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WHEN IS A BIPARTITE GRAPH A RIGID FRAMEWORK?

E. D. BOLKER AND B. ROTH

We find the dimension of the space of stresses for all
realizations of the complete bipartite graph Km,n in Rd. That
allows us to determine the infinitesimal rigidity or infinites-
imal flexibility of such frameworks. The results lead both to
the generic classification of Km,n in Rd and to a description
of the realizations which deviate from the generic behavior.

1* Introduction* A framework in Rd is a finite sequence

Pi, ''' 9 Pv of points in Rd called vertices together with a nonempty
set E of sets {ί, j} such that 1 ^ i < j ^ v. Such a framework is
a realization in Rd of the graph E on the abstract vertex set
{1, " -, v}. The natural and correct tendency is to think of plf , pυ

as a set of vertices in Rd; we formally define it as a sequence be-
cause we wish to allow pt = ps even when i Φ j and because we
often sum over the index set {1, •••, v). We refer to the segment
[Pi, Pό\ for HJ j} e E as an edge of the framework. Note that edges
may have length zero. A stress of a framework is a real valued
function ω on E such that for each vertex pt

(1) Σ VitAVt - Pi) = 0 , 1 ^ i ^ v .

If one thinks of a framework as a physical object whose edges are
stiff rods then the scalars o){itj] can be thought of as an assignment
to each edge of a compression or tension, depending on whether
ω{iyj} is positive or negative. Then Equation (1) says the forces at
each vertex are in equilibrium.

We study stresses of frameworks because, roughly speaking,
their existence indicates that some edges are redundant. The more
edges, the more likely a framework is to be infinitesimally rigid,
but the larger the space of stresses, the less likely. A short but
precise account of these relationships, and of the connections with
generic rigidity, appears in §4.

Frameworks realizing bipartite graphs contain no triangles.
Hence the rigidity of such frameworks is noteworthy. Mathematic-
ians and engineers knew in the 19th century that a plane realiza-
tion of Ks)Z is infinitesimally rigid except when its six vertices lie
on a conic. The graphs iΓ4>6 and K5tδ realized in space have a chance
of being generically rigid; whether they actually are was asked at
the special session on rigidity at the Syracuse meeting of the
American Mathematical Society in October, 1978.

In this paper, we compute the dimension of the space of stres-
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ses for every realization of Km,n in Rd. With that information one
can determine the generic classification of Km>n in Rd and also de-
scribe the realizations in which the framework deviates from its
generic behavior. We find that these deviations occur for two
reasons: when the affine span of the m-set or the n-set of vertices
is of lower dimension than expected, or when the vertices lie on
more than the expected number of quadric surfaces.

2* The space of stresses* We shall study the framework in
Rd which realizes the complete bipartite graph Km>n by locating the
vertices at A = (alf , am) e Rd x xRd = Rmd and B = (bl9 , bn) e
Rnd. This framework, which we denote K(A, B)9 has for edges the
segments [ai9 6J for 1 ̂  i ^ m and 1 ̂  j ^ n. Then we can regard
a stress of K(A, 5) as an mx% matrix ω = (α><y) such that

(2) ±ωij(aί-bj) = 0, l ^ i r g m
3=1

and

(2') i > < y ( δ y - < * < ) = <>, 1 £ j £ n .

This is just Equation (1) for the framework K{A, B). To avoid
sinking in a morass of indices we will often think of A and B as
sets, of ω as (α>β6), aeA, beB, and write the stress conditions
(2,2') as

( 3 ) Σ Mab(a - 6) = 0 for all aeA

b

and

( 3') Σ &ab(b - α) = 0 for all 6 6 JB .
α

Let β = Ω(A, B) be the vecter space of stresses of the frame-
work K(A, B). Equations (3, 3') say that co e Ω if and only if, set-
ting ρa = Σ& <*>ab and 76 = Σα &ab, we have

( 4 ) Σ ω abb = iθαα for all aeA

b

a n d

( 4 ' ) Σ ^ α δ « = 7δ6 f o r all beB .
a

This is the first hint of the importance of the row and column
sums pa9 j b of a). We begin with an analysis of the stresses for
which the row and column sums are all zero.

For X - (xί9 - , xk) eRdx - xRd = Rkd

9 let

X = | Σ Λa?*: Σ μ< =
U = l < = 1
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be the affine span of X and

( 5 ) D(X) = \(\f , λfc) 6 Λ*: Σ λ,,̂  = 0 and Σ λ, = θl

be the space of affine dependencies of X. Then

( 6 ) dim D(X) + dim X = k - 1 .

