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CANCELLATION OF MODULES AND GROUPS AND
STABLE RANGE OF ENDOMORPHISM RINGS

R. B. WARFIELD, JR.

In this paper, various cancellation properties for a module
are shown to follow from facts about the stable range of its
endomorphism ring, and a number of applications to the struc-
ture of modules, Abelian groups, and complex tori are given.

In the first section we introduce a property which we call the
n-substitution property for a module, which holds if and only if the
integer n is in the stable range of its endomorphism ring. Direct
sums and summands of modules with this property are studied, and
a slight generalization of Vasershtein's theorem on the stable range
of matrix rings is obtained. In the second section two strong can-
cellation properties for a module are shown to be equivalent to one
being in the stable range of its endomorphism ring, and an ap-
plication is obtained concerning modules whose endomorphism ring
modulo its radical is von Neumann regular. Bass showed that if S
is a commutative J-Noetherian ring of /-dimension d, and R is a
finite S-algebra, then d + 1 is in the stable range for R. If S is
not Noetherian, this is not a strong enough result to apply to en-
domorphism rings, and it is improved in the third section to say
that the endomorphism ring of any finitely presented module over
such a ring has d + 1 in the stable range. In section four are two
stronger results, one concerning finitely presented modules over
rings of Krull dimension one in the classical sense (in terms of
chains of prime ideals) and the other concerning projective modules
over rings having Krull dimension one in the noncommutative sense.
The final section contains several applications to torsion-free Abelian
groups, modules over valuation rings, and complex tori. It is shown
that a torsion-free algebra of finite rank over a semilocal principal
ideal domain or over a (possibly non-Noetherian) valuation ring has
one in the stable range. This implies cancellation theorems for
torsion-free Abelian groups of finite rank satisfying certain divisi-
bility conditions and also for torsion-free modules of finite rank over
a valuation ring. It is shown that two is in the stable range for
any torsion-free algebra of finite rank over a principal ideal domain.
As an application, it is shown that two torsion-free Abelian groups
A and B of finite rank are of the same genus if and only if for
some positive integer n, An = Bn, so that, in particular, if A, B, and
C are torsion-free groups of finite rank and A φ B = A 0 C, then
for some positive integer n, Bn = Cn. There are corresponding ap-
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plications to complex tori, and, in particular, if A, B, and C are
tori with AxB = AxC, then for some positive integer n, Bn~Cn.

All modules in this paper are right modules, on which homo-
morphisms and endomorphisms act on the left, though we may oc-
casionally vary this convention for modules over commutative rings.
All rings have identity, and by the radical of ring E, we will al-
ways mean the Jacobson radical, denoted J(E), unless we specify
otherwise. The author has profited from a number of conversations
with K. R. Goodearl about the material in this paper. This paper
was completed while the author was visiting at the University of
Leeds, and the author is grateful to the Mathematics faculty at that
institution for their hospitality. The research was supported in part
by a grant from the National Science Foundation.

l Stable range and the ^-substitution property*

DEFINITION 1.1. A module A has the ^-substitution property if
for every split epimorphism M= (φ?=1 -A)0 H"—> A there is a splitt-
ing φ: A -> M such that M = φ(A) @L®H with L £ φ?= 1 A.

THEOREM 1.2. // A has the n-substitution property and
A 0 I = 4 0 7 , and X has a summand isomorphic to φ?=iA, then

Proof. Let I = ΰ 1 φ φ ΰ ί i φ Γ , where Bt ^ A (1 ^ i ^ n),
and let B = φJU-B<. We have a split epimorphism ΰ φ 4 0 Γ - ^ i
with kernel Y'f Y' = Y. By hypothesis, there is a splitting φ: A —>

© Γ such that ΰ © A 0 I ' = ^ ( 4 ) © L φ A 0 Γ where
Since φ{A) φ L = B, and A ~ φ(A), it follows that L® A 0

X' s X. Since we also have B 0 4 0 Γ = φ(A) © Γ', and Γ' s Γ,
it follows that Y = X.

