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ON THE LATTICE OF ALL CLOSED SUBSPACES
OF A HERMITIAN SPACE

HANS A. KELLER

The purpose of the paper is to prove the following

TureoreM: Let E be a vector space over a field K with
char K # 2, and let ¢ be a nondegenerate hermitian form
on E. Then the lattice of all orthogonally closed subspaces
of (E, ¢) is modular if and only if F is finite dimensional.

Introduction. It is well known that the lattice of all orthogonal-
ly (=topologically) closed subspaces of a Hilbert space H is modular
only if H has finite dimension (see Birkhoff—Von Neumann [1]). We
shall prove here that this is true generally for vector spaces E over
commutative fields K with char K # 2, supplied with nondegenerate
hermitian forms ¢: The lattice of all orthogonally closed subspaces
of (E, ¢) is modular if and only if E is finite dimensional. Non-
modularity in the infinite dimensional case is due to the fact that
then there are always two closed subspaces with nonclosed sum. In
a Hilbert space one can exhibit such pairs of subspaces in a con-
structive way (see [3]); our general case is much more involved,
and their existence will follow from an indirect proof.

1. Denotations. Let E be a (left-) vector space over a com-
mutative field K, and ¢: E X E — K a hermitian form with respect
to an automorphism a+- a of period 2 of K. We always assume
that char K # 2. We usually write (x, y) instead of 4(z, ¥), and we
write z Ly if (z,y) =0, x,ye E. Let F be a subspace of (&, ¢).
The orthogonal space of F is F*={xecKE:x 1y for all ye F}, and
the radical of F' is rad F=FN F*. F is called semisimple if
rad F = 0. In particular, E is semisimple if E* =0, ie., if ¢ is
nondegenerate. A subspace F' is called orthogonally closed if F =
F+i(=(F*)*). All bases of vector spaces are algebraic. F' is termed
euclidean if it is semisimple and admits an orthogonal basis. Semi-
simple subspaces of countable dimension are always euclidean (see
[2]). Every xze€FE induces a linear form ¢, on F, given by ¢.(z) =
#(z, x), z€ F. We let F'* denote the antispace of the dual space of
F,i.e., the K-space of all linear forms f: F— K, where (f + 9)(z) =
f(2) + g(z) and (af)(z) =a-f(z), f, ge F*, acK. If F* =0 then F
can be considered as a subspace of F'*, identifying x ¢ E with ¢,.

If E=6@;./F:;, and E, 1 E; for 1 # j, we write £ = @X . E..

2. The lattice <~ (FE, ¢). Let (E, ¢) be a semisimple hermitian
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space over K. The orthogonally closed subspaces of (E, ¢) form a
lattice ¥ = £(F, ¢) under the operations FAG = FNG and F\VG=
(F + G)**. This lattice is modular iff for all F, Ge & we have
FVG = F + G (see [4], Theorem 33.4). Thus modularity of <(E, ¢)
is equivalent to the following property of (E, ¢):

(A) The sum of two orthogonally closed subspaces is always closed .

If dim E < o then (A) holds trivially. We now prove the converse.

3. Nonmodularity of (¥, ¢) in case of infinite dimension.
We start with two technical lemmas. Their importance for our
problem will become evident later (cf. the proof of Lemma 3 below).

LEMMA 1. Let (E, ) be semisimple. Let F be a subspace with
dim F = W, such that for all subspaces U, VC F we have: If
U+ V =F then U** + V** =E. Then F =K.

Proof. Taking U=V =F we get F** = FE and FF* = 0. The-
refore E may be considered as a subspace of F'*. Let F = @i F,
be an orthogonal decomposition of F' into finite dimensional sub-
spaces and let ye F'*. y is determined by the restrictions y|s,.
Every F, is semisimple since F'* = 0, thus y|,, is induced by a uni-
que y,€ F,. This allows us to represent y as a formal sum y=
SlesYs, and we call the y,’s the components of y with respect to
the decomposition F = @sF,. In particular every z€E has the
form » = Y, z,.

Now suppose that E = F.