For vectors a = (au - , αw) e i2m and /? = (&, , /9j e J?% let α (g) β
be the mxw matrix («<&•), and let Z?(A)(g)ZJ(B) be the space span-
ned by {a(g)β:a eD(A), β e D(JS)}.

THEOREM 1. D(A)®D(B)y is the subspace W of Ω(A, B) con-
sisting of those stresses all of whose row and column sums are
zero.

Proof. There is much to check, but most of it is straightfor-
ward multilinear algebra. If ω = a® β for aeD(A) and βeD(B)
then for all aeA,

Pa = Σ <*>α6 = Σ Oίaβb = aa Σ βb = 0
b b b

because βeD(B). Similarly, γ5 = 0 for all beB. Thus ω has zero
row and column sums. To see that it is a stress, we check Equa-
tions (4, 4'). For all α e i ,

Σ ®abb = Σ aaβbΐ> = α« Σ βbb = 0 - ^ α
6 6 6

because βeD(B) and ^β = 0. A similar argument establishes (4').
Thus ω = a® βeW, and so D(A) (g) D(JB) c TΓ. To prove the re-
verse inclusion, it suffices to show dim W = dim D(A)dim D(B) since
dim D(A) (x) J9(ΰ) = dimD(A) dimjD(B). Equations (4, 4') tell us that
a stress ω belongs to W if and only if every row of ω is in D(B)
and every column is in D(A). Regarding stresses as linear maps
from Rn to Rm, we then have ωeW if and only if imω a D(A) and
im ωt a D(B), where ωt is the transpose of ω. But imω* = (kerα>)1c
D(B) if and only if J9(J5)1cker ω if and only if ω can be factored
through RnjD(By. Therefore W is the space of linear maps from
Rn/D(By to D(A) and thus has dimension

(n-(n- dim D(B)))dim D(A) = dim D(A) dim D(JB)

as desired.

Next we observe that a natural geometrical condition may force
some row and column sums to vanish.
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LEMMA 2. If agB (respectively b$ A) then pa = 0 (respectively
76 = 0) for all stresses of K(A, B).

Proof Suppose ω e Ω. If pa Φ 0 then Equation (4) implies
Σ*b((*>ab/pa)b = α- Since Σ,b(ωjρa) = 1, that says α e S.

COROLLARY 3. / / Ά n - B = B Π i ϊ = 0 taew i2(Λ -B) = D(A) (x)

Usually, however, some vertices in A will belong to the affine
span of B and vice versa, so some row and column sums need not
vanish. To analyze that situation, let T: Ω —> Rm+n be given by

The minus sign preceding the column sums is merely a technical
device. Theorem 1 says that ker T = D(A) ® D(B), so we will know
all about Ω when we have characterized im T. To that end, for
X= (&i, •••, Xk)£Rkd we let

lf ., Xk) e Rk: Σ λ/α?, <g) x, ) - 0 ,

Σ ^i^i = 0 and Σ \ =
i = l €=1

That is,
D\X) = I>(J5Γ) n /?(»! 0 a?!, , xk (g) %) ,

the simultaneous affine dependencies of xl9 - - , α?fc and x1 (g) ̂ , ,
afc<g)at. Finally, for f = fe, . -., ξd) e R\ l e t | - (f, 1) - (ξlf - , fd, 1) €

LEMMA 4. D(X) is the space of linear dependencies of x1} , α?fc,
D2(X) is the space of linear dependencies of xx (x) xl9 , ^

Proof. The first assertion follows easily from the definition in
(5). The second is true because the coordinates of | ( x ) | are the
products -ξtξif 1 ̂  i, j ^ d, the linear terms ξt, 1 ̂  i ^ d9 and the
constant 1.

LEMMA 5. For (A, B) = (αlf , am, blf , δ j , im TcD2(A, J5).

Proof. S u p p o s e α> e Ω(A, B) a n d Γ ω = (•••, pa9 - m

9 ~ T * , •)•

T o p r o v e t h e l e m m a n o t e first t h a t

Σ |0α - Σ Ίh = Σ O>α& - Σ «>α6 = 0 .
a b a,b a,b
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Then, using Equation (4'),

2 J Pa<^ — 2-1 ΎbO = 2 J 2 J ^αb^ ~ 2 J Tt^
α 6 a b b

= Σ Σ ω^α - Σ Viδ = Σ T»6 - Σ 76δ = 0 ,
b a 6 ί> ί>

so To) e D(^l, J5). Finally, using Equations (4, 4') and the bilinearity
of ®,

Σ paia <8>«) - Σ τr»(6 <8> 6) = Σ α ® ( Σ ω.»)α - Σ ( Σ «>)& Θ &
α & α 6 & α

Therefore Tω eD\A, B).