THEOREM 1.3. Let A be a module with the n-substitution pro-
perty and E its endomorphism ring. If 4 0 I = A 0 7 and
-Σ"s(φ?-M)φJC', then Y=X'®L, where LφAsφ?= 1A. We
can conclude from this that L = φ S A (so that X ~ Y) if and
only if for any finitely generated protective E-module P such that
P θ E = ®?=i E, we have P ~ Φ S E.

Proof. The first statement is proved just as the statement of
the previous theorem. There is an obvious equivalence of categories
between finitely generated protective jE'-modules and summands of
finite direct sums of copies of A (given by MB -> Hom(A, M)E and
PE —> PE <g) EAB) which establishes the second statement.
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REMARK. TO see what this means, suppose that A is a module
with End(A) ^ Z. Anticipating results, we simply state that this
implies that A has the 2-substitution property. Since projective
Z-modules are free, we conclude from 1.3 that A φ A 0 I ^ 4 © Γ
implies Γ ^

DEFINITION 1.4. A sequence (al9 , αr) of elements of a ring E
is a right unmodular row if there are elements xteE with
Σ ^ A = 1- Similarly, (al9 , αr) is a left nnίmodular row if there
are elements xieE with Σ ^ α i — l

DEFINITION 1.5. An integer n > 0 is said to be in the stable
range for a ring i£ if for every right unimodular row (al9 •••, ar),
(r > n) of elements of E9 there are elements bl9 , δr_x in E such
that (αx + arbl9 , αr_i + aτbr-^) is right unimodular.

THEOREM 1.6. The following properties are equivalent for a
ring E with identity, and an integer n, n > 0.

1. For every right unimodular row (al9 •• ,α r ), (r > n) of
elements of E, there are elements bl9 , br-x in E such that
(di + arbl9 , ar-! + αr6r_!) iβ right unimodular.

1'. For ei βπ/ left unimodular row (alf , αr), r > w, o/ eϊe-
ments of E, there are elements bu , &r_i of E such that (a +
bxar9 , αr_i + 6r_!αr) is ϊe/ί unimodular.

2. F o r eveπ/ rigfeί unimodular row (au -- , α r ) , r > n, there
are elements xύ (1 ^ i ^ r) ŝ cfe ί/̂ αί Σ α ^ i — 1 α ^ ^ (a?i, , xr-i) is
left unimodular.

2'. For every left unimodular row {aly , αr), r > ^, ίfeere
elements x^l ^ ΐ ^ r) swcfc ί/̂ aί Σ 0?̂ ^ = 1 and (xl9 , ^ - J is r

3. If A is a right module over a ring R and E is the endo-
morphism ring of A (acting on the left) then A has the n-substitu-
tion property.

3'. If A is a right module over a ring R and E is the endo-
morphism ring of A (acting on the left), and if M is a right
module with decompositions

M = ΛΘ θ 4 0 H = Λ 0 D

with A ~ Ai9 (0 ^ ί ^ n) then there are submodules K Q M and
LQA, φ φ Λ such that M = 4 0 φ K = L 0 K.

REMARK. Condition (3') is dual to condition (3) and can be ob-
tained from (3) by changing the split epimorphism to a split mono-
morphism and making other changes accordingly. We chose not to
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emphasize the duality because the present statement seems clearer.
Throughout this theorem we have restricted ourselves to right
modules with endomorphisms acting on the left, but because of the
symmetry of the results, one does not have to be careful about
how the endomorphisms act.

We isolate part of the proof of the theorem for later reference.

LEMMA 1.7. If E is a ring and (αlf , ar) a right unimodular
row in E, then conditions (1) and (2) of Theorem 1.6 for that
particular row are equivalent.