(1) We first show that then E = F'*. Let xeFE with x¢ F.
One readily constructs a decomposition F = @}F, such that
dimF, =2 and 2, 0 for all se€S (choose an orthogonal basis
{e;: 1€ I} of F and observe that card{ic I: (¢;, ) + 0} = W, = card I).
Now let ye F*. We write ¥y = 3., 9,, where vy, € F,, and suppose
first that {x,, y,} is linearly independent for all s. Let U and V be
the subspaces spanned by {y,:seS} and {x, — v,: s € S} respectively.
We have U+ V=F, thus U** + V**=E. Write 2 =u + v,
where w = Sy u, € U+t and v = 3, v,€e V**(u,, v,€ F,). Pick a,€F,
with a,# 0 and a,1y,. Then a,e€ U*, hence 0 = (a,, u) = (a,, U,)-
Since dim F, = 2 it follows that u, = \,y, for some ), € K. In the
same way we get v, = g (x, —¥,), #.€K. Since u, + v, =z, we
have A\, = ¢, = 1. Thus y, = u, for all s, hence ¥ = » and in parti-
cular y € £ in this case. Next we consider y = >, v, in F'* with
Yy, # 0 for all s. For every s choose z,€F, such that {x,, z,} and
{z,, ¥,} are both linearly independent. Applying the above reasoning
tox and z =3, 2,€ F* as well asto z and y we get first z€ E and
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then y e . The y’s in F* with all components 0 generate F'*.
Since all these y’s are in E we have E = F'*,

(2) Suppose F = @i F,, where dim F, < ¥, for all s. Let
T=2,%,Y=>,Y, be in E, x,y,€F,. We claim: if (z,,v,) =0
for all s, then (x, ¥) = 0. To prove this let U and W be the sub-
spaces generated by {z,: s€ S} and {y,: s € S} respectively. We have
ULW, hence U** L W+**. Therefore it is enough to show that
xeU** and ye W**. Choose linear complements V, of (x,) in F,,
F,.=V,®b(,), and put V=@;V,., Then U+ V=F, hence
U''+ vVt =FE. Write 2 =u + v, where v =>,u,€U**, v=
>.v. €Vt For every z,€F, with 2,12z, we have 2,¢ U* and so
0 = (2, w) = (2, u,). This gives u,e(x,)** = (x,). In the same way.
we get v, e Vit = V,. Since u, + v, = z, it follows that », = 0 and
U, = ;. Thus x =ue U**. In the same way we see that ye W++.

(3) Let {e;; €I} be an orthogonal basis of F. According to
F = @i(e;) every x € E = F'* can be written in the form z = 35, ¢,
with &; = (e;, x)(e;, ;). For TcI we put x, = 3 &le,, where & = &,
for €T and & =0 for i¢T. We consider ¢ = 3, a;e; and b=
> B¢y Where a; = (e, ¢,)"* and B, = 1 for all <. a,be E by (1). Let
I =SUT be a partitioning with ecard S = card 7. We show that

(as, bs) = (ar, br) .

We observe that (ag, b;) = (ap, bs) = 0 by (2). Thus it suffices to
show that ¢ = ag + a, and ¢ = by — b, are orthogonal. Let 0: S— T
be a bijection. For s€S put F, = K(e, ¢,,). Then F = @iF,. The
corresponding components of a and ¢ are a, = (e,, €,)+e, + (€4, €,5) """
¢,, and ¢, =e¢, —e,,. We find (a,, ¢,) =0, and by (2) this implies
(a, ¢) = 0, as claimed.

We now choose t€ 7T and put 8’ =SU{t} and T = T — {t}. We
have card S’ = card 7", hence (ag, bg;) = (az, b»). On the other hand,
from the relations ag = ag + (e, e,)"'-eyy ap = ap — (€, €,)"*+¢, and
bsy = bg + e, by, = by — e, we get

(as, bs) = (as, bs) + 1, (arp, by) = (az, by) — 1.

It follows that +1=-—1, a contradiction since char K = 2. This
completes the proof.

We can easily generalize the statement of Lemma 1.

LEMMA 2. Let (E, ¢) be semisimple. Let F be a euclidean sub-
space such that whenever U + V = F it follows that U*t + Vit = E.
Then F = H.

Proof. Since F** = E we may suppose that dim F = ¥W,. Let
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{e;: 1€ 1} be an orthogonal basis of F.. Suppose that there exists a
x€FE with ¢ F. Then there exists a subset LCI with card L = W,
and [such that (e, ) # 0 for all ieL. Put Q = K(e¢,);, and R=
K(e)ic;—z; then F=Q@* 'R and so E =Q**@*R'*. Write =
q + * where ¢gc@Q**, re R**. One easily verifies that the hypo-
theses of !Lemma 1 are satisfied for (Q'*, ¢lo..) and @ (in lieu of
(E, ¢) and F'). Hence @ = Q** and in particular ¢ €Q. But this is
a contradiction since (e;, ¢) = (e;, ) # 0 for all 7e L.
We now pass to study spaces (F, ¢) with property (A).

