(R, V)K,[1 + O(K*] as r — . This implies Part (i).

Part (ii):
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W,y

) sin @
A1 + w?)*? g

= (sing),=w—(n —1

= co ) [ K - =D g [+ o)

= C(7, R)K,,[1 + O(K®)] .
We give some further properties of C(R, v):
THEOREM 17.
(i) C(R, ) is continuous in (R, ) for R >0 and 0 < v < 7/2.

(i) C(R, v) is strictly imcreasing in R for 0 < v < «/2; C(R, )
18 strictly decreasing in .

Proof.
Part i). We show continuity at (R,, v,). For v, < z/2 we com-
bine inequalities (65) and (66):

w(er Ry A/) S C(Rr 7)
w(R,, Ry, 7o) C(Ro, o)

’LU(Rl, R, v) 2
< B Br [l + a(R)K*(R))] -

Require |R — R,| < R,/2, then choose R, so that a(R)K*R,) < ¢ and
a(R)K*R,) < e. Here a(R,) = a(R,, R,) and a(R) = a(R, R,). By the
corollary to Theorem 13 there are 6, > 0 and 6, > 0 so that

w(Rly R, 7) — 1
w(Ry, By, 7o)

for |R — R,| < 4, and |v — 7,] < é,. Thus
l1—e_ CR,v)

[1 + a(R)K(B)]™

<e€

< = +er.
(e~ CRomy =79
For v, = 7/2 and v < 7/2:
0 C R, W(R, R, ’Y) ‘/2(1 — sin fY) .
<CR, 7)< 0 < 00

Require |R — R,| < R,/2. Clearly there is a § >0 such that 0 <
C(R, v)<e for |y—m/2|<d. This shows continuity since C(R,, 7/2) = 0.

Part (ii). Let R, < R,. By Lemma 11 w(r, R, v) < w(r, R,, 7)
for » = R,. Dividing by K(r) and taking » — o gives C(R, 7) <
C(R,, 7). Likewise if v, <7, CP gives w(r, R, v,) < w(r, R, v,) for
» > R. Dividing by K(r) and taking » — o gives C(R, v,) < C(R, 7.).
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To complete the proof we need only show that if w, and w, are
two solutions of equation (49a) with w, ~ CK(r) as » — « and w, ~
CK(r) as r— o then w, = w,. Let w = w, — w,; without loss of
generality we can assume w = 0, since by CP if u(R) = 0 then u(») = 0
for » = R. Suppose w, # w,, then we must have u(r) > 0 for » > R.
Note: u(r) = o[K(r)] as » — . The equation satisfied by w is

(68) (" u,q), = 7" 'u
with

atr) = | (1L + o, + tws, — w, )P)dt

By the corollary to Theorem 16:
9(r) =1+ O[K*r)] and  g¢,(r) = O[K*7)]

as r — co. Rewriting equation (68):

(69) urr+ur<’%+%‘>:%—u.

We construct a subsolution for equation (69). Let

U:Ael’—(1+i‘£)

(n—1)/2

r r
then
N Ae ([8a —(n —1)(n —3)]  an + 1)(n —5)
4U=1U + P9/ { 4 4r }
__ Ae n—1\1 n—l—lg]
U= W[I+<“+ 2 )fr+ 2 2l

Choose a: a > (n — 1)(n — 8)/4. For R, sufficiently large

U.. + UT<"—1 +lc)>-1-U for r= R,
r q q

(independent of A because the equation is linear) and 1/q(») > 0 for
r = R,. Choose

A = (exp R,)R™1" (1 + 1%> wWR) .

1

Let V(r) = uw(r) — U(r); V satisfies

V., + VT(”;l +%’~><%V for r=R,
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and V(R,) = 0. By the weak maximum principle [11] ming <,<z, V(r) =
min [0, V(R,)]. Letting R, — o yields V(r) =0 for » = R,. Thus
u(r) = U(r) for » = R,, but

w = o[ K] = o[ 20|

a contradiction as 7 — oo,

Chapter III
Solutions in Unsymmetrical Domains

10. General estimates, exponential decay. General estimates
are given that apply to any solution of equation (1a):

THEOREM 18. Suppose u(x) € C¥(2) satisfies Nu = u in 2.