Proof If (αx + arblf , ar-λ + αr6r-i) is right unimodular, and
Σfai + aj>i)%i = 1, then (xl9 , a?r-i) is left unimodular, and atx± +
• + ar-^r-v + α r (Σ btxt) = 1, so (2) holds. Conversely, if J^atxt = 1
and (xl9 , xr_i) is left unimodular, and cxxx + + cr-xxr-x = 1,
then if we let &* = xrCi then we easily calculate that (αx + arb1)x1 +
• + (αr_! + αr6r-i)ί»r-i = 1.

Proof of theorem. Lemma 1.7 shows that (1) and (2) are equi-
valent as are (1') and (2'). We next show that (2) implies (3). If
π = (πl9 , πn9 / ) : A φ φ A φ H—> A is a split epimorphism, and
Φ = (̂ i» * > ^ ΰ): A -> A φ φ A φ H is a splitting, then πφ = 1,
so TΓ̂ i + + 7Γ.0, + /flr = 1. We apply (2) to the right unimodular
row (πlf - -, πn, fg) in E, obtaining elements Wt(l ^ i ^ n + 1) such
that (Ψu -, ΨJ is left unimodular and π ^ + + π,?ΓΛ + (fg)Ψn+ι = 1.
We let SΓ: A -> (©?βl A) φ H be defind by Ψ - (f x, •••,?"« flr?".+i). Ψ
is clearly a right inverse for π. Since (fΊ, , ΨJ is left unimodular,
there are elements θt of E such that 0 ^ + hθJFn = 1. We now
find another left inverse for ?Γ, namely the map θ = (θu , θn, 0):
(θ*%=i A) φ ίί-> A. Clearly, Ker(0) = L®H where L£(flk=i A), and
we have proved that A has the ̂ -substitution property.

We next show that (3) implies (2). We regard the right uni-
modular row (al9 , αr) of elements of E as a split epimorphism
(φΓ=i A)-+A. A splitting is given by a row (xlf , xr) of elements
of E such that ][>A = l Condition (3) says that we can find such
a row, such that if φ is the corresponding homomorphism A —>
(θί=i A)f then there is a submodule L £ (φ?=1 A) with φΓ=i A =
^(A) φ L φ (®i=»+iA). If ^ has this property, then φ has a left
inverse /9 such that Ker(/3) = L 0 (φΓ^+i A). Such a β: φl = 1 A -> A
is given by a row of the form (bl9 , bn9 0, , 0). Hence (cclf ••-,»„)
is left unimodular, which proves (2).

The equivalence of (Γ), (2;) and (3') is directly parallel to that
of (1), (2) and (3) (in fact, they are the same statements in the op-
posite ring), so the theorem will be proved if we can show the
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equivalence of (2) and (2'). The proof that (2) and (3) are equi-
valent makes it clear that A has the ^-substitution property if and
only if A has this property in the special case in which H = A.
Similarly, in establishing property (3'), we may assume H = A. We
therefore let M = A, 0 - φ An+1 = Λ Θ A with A, = A, (0 ^ i ^
n + 1), we assume A has the w-substiution property, and we prove
that condition (3') holds, that is, there are submodules L and K of
M such that L £ A, 0 - 0 An and Ao 0 K = M = L φ K. By
Theorem 1.2, we know that D=($?=1A). We therefore can apply
the ^-substitution property for A to the split epimorphism Ao 0 D~>
An+1 (with kernel A1 φ φ An) to obtain a splitting ^: .Aw+1 —> ikf
with 0(A.+1) = .F, such that Λ f = A 1 φ φ i 4 # © ί τ = - 4 o φ D ' 0 j F r

where D ' £ D . We let iΓ - D' φ ί7. If L = (A o φ i*7) Π (A x φ - φ
An), it is routine that M = L φ if. This verifies that condition (3')
holds for A. In particular this shows that (2) implies (2'), and pas-
sing to opposite rings, this implies that (2') implies (2), so we have
completed the proof of 1.6.