However, the reverse inclusion fails. Not every XeD2(A, B)
comes from a stress of K(A, B). That is because Lemma 2 forces
some coordinates of Tω to vanish. When we take that into account
we can characterize the subspace im T of D2(A, B). Let C = (An
B, Bf]A). More precisely, C = (cu •••,<?*) consists of those vertices
of A = (αx, , αw) which lie in .§ and those of B = (6X, ••-,&») which
lie in A. We naturally regard J52(C) as the subspace of D\A, B)
consisting of those vectors which are zero at coordinate places cor-
responding to vertices agB and bίA.

THEOREM 6. For C = (A Π B, B Π A), im T = D\C).

Proof. Suppose ωeΩ(A, B). Then Lemma 2 says that pa = 0
for all α ί 5 and 7δ = 0 for all bίA, so Lemma 5 gives TωeD\C).
Thus imΓcJ) 2 (C). To establish the reverse inclusion, suppose λ e
D2(C). Regard λ as a vector ( , μr - , vh, •) ei)2(A, B) for
which μa — 0 if α g J? and vδ = 0 if b$A. We shall exhibit a stress
α> of K(A, B) for which Tω = λ. Let i j C i be an affine basis for
A and A2 the remaining vertices of A. Define Bι and B2 in a
similar fashion. To simplify notation, we write x, s, y, t for generic
vertices of Alf A2, Blf B^ respectively. Thus, for example, Σα =
Σ* + Σ Each element u of A can be written uniquely as an af-
fine combination of the elements x of Ax. We write the coefficients
as ux, so that

( 7 ) u = Σ wx» where Σ M X = 1 .

Similarly, each v e ΰ has a unique expression as

(7') v = Σ ^2/ where Σ ^ = 1
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We shall soon need the fact that Equations (7.7') are equivalent to

( n \ f ___ >r~i Λ.z/Vt

O ) W — J-kUtX
X

and

the unique ways to express u, ueA, and v, v e B, as linear com-
binations of the vectors x, x eA19 and y, y eBx.

Define the mxn matrix ω = (ωab) as

yeB,

ωxy = μxx
y

teB2

x e Aι

s e A2

Note that if x g B then xy is undefined. But then μx = 0, so we
adopt the convention that μxx

y = 0. Similarly, for t g A and s g β ,
we set vtt* = μss

y = 0.
We now verify that Tω = X and that ωeΩ(A,B). That re-

quires eight kinds of calculations—two for the vertices in each of

( i ) The vertices x e Alu First, the x row sum px of ω is

px = Σ (&%b — Σι ®χy "t" Σ ®χt = Σι {.ί^x^ ~^~ Σ Vttxty) — Σ vtt
x

b y t y t t

- μβ + Σ VtF Σ ty - Σ *>*<• = Λ
t y t

Second, the stress condition for vertex x is true because

Σ θχbb — Σ ωχyy + Σ ωχtt — Σ it1*®11 + Σ ^ - Σ
t

Σ *>«** Σ ^ - Σ ^«*β< = j"»» =

(ii) The vertices seA2. We have

iθs = Σ <*>.b = Σ ω.y + Σ ω*t = Σ
b tΣ

y

0 =

as desired. Moreover, the stress condition is true since

Σ = Σ Σ Λ>sίί = Σ
ί y

(iii) The argument for the vertices teB2 is similar to the one
above for s e A2.

(iv) The vertices zeBίm Now the fun starts, for here we use
the fact that XeD\A,B) to link the sets Alf A?, B19 B2. The
vertex in Bt is called z rather than y because in the course of the
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argument we will be summing over y e Bλ.
The z column sum of ω is

ΎZ = Σ o)az = Σ o)xz + Σ <*>., = Σ (μ.χ* + Σ »trt*) + Σ ΛS'
α x s x t s

( 9 } = Σ μ%z + Σ μ.s' + Σ υ.*1

t
Σ

Now we use the fact that λ = ( , μa, , vb, ) belongs to
I>2(A, 5) c D(A, B). Then Lemma 4 implies

(10) Σ i"«« + Σ ft§ + Σ v*y + Σ ^ = o .
£C S 2/ ~ ί

Use Equation (8') to express each of the vectors x, s, t in Equation
(10) in terms of y, y e JBlβ That yields

(11) Σ ( Σ μ*χv + Σ μ.8" + ^ + Σ ^ i / - o .
y x s t

Since the vectors y, y e 5X, are linearly independent, every coeffici-

ent in Equation (11) vanishes. In particular,

(12) Σ μ*χ* + Σ μss
z + vz + Σ y*« = o .

Combining Equations (9) and (12) leads to Ίz—— vi9 the desired con-
clusion.