(1) If Bry)C 2 then |w(@)| = v(|z — yl, R, 0) for x € Bx(y).

(ii) If Bi(y) C 2 then |u()| = w(2 — y|, R, 0) for x <€ Bi(y).

(i) If H={x:n-2 >0, || =1} C Q2 then |u(x)| < 2(H-x — b, 0)
for x€ H.

Proof.

Part (i). This follows directly from CP (ef. the corollory to
Theorem 1) since lim sup (Tu — Tw) -y < 0 on 9Bz(y) implies u(x) < v(x)
in Bg(y); for the same reason —u(x) < v(x) in Bi(y).

Part (ii). From Part (i)
(70) [u(x)| = (0, d, 0)

where d = dist (z, 62). By Theorem 10 lim,.,v(0, d, 0) = 0; thus
lu(x)| = o(1) as |x|— . Also w(lx —y|) = o(1) as |x|— o, thus
w(e—y|)—u(@)=01) as |x|—>c. OnoBiy), limsup (Tu — Tw) v =0;
hence by CP, u(x) < w(xz — y|) in Bi(y). The same reasoning gives
—u(x) = w2z — y|) in Bi(y).

Part (ili). Forxe H,lety =2+ (R — 7% -+ b)nn, then By(y) C H.
By Part (i) |lu@)| = v(x —y|,R,0) =v(R —#-x + b, R,0). By The-
orem 9 lim, . v(R —7%-2 + b, R,0) = 2(i-x — b, 0). This gives Part
(iii).

COROLLARY 1. Let d = dist (x, 02), then

lu(a)| < C%% for d=d,>0
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where C depends on d,.

Proof. By inequality (70) |u(x)| < (0, d, 0); by Corollary 1 to
Theorem 11 #(0, d, 0) ~ H(d, 0)I(0) as d — o, where
d(n—l)/2

H(d, 0) = V'27C,(0) .
expd

Combining estimates gives the result.
COROLLARY 2. If Bi0)C 2 then

ww)i = C BB for jolz R

where C depends on R.

Proof. By Part (ii) |u(z)| =< w(|z|, R, 0); by Theorem 16
w(|z|, R, 0) ~ C(R, 0)K(|z|) as || — . By §4

K(|x])~1/77/§&p(:_[_x_|) as |x|— o .
le(‘n—l)/z

Combining estimates gives the result.

COROLLARY 3. If HCQ then |u@)| <1V 2 exp( —7n-x) for
xe H.

Proof. By Part (iii) |u(x)| < 2(m-x — b, 0) for xc€ H. By The-
orem 5 z(m-x —b,0) <V 2 exp (b — 7-x) for xe H.

Corollaries 1, 2, and 3 give different exponential rates of decay
for solutions to equation (la) away from the boundary of the domain.
The estimate of Corollary 38 is best possible because if 2 = H and
w(@) = 2(t-x — b, 0) then u =2(0,0) =1"2 on dH. Gerhardt [8]
gives an estimate of the same form with /2 replaced by (n + 1).

COROLLARY 4. If 2 is an exterior domain then problem (1) has
a unique solution.

Proof. Two solutions u, and u, to problem (1) must satisfy
u,(x) = o(1) and wu,(x) = o(1) as |x|— co; thus u,(x) — u,(x) = o(1) as
] — oo. CP gives that u, = u,.

The derivatives of any solution to equation (1a) can be estimated
as follows:
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LEMMA 15. Suppose u(x) € C*(R) and Nu = u in 2. If By(x,)CR
then |ulsa,5, < Cluly,z, where C depends only on 6 and n.

Proof. See Step 3 of the proof of Theorem 4.

Lemma 15 in conjunction with Corollaries 1, 2, and 8 shows that
the derivatives of a solution to equation (la) decay at the same rate
at which the solution decays:

COROLLARY.

d n~1)/2

[Fu(x)| < C ( for d=d,, d=dist(z, Q)
exp d

where C depends on d,.