COROLLARY 1.8. If M is a module with endomorphism ring E,
then the following properties are equivalent:

(1) M has the n-substitution property.
(2) E has the n-substitution property (as an E-module).
(3) E has the n-substitution property in the category of fini-

tely generated protective E-modules.

This is clear from the above theorem and its proof. The ^-sub-
stitution property therefore resembles the finite exchange property,
for which the equivalence of (1) and (2) is proved in [37], and the
equivalence of (1) and (3) follows from the proof of the main theorem
in [25].

THEOREM 1.9. If A is a module and A = B@C, then A has the
n-substitution property if B and C do.

Proof. Let M = Ax φ φ A% φ H = Ao φ K, where A, = A,
0 ^ i ^ n. We must find submodules Af and L of M such that
M = A! φ K - A! φ L φ H, where L £ Ax 0 An. Letting A, -
Bi 0 Cu with Bi = B, Ci = C, (0 <̂  i ^ τ&), and applying the ^-sub-
stitution property for J5, we obtain submodules B' QM and V Q Bλ 0
• Φ 2?» such that

M - Bf 0 Co 0 iΓ = B' 0 L' 0 C, 0 . Cn 0 i ϊ .

Using these decompositions, and applying the ^-substitution property
for C, we obtain submodules, C Q M and L" £ d 0 0 CΛ such
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that

M = Bf 0 C" 0 K = B' 0 C 0 2/ 0 L" 0 ff .

Letting A' = J5' 0 C and L = 1/ 0 L", we obtain the desired result.

COROLLARY 1.10. If n is ιl%n the stable range for a ring E,
then it is in the stable range for a matrix ring over E.

REMARK. If a module M has the 1-substitution property, then
so does any summand of M, as is shown in Puchs [9]. It follows
that the property of having 1 is the stable range is a Morita in-
variant of rings. This is not the case with the higher stable range
conditions, as was first pointed out by Vasershtein in [34]. Vaser-
shtein gives a formula for the stable range of a matrix ring which
implies that if R is a ring and n is in the stable range for R, then
2 is in the stable range for Mn-±(R). The module theoretic approach
gives a smoother treatment of this along with a slight generaliza-
tion.

THEOREM 1.11. Let A be a module with the n-substitution pro-
perty and suppose that n is the smallest integer for which this is
true. Ifk>0 and m ̂  n — 1, and

M=Aι@- ®Ah®K=A[® ® A'k+m 0 L

where At = A ~ A) for all i and j , then there is a submodule B Q M
such that

M= BφK= BφCφL

with G £ A[ 0 0 Afc+W. Conversely, if n and k are as before and
if m is an integer for which the above statement always holds, then
m ^ n — l

Proof. If m ̂  1 the proof of the existence of B is an easy
iterative argument from the definition and the argument used to
prove 1.2. To prove the sharpness of the estimate, we suppose that
k is fixed and that the result is true for some integer m, and sup-
pose

where At = A ^ Ar

if 1 <^ i <L m. We let M = Ak~ι 0 N, and conclude
from the condition that there is a submodule B of M with
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where C Q Ak-χ 0 A[ 0 0 A'n+1. It follows that

N = (B n N) 0 K = ((B 0 C) n 2SΓ) 0 L .

Since JS n iVC (J5© C)niV, this formula implies that (B®C)nN =
(JBΠ iV) 0 (B 0 C) Π K. If TΓ is the projection of N onto AJ 0 0
A'm+1 along L, then ττ((5 0 C) n K) 0 L = ((£ 0 C) Π ίΓ) 0 L, so

iv = (Bn isr) 0 TΓ((JB 0 C) n if) 0 L .

Since this holds for any such AT, we conclude that A has the m + 1
substitution property, so m ̂  ^ — 1, as desired.