We follow the same pattern to verify the stress condition for
vertex z. We have

Σ ωββα - Σ ω*z% + Σ ωszs = Σ (j"χ«β + Σ ^ί*ίβ)s + Σ μ,**8
a x s x t s

(13) = Σ jκ.a?'(Σ * l/) + Σ J"^'(Σ sB2/) + Σ v.*fί
x y s y t

= Σ (Σ μjc'x' + Σ Λβ βOy + Σ *>trt.
y x s t

Now we use the fact that XeD\A, B). Lemma 4 implies

(14) Σ μ.s ® * + Σ μss 0 § + Σ »tv ® 2/ + Σ vjt <g> ί = 0 .

Use Equation (8') to express each of the vectors x, s, t in Equation

(14) in terms of y, y e Bx. Expanding and collecting terms, one

obtains

(15) Σ ( Σ μ,xvxy' + Σ μss
ysyf + vv§(y, yf) + Σ VtVV')y ®y' = 0 ,

y,y'eBx x s t ~ ~

where δ(y, yf) is the Kronecker delta. But the linear independence

of the vectors y,y eBlf implies the linear independence of the vectors

y®v'> V> y'^B19 so every coefficient in Equation (15) vanishes. In

particular, for all y eB1 we have
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(16) Σ /*.»"»' + Σ A«V + vyd(y, z) + Σ vtVt' = 0
X S t

Combining Equations (13) and (16) gives

Σ o)aza = Σ (-»,%, z) - Σ ^ % + Σ vtft
t t

= -»zZ - Σ ^** + Σ vtt't= -vzz = 7zz ,
t t

the desired conclusion.

We now know, from Theorems 1 and 6, that

dim Ω(A, B) = dim D(A)dim D(B) + dim D\C) .

Our next task is to discover the geometrical meaning of D2(C).

3. Quadrics* We now show that the space D\C) of simult-
aneous affine dependencies of C — (clf - , ck) e Rkd and (cx (x) cl9 ,
βk (x) Ck) can be conveniently described in terms of quadric poly-
nomials which vanish on C. A quadric polynomial is simply a
polynomial

?(fi, •••,&)= Σ <7iMi + Σ (?iξi + σ

and a quadric surface is the set of zeros of a nontrivial quadric
polynomial. A quadric polynomial is determined by its d(d + 3)/2 + 1
coefficients σ<y, σi9 σ and the set of quadric polynomials forms a
vector space in the obvious way.

What should we mean by the space Q(C) of quadric polynomials
which vanish on C? If the affine span C of C is all of Rd the
answer is clear, but we must take some care when C Φ Rd. Then
we want our polynomials to be defined on Rh, where h — dim C. If
C is a singleton, define dim Q(C) = dim C — 0. Now suppose h >̂ 1.
Choose an affine transformation Γ: i2d —> Rh which maps C onto Rh.
Let Q be the h(h + 3)/2 + 1 dimensional vector space of quadric
polynomials on Rh and define

Q(C) = {qeQ:q(Tc) = 0 f o r a l l ceC}.

In this definition Q(C) depends on the choice of Γ, but we will soon
seen that its dimension is independent of T. Then we regard any
one of these isomorphic subspaces Q(C) of Q as the space of quadric
polynomials which vanish on C = (clf , ck).

LEMMA 7. Let Tc = (&, ---,ζh)eRh for ce C. Then Q(C) is
the space of linear dependencies among the rows of the (h(h + 3)/
2 + ΐ)xk matrix M(T) whose cth column is the vector
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(f It ' ' ' t ζlt f 1<?2> ' ' " f ζh-lζhf ζlt * ' * ) ζht 1)

Proof. Just examine the meaning of q(Tc) = 0.

It follows from Lemma 7 that

(17) dim Q(C) ^ max jθ, —h(h + 2>) + l-k\ .
^ Δ '

Generically, that is, for a dense open subset of points C = (d, , ck) e
J?fcd, we have both fe = min [k — 1, d) and equality in (17). For ex-
ample, the space of quadric polynomials which vanish on ten points
in iί3 is generally trivial, while there is usually a unique quadric
surface through nine points in R3.

LEMMA 8. Let TC = ( , Tc, •) for C = ( , c, - •).

Z>2(C) = i

Proof. Because T is aίBne it is the sum of a linear mapL:
Rd -> i?^ and a constant vector ξ e Rh. Suppose λ = ( , λβ, •) 6
D\C). Then Σ* λc = 0, Σc \c = 0, and Σ* λcc (g) c = 0. Thus

Σ \Tc - L(Σ λcc) + ( Σ λβ)f - 0

and, by the bilinearity of (§),

c (g) Tc = Σ λβ(Lc + ξ) (x) (Î c + f)Σ
c c

= L ( Σ λcc <g) c)L*
c e e

+ (Σ λ,)f ® f = o .
c

Therefore XeD\TC). The reverse inclusion follows from a similar
argument since there exists an affine map S: Rh -» Rd with STc = c
for all ceC.