Proof. Combining Corollary 1 and Lemma 15 (with 8 = d,) gives

(d + do/z)(n—l)/z

Y )

for d = d,, where C depends on d,. Thus the corollary holds with a
different constant C.

REMARK. Similar estimates hold for higher derivatives, and if
B Q or HcC 2, the analogous estimates are based upon Corollaries
2 and 8. These estimates improve upon the derivative estimate given
by Gerhardt [8].

11. Special estimates. We now put restrictions on v(c) and 2
to obtain special estimates on solutions to problem (1). For simplicity
we assume that 3 is piecewise smooth.

We first extend CPS of Chapter I.

THEOREM 19. Suppose Nu = u in £ and Tu-v = cosvy on X%,
with 0 < v(0) = v, =2 rw/2. If 2 C Biy) and w = o(1) as |x| — oo, then
wr, R, 7,) = u(x) where r = |z — y|.

Proof. By the proof of Theorem 2, Tw-y < cosv, = Tu-v on
3*. By hypothesis w —u < o(1) as |x|— o. Thus CP gives the
conclusion.

COROLLARY. If 2 is an exterior domain, 0 € 2°, and u is a solu-
tion to problem (1) with 0 < v(0) = v, < w/2, then
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e-—lx! e—-(ft[
C,—— <ux) < C, ———— for xzeQ

l xl(’n—-l)/? I xl('n—-l)lz

where C, and C, are positive constants.

Proof. For some positive R, and R;, Bz;(0)CQC Bz(0). By
Theorem 18 and Corollary 2 to Theorem 18
u(@) < w(lzl, B, 0) = ¢ LD
l x l(n—l)/z
and u(x) = o(1) as |®| — 0. Thus by Theorem 19: w(| x|, R, 7o) = u(x).

By Theorem 16: w(|x|, R,, 7,) ~ C(R,, 7,)K(|z|). Combining estimates
gives the result.

REMARK. In this case we have determined the rate of decay.
We now improve upon the upper bounds given in §10.

THEOREM 20. Let w be a solution to problem (1) with v,=v(0)<r,
0 < v, < x2. Suppose Bp(y)C L and Br(y) N\ 2 is piecewise smooth
and convex, where Bz(y) is the maximal domain of existenee of
v(r, R, 7)), v = | —yl, then w(®) =< v(r, R, 7)) in Bg(y).

Proof. Let 0Bz N 2)= 3"+ 3" + 3* where 3* and 3*e(C!, 3'C
Y =0R and 3*C(0Bz) N 2.
For ze2*, Tw-v=1>Tu-v.
For zeX', Tw-v = (cosf)siny(r)
where 6 is the angle between v and # — y. Let m, be the tangent

plane to X at z and let », = dist (¥, 7,). We have cosd = »,/r and
r=7r = R. Thus

Tv-v :7'IS—iEM = sin(r,) = siny(R) = cos v, = Tu-v .
r

The first inequality comes from Lemma 6 (ii).
Therefore CP applies, giving « < v in Bz N L.

COROLLARY 1. Let u be solution to problem (1) with 0=~(0)<7/2.
Suppose Bp(y) T2 and Bp(y) N2 is piecewise smooth and convex,
with lim,_., R, = oo, then uw(x) = 0 in Bp(y).

Proof. Define v, so that v(», R, #) = v(r, B, v,) for 0 =r < R.
Note: 7/2 < v, < w. By Corollary 1 to Theorem 11 lim,_ v(r, R,, 7) = 0
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for 0<r<R. By §3, —v(»,R,v)=wv(r,R m—7) and —u is a
solution to problem (1) with boundary data # — v(¢). Since 0 < 7w —
v, < w/2 <7 —v(0), Theorem 20 gives —u < —v. Thus v(r, R, v,) < u(x)
in Bn(y). Letting 1 — o gives the result.

COROLLARY 2. Let H = {x:x, = 0}. There is a unique solution
to Nu=u wm H and Tu-v =cosy on o0H, v constant: the omne-
dimenstonal solution, u = z(x, 7).