To convert this theorem into a statement on the substitution
property for Ak, or, equivalently, on the stable range of Mk(End(A))}

it is necessary to increase m so that it is a multiple of k. Doing
this, we obtain the unlikely looking formula first obtained by Vaser-
shtein by a different argument:

COROLLARY 1.12. // n is the smallest integer in the stable
range for R, then the smallest integer in the stable range for Mk(R)
is 1 — [ — (n — l)/h], where [r] is the greatest integer less than or
equal to r.

2* Cancellation and the substitution property*

THEOREM 2.1. For a module A with endomorphism ring Ey the
following properties are equivalent:

( i ) A has the 1-substitution property.
(ii) E has one in the stable range.
(iii) For every module M with decompositions M = Ax 0 H =

A 0 K with A = A1 = A2, there is a submodule C Q M with

Af = Λ 0 C = 4 20C .

(iv) For every module M with decompositions
M^=A1Q)H=A2®K with A = A± = A2, there is a submodule C ξZM
with

M= CφH= C®K.

Further, each of these properties implies that every onesided unit
in E is a unit and that every module with endomorphism ring iso-
morphic to E has the cancellation property.

REMARK. The properties described in (iii) and (iv) are some-
times called (respectively) the common complement and substitution
properties. The substitution property was introduced by Fuchs in
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[9]. The substitution property had previously been established by
Crawley [5] for countable p-groups with finite Ulm invariants.
Fuchs showed in [9] that a quasi-projective module A has the sub-
stitution property if and only if its endomorphism ring does as a
module over itself, a result which 2.1 and 1.6 show holds for all
modules. Theorem 2.1 can be thought of as an elaboration of
Evans's theorem [8] that a module has the cancellation property if
its endomorphism ring has one in the stable range.

Proof. Theorem 1.6 shows that (i) and (ii) are equivalent. We
assume (ii) and let the projection onto A2 be the split epimorphism,
and we obtain a splitting φ such that M — φ(A) ®Q (&H with
φ{A) = A and φ(A) ®Q = A. To show Q = 0, it suffices to show
that A cannot be isomorphic to a proper summand of itself. This
is clear if we take the isomorphism φ(A) 0 Q —> A as our spilt epi-
morphism and apply the 1-substitution property again. This shows
that (i) implies (iv), and the converse is trivial. The fact that A
has no proper summands isomorphic to itself is equivalent to the
statement that one-sided units in E are units, which (together with
1.6) shows that (ii) implies (iii), the converse again being trivial
from 1.6. This completes the proof of 2.1.

One may define a cancellation ring to be a ring E such that
every module with endomorphism ring isomorphic to E has the can-
cellation property. No examples of cancellation rings are known
which do not have 1 in the stable range. There are, however,
modules with the cancellation property whose endomorphism rings
do not have 1 in the stable range—the best example being Z—the
infinite cyclic group, [4, 35]. However, if A is a noncyclic sub-
group of the additive group of rationals such that End(A) = Z
(there are many such) then A does not have the cancellation pro-
perty (see 5.5 below), so Z is not a cancellation ring.

The next result is a well known result due to Bass ([3, Lemma
6.4]) which we include for reference, and because an amusing proof
is now available.

LEMMA 2.2. (Bass [3]). If E is a ring such that E/J(E) is
Artinian then E has one in the stable range.

Proof The property clearly holds for E if and only if it holds
for E/J(E), so we may assume that E is Artinian and semi-simple.
E is then a product of simple rings, and the behavior of the
formulae involved shows that we may assume that E is simple. E
is then a matrix ring over a division ring. Lemma 1.9 shows that
it will suffice to establish the result when E is a division ring,
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which is trivial.
The next lemma is an easy application of 2.2, and is a special

case of [13, Prop. 12(a) and Thm. 18]. However, its proof is much
easier than that in [13], and it is needed frequently below, so we
include a proof.

LEMMA 2.3. Let S be a commutative ring with only a finite
number of maximal ideals and let R be an S-algebra which is fini-
tely generated as an S-module. Then if A is a finitely generated
R-module, with endomorphism ring E, then EjJ{E) is Artinian, so
one is in the stable range for E and A has the substitution and
common complement properties.