THEOREM 9. Let C = fo, , ck) e Rkd and h = dim C. T^βτt

dim D\C) = dim Q(C) + k - — h(h + 3) - 1 .
Δ

Proof. If C is a singleton then the & vertices in C coincide so
D\C) = {λ ei2fc Σ" = 1 λ, = 0}. Therefore dim J92(C) = fc - 1. Since
fe = 0 and dim Q(C) = 0 by definition, the theorem is true in this
case.

Suppose h ^ 1 and let T: Rd -> Rh be an affine map which takes
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C onto R\ Then XeD\C) if and only if XeD\TC) (Lemma 8) if
and only if λ is a linear dependency among the vectors Tc ® Tc_,
ceC (Lemma 4) if and only if λ is orthogonal to the rows of M(T).
Regarding M(T) as a linear map on Rk, we have D\C) — kerikf(T).
Hence

(18) rank M{T) = k - dim D\C) ,

which shows that rankM(T) is independent of Γ. Now Lemma 7
implies

(19) dim Q(C) = —h(h + 3) + l- rank M{T) ,
2

which shows that dim Q(C) is also independent of Γ. Combining
Equations (18) and (19) completes the proof.

Similar results relating dependencies among tensor-squares of
vectors to the vectors lying on common quadric surfaces appear in
Baclawski and White [3].

Theorems 1, 6, and 9 together give our main result, the dimen-
sion of the space of stresses of K(A, B).

THEOREM 10. Let C = (A n B, B n A) = (clf , ck) e Rkd and h =

dim C. Then the dimension of Ω(A, B) is

dim D{A) dim D{B) + dim Q(C) + k - h(h + 3)/2 - 1 .

4* Rigidity and infinitesimal rigidity* We now examine the
implications of Theorem 10 for the rigidity and infinitesimal rigidity
of realizations of Km>n in Rd. The definitions are complete but the
discussion is brief. More detail may be found in Asimow and Roth
[1, 2], Crapo [4], and Roth [5]. Let

R = {(A, B) = (a19 •• ,am,bl9 -, bn): a, , bβ e Rd) ,

the manifold of all realizations of Km,n in Rd. The edge function
of Km>n is the function /: R -> Rmn defined by

/(A, B) = (•••, | |α t - δ. H2, •••) > l ^ i ^ m , 1 ^. j <> n .

The coordinates of f(A, B) are the squares of the lengths of the mn
edges of K(A, B). Thus f~Xf(A, B)) is the set of realizations
(A', B')eR such that K(A, B) and K{A\ B') have corresponding
edge lengths equal. The derivative df(A, B) of / at (A, B) has
(m + n)d columns, each d-tuple of which consists of the d partial
derivaties with respect to the coordinates of a vertex of K{A9 B),
and mn rows, each arising from an edge of K(A, B). The row
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coming from the edge [aif bj] has only two <ί-tuples of nonzero
entries. These are 2(α̂  — bj) in the c£-tuple of columns correspond-
ing to vertex at and 2(b3 — α<) in the d-tuple of columns correspond-
ing to bj. Thus the mnx(m + n)d matrix df(A, B)/2 has the form

[a19 δ j Γ a, - bL 0

[am

- αx 0

αi ~ K 0

0 0 am - δ n 0

0 δn - α,

0 δπ -

Equations (2, 2') then say that a stress of the framework K(A, B) is
just a linear dependency among the rows of df(A, B).

To see the connection with infinitesimal rigidity regard df(A, B)
as a linear map from R{m+n)d to Rmn. A vector (w, v) = (i^, , uw,
vl9 , vΛ) G JB«"+Λ^ belongs to ker d/(A, JS) if and only if we have

(20) (a, - - Vj) = 0 , 1 £ i S m , 1 ^ j S n .

We call the vectors in ker df(A, B) the infinitesimal motions of
JBΓ(A, 5) . To see why the name is appropriate let G = (Gx, , Gm)
be a smooth map from R to i2w d and H = {Hly •• ,£ΓJ a smooth
map from i? to Rnd. Suppose G(0) = A, JEΓ(O) = β and set u = G'(0),
v = iϊ'(O). Then Equation (20) is satisfied provided the derivative
of \\Gt(t) - Hj(t)\\2 vanishes at t = 0 for l ^ i ^ m , 1 ^ j ^ n.
Moreover, every element of ker df(A, B) is the derivative at t = 0
of a smooth map (G, Jff): i? —> R{m+n)d beginning at (A, B) which in-
stantaneously preserves the squares of edge lengths.