Proof. We need only consider 0 < v < n/2. By Corollary 1,
#(x) = 0 on H. By Theorem 19, if H C Bji(y) then w(r», R, v) = u(x).
For xeH, choose y =(—R,®, ---,%,), then » =R + x,. Thus
w(R + z, R, v) < u(x). Take the limit R— oco: z(x, 7) = u(x).

By Theorem 20, if Bp(y) © H then u(x) < v(r, R,v). For xe¢ H
choose y = (R, %,, - -, %,), then r = R —x,. Thus u(x) = v(R —x, R, 7).
Take the limit R — oo: u(x) < 2(x, v). Therefore u(x) = z(x,, 7).

REMARK. Uniqueness also holds for n =1, since a solution to
problem (1) in H is a solution to problem (1) in H for n = 2.

or an interior domain, we define the “interior rolling number”:
For terior d , we define the “interior roll ber”

%, = max {R: for each x €Y there is a ball B,C 2, with 2 e B,}.

THEOREM 21. Let Q be bounded and 3 ¢ C'. Let u € CY(2)NC¥ Q)
be a solution to problem (1), with v, < v(o) < xw, 0 < v, = w/2. Suppose
., exists, then

(1) maxu(x) < v(H, A, Vo).

(i) 4f Br(y)C 2 and R = &, then u(x) < v(r, R, 7v,) in By(y),
with » = | — y|.

Proof.

Part (i). If w <0 there is nothing to prove. If u(x,) >0 for
x, € 2, then by the maximum principle, max u(x) occurs on 3, say at
x,. Suppose u(x,) > v(F#,, A, V,). By Theorems 6 and 9, v(R, R, 7,)
is continuous and strictly decreasing in R. By Theorem 7,
lim,_,v(R, R, v,) = . We can thus choose R < . so that
v(R, R, 7,) = u(x,). There is a ball B,c 2 with x,€¢B,. By CP:
w(x) < v(r, R,v,) in By. Thus (ou/ov)(x,) = (dv/ov)(x,). However,
(0v/ov)(x,) = eot v, and (Qu/ov)(x,) = cot v(x,), since at x,:

Vu-p . [P

cos v(x,) = V1 F [Pul? VI |[FuP
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and (ou/ov)(x,) = |Fu|. Therefore (ou/ov)(x,) = (dv/ov)(x,), contradicting
Lemma 1.

Part (ii). This follows immediately from Part (i) and CP.

REMARK. The proof shows that equality holds in Part (i) only
if Q is a ball and v(0) = v,.

For an exterior domain, we define the “exterior rolling number”:

#, = min {R: for each x ¢ there is a ball B, > 2°, with x ¢ B;}.

THEOREM 22. Let 2 be an exterior domain, 2 € C* and 2° convex.
Let u(x) € CH(2) N C¥R) be a solution to prodblem (1) with v, < v(0) < w,
0<v,=7x/2. Then

(i) maxu(x) < 20, 7).

(ii) f A, exists, then max u(x) < w(FB, F Vo)-

(iii) if &, exists and Bi(y) C 2, R = &%, then u(x) < w(r, R, 7,)
in Bi(y), with r = |x — y]|.

Proof.

Part (). If w < 0 there is nothing to prove. If wu(z,) = 0 for
x, € 2, then by the maximum principle and the fact that u(x) = o(1)
as |x| — co: max u(x) occurs on Y, say at x,. Suppose u(x,) = 2(0, v,) =
V21 — sinv,). Choose v, = 7, so that u(z,) = 2(0, v,). For convenience
suppose x, = 0, that the tangent plane to 2 at x, is given by {x: x, = 0},
and that H = {x: 2, > 0} C 2. Since v — 2z = o(1) as |x| — «, by CP:
w(x)<z(x, vy in H. Hence (0u/ov)(0)=(0z/ov)(0). However, (0z/0v)(0)=
cot v, and (0u/ov)(0) = cot v(0); thus (ou/oy)(0) = (dv/ov)(0), contradicting
Lemma 1.