LEMMA 3. Suppose that the semisimple space (E, ¢) has pro-
perty (A). Then for every euclidean subspace F we have F*'*=
F@*rad F*.

Proof. We have rad F** =rad F'*, and FNF*=0. Hence
there is a decomposition F*+ = Q @* rad F'* with FFC@Q. The space
Q with the induced form ¥ = g|, (restriction) is semisimple. We
shall show that the hypotheses of Lemma 2 are satisfied for (@, ¥)
and F' (in place of (&, ¢) and F'); then it will follow that F = @,
proving our lemma. For Uc @ we let U° denote the orthogonal
space of U formed in (Q, ¥). ThusU° ={reQ:x1yfor all ye U}=
U*NQ. Now let U, V be subspaces of F with U+ V = F;, we
must show that U® + V* = Q. Itisimmediate that U* @Prad F*DU"**
and V@ rad F*OV*t. By (A), U** + V** is closed in (&, ¢), thus
Ut + V= (U + VHY = (U + V)t = F++. 1t follows that
U+ VOYPrad Fro U+ V+=F**, hence U+ V*=Q, as claimed.

Let (H,?) be any hermitian, euclidean space over K. We
denote by HF the set of all linear forms f on H with the property
that ker(f), as a subspace of (H, ¥'), admits an orthogonal basis.
Let {h;:1€I} be an othogonal basis of H, and let f be any linear
form on H. Put J = {iel: f(h;) # 0}. f isinduced by some x ¢ H iff
J is finite. In this case, of course, fe Hf. Suppose J is infinite.
Then ker(f) is semisimple and we have fe H¢ iff cardJ = W, ([2],
Satz 1). We now see that fe Hy if and only if there is a decom-
position H = Q@* R with dimR < ¥, and f|, =0. In such a de-
composition @ is always euclidean (cf. [2]). We also see that Hy is
a subspace of H*.

LEMMA 4. Suppose (E, ¢) is semisimple and has property (A).
Let F be a euclidean subspace. Then every feFF is induced by
some y € K.

Proof. If f is not induced by a xz € F then G = ker(f) is semi-
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simple and thus, by definition of Fj*, euclidean; furthermore
dim F/G =1. We have F* # G*, for otherwise by Lemma 3 we
would have

GPrad F' =GPradG' =G+ =F'* =F@rad F*,

which is impossible. Hence there is a ¥y € G* with y ¢ F'*, and it is
clear that f is induced by a suitable multiple My(\ € K).

We are ready to prove our main result.

THEOREM. Let (E, ¢) be a semisimple hermitian space over a
commutative field K with char K == 2. The lattice of all ortho-
gonally closed subspaces of (E, ¢) 1s modular if and only if E is
finite dimensional.

Proof. One half of the statement is clear. Suppose F(F, 4)
is modular. Then (A) holds for (E, 4). Let M= {v:1eI} be a
maximal set of pairwise orthogonal anisotropic vectors of E (xre
is anisotropic if (x, ) = 0). The subspace F' spanned by the v;’s is
euclidean. By the maximality of M we have ¢|,. =0, hence
rad F* = F*. Thus F**=F@F* by Lemma 3. Now suppose
that dim £ = ¥,. Then dim F' = ¥, since (F, ¢) is semisimple. Hence
there exists an element fe F* which is not induced by a ze F. By
Lemma 4, f is induced by some ye€E. Clearly y¢ FFE&D F*; since
F@OF*=F*' there exists veF* with (v,y)#0. Put G=
FO )@ (). One readily verifies that G is semisimple. Since
fe Fy there is a decomposition F'= Q@ @* R such that f|, =0 and
dim R = W,; here @ is euclidean. We have ye@Q* and so G =
QA (RD (w) D (v)) which shows that G is euclidean. We define
a linear form ¢ on G by ¢l =7, 9@) =0, g(v) = (v, y) +1. The
above decomposition of G shows that geG¥. Hence g is induced
by some z€ E. Since g|, =f we have z —yeF*, le, 2=y +w
with weF*. Now (v,y) +1=g9®) = (v, 2) = (v, ¥) + (v, w), hence
(v, w) = 1. But this is a contradiction since v, we F'* and ¢ vani-
shes on F'*. This completes the proof.
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