There are some infinitesimal motions which result from Euclidean
motions. We say that (A, B), (A',B')eR are congruent if there
exists a rigid motion S of Rd such that Sα* = α , 1 <£ i <£ m, and
Sδy = δj, 1 ^ i ^ w. Let T(A, B) be the tangent space at (A, B) to
the submanifold of R consisting of those points congruent to (A, B).
Then it is not hard to show that

(21) dim T(A, B)£ —

with equality in (21) whenever the affine span of (A, B) is Rd.
Finally, it is easy to verify that T(A, B)akerdf(A, B).

We say that the framework K(A, B) is infinitesimally rigid
when T(A, B) = ker df(A, B), which says that all infinitesimal motions
of K(A, B) arise from rigid motions, and infinitesimally flexible
otherwise. Since stresses of K(A, B) are dependencies among the



38 E. D. BOLKER AND B. ROTH

rows of df(A, B) while infinitesimal motions of K(A, B) are elements
of the kernel of df(A, B), we have

mn — dim Ω — rank df — (ra + n)d — dim ker df.

Therefore

(22) dim ker df(A, B) =- dim Ω(A, B) + (ra + w)d - raw .

(This same device was used in Theorem 9 to relate D\C) and Q(C).
In that case the matrix was M(T).)

We now turn to the connection between infinitesimal rigidity
and rigidity. A framework K(A, B) is flexible if there exists a
continuous map (G, if): [0, 1] -* Λ<*+ )d such that (G(0), £Γ(0)) - (A, B),
(G(t), H(t))ef~\f{A, B)) for all t e [0, 1], but (G(ί), #(*)) is not con-
gruent to (A, 5) for some t e (0, 1]. That says precisely that K(A9 B)
is flexible if its vertices can be continuously moved in such a way
that edge lengths are preserved but the distance between some
pair of vertices changes. When K(A, B) is not flexible we say it
is rigid. Let

r = max {rank df(A, B): (A, B) e R} ,

the largest possible value of the rank of the derivative of the edge
function. We say that (A,B)eR is a regular point of / if rank
df(A, B) = r. At regular points infinitesimal flexibility and flexibility
are equivalent, as are infinitesimal rigidity and rigidity ([1, Theorem]
and [2, § 3]). The regular points of / form a dense open subset of
Ry for which we always have infinitesimal rigidity or always have
infinitesimal flexibility ([1, Corollary 2] and [2, §3]). We now investi-
gate which alternative—generic rigidity or generic flexibility—occurs
for Km>n in Rd.

Workers studying rigidity always begin with the naive hope
that the generic rigidity of realizations of a graph with e edges
and v vertices is equivalent to the inequality

(23) e ^ vd - — d(d + 1)
Δ

which for Km,n is

mn ^ (ra + n)d — — d{d 4- 1) .
at

We shall see that this hope is justified when d = 2 or 3 but vain
for d ^ 4.

THEOREM 11. // mn < (ra + n)d — d(d + l)/2, then all realiza-
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tions of Km>n in Rd are infinίtesimally flexible.

Proof. Inequality (21), Equation (22) and the hypothesis imply

dim T(A, B) ̂  — d(d + 1) < (m + n)d - mn <* dim ker df(A, B)

so T(A, B) Φ ker df(A, B) for all (A, B) e R. Thus Km>n is always
infinitesimally flexible and therefore generically flexible.

In Rs the hypothesis of Theorem 11 is satisfied except for m =
n — 1, m = 4 and n ^ 6, or m, n ^ 5. Realizations of KU1 are
always rigid, so the naive hope will be borne out when we prove
the following theorem.

THEOREM 12. K4,n, n ^ 6, and Km>n, m, n ^ 5, are generically
rigid in R3.

Proof. Consider first Ki>n for n >̂ 6. Let U be the dense open
set of realizations (A, B) e R satisfying A = B = R3 (so C = (A, B))
and dim Q(C) = 0. For such realizations D{A) = {0}, & = w + 4 and
h — dim C = 3 so Theorem 10 says dim Ω(A9 B) = n — 6 and hence,
from Equation (22),

dim ker df(A, B) = n - 6 + Z{n + 4) - in = 6 .

But for (A, £) 6 U, dim Γ(A, B) = 6 and thus K(A, B) is infinitesi-
mally rigid. Since U and the set of regular points have nonempty
intersection (in fact, every point of U is regular), we conclude that
K(A, B) is infinitesimally rigid at all regular points. Hence K^n is
generically rigid in R3 for n ^ 6.