Part (ii). Suppose u(x,) = max uw(x) > w(H, ., V,), Where x,€ 3.
By Theorems 13 and 15: w(R, R, 7v,) is continuous and strictly in-
creasing in R, with lim, ., w(R, R, 7, = 2(0, v,). We can choose
R > 2%, so that w(R, R, v, = u(x,), since by Part (i) u(x,) < 2(0, v,).
There is a ball By, with 2°C B, and a,€ B,. By CP, u(x) < w(r, R, 7,)
in Bg, thus (ou/ov)(x,) = (ov/ov)(x,). However, (dw/ov)(x,) = cot v, and
(0u/ov)(x,) = cot v(x,). Therefore (ow/ov)(x,) = (ou/ov)(x,), contradicting
Lemma 1.

Part (iii). This follows immediately from CP and Part (ii).

REMARKS. (1) The proof shows that equality can hold in Part
(ii) only if 2° is a ball and v(o) = v,.
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(2) If Z’eCZ_and Q° is strictly convex, then &2, will exist,
#, = (k)~* where k = min k(¢) over ¥ and ¥ = the minimum principal
curvature of X at o (see [2]).

12. Two examples. We give two examples that show the ap-
propriateness of the convexity condition of Theorems 20 and 22 and
the “rolling number” condition of Theorem 21.

ExamMPLE 1. We construct a domain 2 = By(y) U %~ where 5%~
is part of a cone .27'= {x: 2, > |x|cosa, x, < %}, 0 < a < 7w/2,and y =
(R +¢0,---,0); here ¢ > 0 and

2R + ¢

71 —1:
(L) L= R+ ¢

{1 + [1 —esec’w 2R + ¢ TQ}NI

(R +¢)

where %, is the x, coordinate of the first intersection of .2 with B,
(see Figure 1).

Ficure 1

Let v = »(J& — |, R, v) and let u(x) be the solution to problem
1) in 2, where v = 7/2 — a. For ¢ sufficiently small we will show
that w < v in B;.

Let w, be the volume of the unit ball in n-dimensions.

We modify an argument of Finn [5]. By integration by parts:

S udx = S Tu - vdo = (cosv)|02|
Q2 2

S vdx = (cosv)|0Bz] .
Bp
Thus

SB (u—v)dac:cosv(l&Q}—laBRl)—S ude .

@-Bp

Now [02]| — |0Bg| = | 2" — | 2*| where 3'C 9.2 and 3*CoB,. We
calculate:

|12 = w,_(tan"* o) seec aE**

|12 =(n — Dw,_, Sa riids £ w,_,a""
0
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[where r, is the distance from the x, axis along a profile curve and
s is arc length, thus 7,(s) < s]

a = Rsin™ <§1t;t4x> = T, tan a + O(%?)
12— Bl = 1.7 = w,, B g
Let 0< R, <R and y, = (R, 0, ---, 0).

Claim. For ¢ sufficiently small 2 — B, C B (y,) and u(x) < ()
in B, N 2, where

h(z)= =+ R+ VE — [z —y,[ .
R,
Assuming the claim:
S (w — v)dx = cos Yw,_, tan"*a(sec @ — tan a)z7*
Br

n W, -
— (= +R>—”——1tan” L axr
<R1 1 ” 1
+ O(zr+?) .

For Z, sufficiently small
S(u—vmx>0
Bp

by equation (71) this is true if e is sufficiently small. Therefore
u < v in By.

Proof of claim. Since Nh = h (cf. Corollary 1 to Theorem 1) we
need show only that Th-v = cosvy on [0(2 N Be)]* = 3* + 3° + 3,
where 2°C 0B and 3*CoBgz. On 2%, Th-vy=cosy and on 2
Th-v =1. For xe3* we must show

(72) cosfd = R, cos Y
r
where » = |2 — y,| and @ is the angle between © — %, and v.
By changing the x, coordinate, x — R, — z,, —(R, 0, ---, 0), we
calculate
(73) cosﬁzl[w—l-&(}?——Rl—l—s):].
R r

We check that cos @ is smallest for », = &, determined by 0B, NdB,,:

5 — (B—R)R —¢) —¢2
! R"—'R]._‘_s ’
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Putting this value into equation (73) gives

(R-R) &

(74) cosf =1 — .
RR, 2RR,

For ¢ sufficiently small, so that

_S(R—Rl)_ el >R1cos7

1
RR, 2RR, R, —c¢

then condition (72) will be satisfied.

REMARKS. (1) The domain £ is not convex.
(2) The example can be modified so that ¥ is smooth B, C 2,

R > ., and u(x) < v(r, R, v) in Bj.

EXAMPLE 2. We construct a domain 2 = Bj5(y)U % (see Figure
2) by the method of Example 1 so that u(x) < w(r, R, v) in Bi(y).

Ficure 2

REMARKS. (1) £° is not convex.
(2) The example can be modified so that X is smooth, 2° is not

convex, BicC 2, and u(x) < w(r, R, v) in B;.
13. The infinite wedge. We consider solutions to problem (1)
in
Ty = {(901, x2>: x, > ixli (G CK}
with 0 < a < w, and v constant, 0 < v < 7/2.
THEOREM 23. For 0 < v < m/2 problem (1) has a unique positive
solution in 2¢,. Furthermore, for a < w/2: on Z*, u(x) = 2(0, v)

and lim . u(x) = 20, v). For a > x/2: on X*, u(x) < 2(0,v) and
lim,, _., u(x) = 2(0, v). Here 3* = 0.9, — {(0, 0)}.

Proof. Existence comes from Theorem 4. Let d = dist (z, ).

Case a < w/2. Any solution u(x) to problem (1) must be non-
negative since .07, is convex, by Corollary 1 to Theorem 20. By
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Theorem 19, if 2 c B then w(r, R, v) < w(x) in Bi. By a limit
argument (cf. the proof of Corollary 2 to Theorem 20) we obtain

(75) z2(d, v) = u(x) for xze 2% .

If B,c .27, then u(x) < v(r, R, v) in Bg, by Theorem 20. Given
x € 9%, we choose B, C .9, with center on the z, axis so that the
radius through « is perpendicular to X. This determines R =
2, tan a seca — d tan*«@. Thus,

(76) u(x) = v(R —d, R, 7).

Suppose there are two solutions u,(®) and wu,(x) to problem (1).
We show that u, — u, = o(1) as || — oo.

Given ¢ >0, choose d, so that (0,d, 0) <e¢2. For d >d;:
[, () — uy(2) | < Ju®)| + |uy(x)] <e. For z >7Z, and d =d,, with
7, sufficiently large: 0 < v(R — d, R, 7) — #(d, 7) < &, by Theorem 9.
Thus, |u, () — u,(®)| < ¢ for &, > F,, by estimates (75) and (76). There-
fore u, — u, = o(1) as |z| —> . By CP, u, = u,.

Taking d = 0 in estimates (75) and (76) gives the limit statement
and estimate on X*.

Case o > /2. We first show that for any solution u(x) to prob-
lem (1): u = o(1) as |x|— oo.

Given ¢ > 0, choose d, as above. For d > d;: u(x) > —¢/2. Choose
v, > m/2 so that v(r,d,v,) > —¢ for 0<r=<4d,., For d <d, and
%, <%, %, sufficiently small so that « € B, (y) C .2%;, with dist (y, ¥)=d,,
and Bz(y) N 2%, is convex, we have: u(x) = v(r, d;, v) > —¢ (cf. the
proof of Corollary 1 to Theorem 20). Therefore u = o(1) as || — oo.

Now, if 9%, C B then w(r, R, v) = u(x) in B, by Theorem 19.
This shows u(x) > 0 in .2¢;. Furthermore, given x € 97, with x, < 0,
we choose By (y) € %7, with center on the , axis so that segment
joining 2 and y is perpendicular to X. This determines R, =
—x,secatana + dtan*a. We have

(77 w(R, +d, R,, v) = u(x) .
Given ¢ > 0, choose d, as above. Thus,
(78) 0 < ulx) < ¢/2 for d >d,.