A similar argument works for Km>n when m, n ^ 5. We let U
consist of those realizations {A, B) for which A = B — R3 (so C=
(A, B)) and dim Q(C) = 0. Then dim D{A) = m - 4, dim Z>(.B) = w-
4, & = m + w and h = 3. It follows as above that dim ker d/(A, JS) =
6 = dim T(A, B) for all (A, B) e U. Thus jfiΓm,n is generically rigid
in R3 provided m, n >̂ 5.

Similar results hold in the plane. That is, the generic classi-
fication of Km>n in R2 is given by a comparison of e = mw and
2v — 3 = 2(m + w) — 3. (The proof, which is easier than that of
Theorem 12, is left to reader. Theorem 14 in the next section con-
tains part of the proof). However, the analog for d = 4 is false.

EXAMPLE 13. Consider K6 7 in R\ Then e = 42 = 4v — 10 so
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inequality (23) is satisfied and we might expect K6t7 to be generical-
\y rigid in R\ However, let U be the dense open set of realiza-
tions (A, B)eR with A = B = R4 (so C = (A, B)) and dim Q(C) = 2.
(See the discussion following inequality (17)). For these realizations
dim D(A) = 1, dim D(B) = 2, A? = 13 and & = 4. Theorem 10 then
implies dim Ω(Af B) = 2. Hence, from Equation (22), dim ker df(A,
B) = 12. But dim Γ(A, β) = 10 and thus K(A, B) is infinitesimally
flexible for all (A, B) e U. Since elements of U are regular points,
K(A9 B) is infinitesimally flexible at all regular points. Therefore
K6>7 is generically flexible in JB4.

5* Special realizations* In this section we apply Theorem 10
to some nongeneric realizations and discuss several examples. We
begin with the classical theorem on K3>3 in the plane and its gene-
ralization.

THEOREM 14. A realization of KSt3 in R2 is infinitesimally
rigid unless its six vertices lie on a conic,

Proof. Consider first the case in which A — B = R2. Then
D(A) = D(B) = {0}, C = (A, B)9k = 6 and h = 2. Theorem 10 implies
dim Ω(A, B) = dim Q(C) and thus, from Equation (22),

dim ker df(A9 B) = dim Q(C) + 3 .

But dim T(A, B) = 3 for such realizations so K(A, B) is infinitesi-
mally flexible if and only if the six vertices {A, B) lie on a conic.
By analyzing special cases and using the fact that the union of two
lines is a conic one can show that the same result holds without
the restriction A = B = R2.

The natural generalization of Theorem 14 to Rd, d > 2, is only
partly true.

THEOREM 15. A realization (A, B) of Kd+1>d{d+1)/2 in Rd for which
A = B = Rd is infinitesimally rigid unless its d(d + 3)/2 + 1 ver-
tices lie on a quadric surface.

Proof Our hypotheses imply D(A) = {0}, C = (A, J5), k =
d(d + 3)/2 + 1 and h = d. Thus dim Ω(A, B) = dim Q(C) by Theorem
10, and hence, from Equation (22),

dim ker df = dim Q(C) + —d(d + 1) = dim Q(C) + dim T(A, B) .
Δ

Therefore K(A, B) is infinitesimally rigid unless dim Q(C) > 0, that
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is, unless its vertices lie on a quadric surface.

Theorem 15 when d = 2 is somewhat weaker than Theorem 14.
Our next example shows that it is as strong as possible for arbit-
rary d. The requirement that A = B = Rd cannot be dropped for
d ^ 3. Moreover, the fact that the infinitesimal rigidity of K3)Z in
R2 is independent of the partition of the six vertices into the sets
A and B does not generalize.

EXAMPLE 16. Let ul9 u2, u5 be the three coordinate vectors in
R\ Consider the realization {A, B) of K4}6 in Rs where A — (±ul9

±u2) and B = (0, ±u9, ux + u29 ux + uZ9 u2 + u9). Then dim A = 2,
B = R\ dim D(A) = 1 and dimuDCB) = 2. In this case C = (A, 0,
u, + u2) and Q(C) = {0}. Moreover, Q(A, 5) = {0} too, so the ten
vertices lie on no quadric surface. Nevertheless, dim Ω(A, B) — 2 so

dim ker df(A, B) = 8 > 6 = dim T(A, B) .

Thus K(A, B) is infinitesimally flexible even though its vertices do
not lie on a quadric surface in R\ If instead we let A — (0, ul9 u2,
u3) and B be the remaining six of the ten vertices then Theorem 15
applies and K(A, B) is infinitesimally rigid.