Choose 7, so that |w(R, + d, R,, v) — 2(d, v)| < ¢/2 for 2, < Z, and 0 <
d £ d,. Choose R so that |[v(R —d, R, v) — 2(d, V)| < ¢/2 for d < d,.
For xe 2%, with d < d,, there is a ball Bg(y) C 2%, dist(y, 2) = R,
the radius through x is perpendicular to X, and Bz(y) N 9%, convex,
if x, < %,, %, sufficiently small. Thus

(79) ux) =vR —d,R,7) for d=<d, and x, <Z%,.



HEIGHT ESTIMATES FOR CAPILLARY SURFACES 513

Suppose there are two solutions u,(x) and wu,(x) to problem (1).
They must both satisfy estimates (77), (78), and (79). Thus
[u, () — uy(2)| < ¢ for x, < min (%,, #,). This implies u, — u, = o(1) as
|| — oo; by CP, %, = u,.

The limit statements come from estimates (77) and (79) with
d=0.

We now obtain the estimate on X*. Let 2 = .27, N {x: =, < 0}.
Let Bg(y) © 2%, be tangent to 2* at a point x,€02. Letv = (r, R, 7)
and [0Bz(y)]* = 3* + 3* + 3% where X'C3* X*C{x:x, >0, 2, = 0}
and 3°CoBz(y). On X', Tv-v = cosv, by the proof of Theorem 20.
On 3*, Tv-v > 0. On 2% Tv-v = 1. Because of uniqueness, u(x,, x,) =
w(x, —2,). Thus oufox, = 0 on 2%, hence Tu-v = 0 on 2. Therefore
Tv-v = Tu-v on [0Bz(y)]*; by CP, u(x) < v(r, R, 7v) in Bz(y). Taking
R — o, with Bg(y) tangent at z,, gives:

u(x) < z2(n, - x, 7) in H,={x: %2> 0}

(80) _ . _
w(x) < 2(7y- 2, ) in H,={x:7,-x >0}

where #, = (sina, —cosa) and #%,= (sina, cosa). Thus on %
w(@) = 2(0, v).

We now study the behavior at the vertex.

THEOREM 24. For a +v = 7w/2 and 0 < a < w/2, the solution to
problem (1) im 5%, satisfies

(1) lim inf u(v) = VZA - VIZEB~
(ii) lim sup u(x) = TA — VI =)~

where k = cos v/sin a.
Proof.

Part (i). As a comparison surface choose z(x,, 7), with Y= cos™ k.
On (0257,)*, Tz-v= —sina(x)sina < cos¥sina = cosvy = Tu-».
Since w > 0, then z — u < o(1) as |x| — o, in 2%,. Hence by CP,
2 < wu in .9%,. Therefore liminf, ,u = 2(0, ¥). This gives the result.

Part (ii). As a comparison surface choose
hz)=2 +R—VR — [z —yT
R
where y = (kR, 0). We have Nh =< h in Bg(y). We check: Th-v =

cosy on (0.%,)* and Th-y =1 on 6B;. Thus, Th-v = Tu-v on
[0(B: N 2%)]*; by CP, u(x) < h(x) in BN 9%,. Therefore,
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lim sup u(x) < h(0) = 723- LRI -VITH.
20

Minimize this bound by choosing
R=vV20—-V1-F)"",
This gives the result.

REMARKS. In n-dimensions, with .5, = {&:2, > |2|cosa}, 0 <
a < w/2, Theorems 23 and 24 still hold with 21”2 replaced by 217
in Part (ii) of Theorem 24. We note

V2A -~ vI—F)">20,7).

This shows that there is a “rise” at the vertex. For the case a +
v < /2, Concus and Finn [3] show that the solution to problem (1)
is unbounded at the vertex.

For

Ty ={x:2, > V2 + aicosa}, 0<a<m.
Theorems 23 and 24 still hold, with the same modification.
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