Since this paper grew out of our investigation of the generic
rigidity of Kmtm in i?3, it seems fitting to conclude with a look at
some realizations of this graph when m = 5 and 4.

EXAMPLE 17. Consider iΓ5>5 in R\ If A = B = R* then dim
D(A) = dim D(B) = 1, C = {A, B), k = 10 and h = 3 so dim Ω(A, B) =
dim Q(C) + 1. Thus generically Kδ>5 has a one dimensional stress
space and is rigid. Locating the ten vertices on a quadric surface
will increase the dimension of the stress space. We can also create
additional stresses by reducing the affine span of A or B. If, for
instance, A = (0, ±u19 ±u2) and B = (±us, uλ + u29 uΣ + us, u2 + u3)
then dim D(A) = 2, dim D(B) = 1, C = (A, ̂  + O , Q(C) = {0}, k = 6
and Λ = 2. Then dim β(A, 5) = 2. We can even make both kinds
of singularities occur simultaneously. With A as above let B—
(±uB, ux + uz, —ux + uZf 2u2). Then dimD(A) — 2, d\.mD(B) = 1,
C = (A, 2u2), dim Q(C) = 1, k = 6 and Λ = 2, so dim β(A, B) = 3.

Finally, the infinitesimal rigidity of various tensegrity (or cabl-
ed) frameworks follows from the results of this paper. For ex-
ample, if (A, B) is a realization of K^ in R3 with A — B = R3 and
Q(C) = {0} then its stress space Ω(A, B) is one dimensional and the
framework K(A, B) is infinitesimally rigid. In fact, Ω(A, B) =
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D(A) (g) D(B) is spanned by ω = a (g) β where a e D(A)t β e D(B) and
α, β Φ 0. Replacing all the edges [α*, bά] of JSΓ(Af J3) with ωi3 —
otiβύ < 0 by cables gives an inίinitesimally rigid tensegrity struc-
ture. (See [4, § 7] or [6, Theorem 5.2] for details.)

Our last example deals with two models which we have actually
built. We can clearly see how they behave but understanding that
behavior mathematically is quite another matter. The reader is
invited to join us in our efforts to develop an applicable theory.

EXAMPLE 18. Consider K±A in R\ Theorem 11 shows that in
any realization it has too few edges to be infinitesimally rigid.
Suppose A = (±ulf ±u2) and that B is a plane parallel to the plane
A. Then AΓ\B = Bf]A = φ so C = φ and ώ = D(A) (x) D(B) is one
dimensional. Using the signs of the stress coefficients gives a way
to build K(A, B) as a tensegrity framework. Since

dim ker df(A, B) - dim T(A, J3) = 1 + 24 - 16 - 6 = 3 ,

when K(A, B) is built entirely of rods it will have three independ-
ent infinitesimal degrees of freedom which do not correspond to
Euclidean motions. Replacing some rods by cables may increase
that number. Suppose now that B is A raised by one unit and
rotated through ττ/2: B = (uz + (±u1±u2)/V/Y), Then K(A, B) has
edges of two lengths. When we built the model we discovered that
the long edges meet at interior points. We had to choose which
rods would pass over, which under at those intersections. Figures
1 and 2 are top views of two possible sets of choices. We built
Figure 1 as a tensegrity framework. Only one of its infinitesimal
degrees of freedom is palpable. Where the long rods pass the long

FIGURE 1. Top view of a realization of ϋΓ4,4 in Rz as a tensegrity mechanism.
Vertices α* are in the plane of the paper, vertices bj in a parallel plane above
it. Rods are solid, cables dashed.
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FIGURE 2. Top view of a realization of ϋΓ4,4 in /23 as a framework with two in-
dependent degrees of freedom. Vertices α* are in the plane of the paper.
Vertices bj start out in a parallel plane above it, but do not remain coplanar
as the mechanism flexes.

cables they rub. We think it is that rubbing which constrains A
and B to be parallel planes, whose distance varies as the model
flexes. That constraint keeps dim Ω = 1 throughout the motion and
allows a tensegrity mechanism: the cables stay taut as the model
flexes.

Building Figure 2 as a tensegrity framework would give an
enormous number of actual degrees of freedom (perhaps ten?). When
we built it entirely of rods we found just two actual degrees of
freedom. Exercising them independently destroyed the coplanarity
of B, but not of A. Then BnA = φ, AΓ\B = A = C, h = dimQ(C)-
2, k = 4 and

dim £ = 0 + 2 + 4 - 6 = 0 .

Such points (A, B) are regular points of / so K(A, B) has precisely
two infinitesimal (or equivalently actual) degrees of freedom once
the coplanarity of B is lost.
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