Proof. Let K be the kernel of the natural map E->Έnds(A/
AJ(S)). E/K is an S/J(S)-subalgebra of Ends(A/AJ(S)). Since S/J(S)
is a finite product of fields, and A/AJ(S) is a finitely generated
S/J(/S)-module, we see that E/K is Artinian, so all we need to show
is that KQJ(E). If fe K, the 1 - / is surjective modulo J(S), and
hence is surjective by Nakayama's lemma. Since A is finitely
generated over the commutative ring S, it follows from Vasconcelos'
lemma [33] that 1 — / is monic. This shows that 1 — / is an auto-
morphism for all feK, so KQJ(E).

This generalizes a result of Evans' in [8] in which S is a Noe-
therian local ring. In [13], a more general result is obtained, in
which it is only required that S/J(S) is von Neumann regular and
that for each maximal ideal M of S, RM is finitely generated as an
SM -module.

A reading of the proof of Bass's lemma given by Swan in [31,
11.8] shows that if R is von Neumann regular and if R has the
internal cancellation property (RR — i φ B — C φ D and A ~ C
imply B = D) then R has one in the stable range. Conversely, if R
has one in the stable range then our previous results and the fact
(due to Fuchs [9]) that the substitution property is inherited by
summands implies the internal cancellation property. This observa-
tion is due to Kaplansky (unpublished) and Fuchs [9]. A ring is
unit regular if for every xeR, there is a unit u with xux — x. In
[16] is a proof, due to Kaplansky, that a regular ring is unit regu-
lar if and only if it has one in the stable range. These remarks
summarize the known results on the stable range of von Neumann
regular rings, and lead to the next result.

THEOREM 2.4. Let E be a ring with radical J such that idem-
potents modulo J can be lifted and E/J is von Neumann regular.
Then the following properties of E are equivalent:
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( i ) E/J is unit regular.
(ii) 1 is in the stable range for E.
(iii) every module whose endomorphism ring is isomorphic to

E has the cancellation property,
(iv) there exists a ring R and an R-module M such that

End(ikf) = E and M has the cancellation property.

REMARK. This shows that at least for these rings, the cancel-
lation property is equivalent to the substitution property.

Before proving this theorem we need some terminology and a
lemma. We recall that an additive functor F: J^f —> & between
additive categories is a weak representation equivalence if (i) F(X) ~
F(Y) implies X~ Y; (ii) for each object Xof &, there is an object
F o f j / with F(Y)^X. These hypotheses imply F(X®Y)^
F(X)®F{Y) and that X has the cancellation property in s$f if
and only if F{X) does in &', and similar statements.

LEMMA 2.5. Let M be a module, E its endomorphism ring, J
the radical of E, and suppose that E/J is von Neumann regular
and that idempotents modulo J can be lifted. Then there is a weak
representation equivalence from the category of summands of finite
direct sums of copies of M to the category of finitely generated
protective E\J-modules.

Proof. We first note that the functor taking NR to Hom(M,
N)E is category equivalence (with inverse taking PE to PE (g) EMB)
from the category of summands of finite direct sums of copies on
M to the category of finitely generated projective JS'-modules. The
functor from projective J5-modules to projective E/J modules takes
P to P/PJ. A standard argument (as in [31, 2.26]) shows that if
P/PJ = Q/QJ then P ^ Q (if P and Q are finitely generated projec-
tive jB-modules), so we need only show that for every finitely
generated projective E/J-moάxήe Q there is a finitely generated pro-
jective U-module P with P/PJ=Q. Since every projective E/J-
module is a direct sum of idempotent generated ideals [21], it is
enough to verify this when Q = e(E/J) for some idempotent eeE/J.
By the idempotent lifting hypothesis, we may assume that e is an
idempotent of E, in which case we can let P = eE.

Proof of 2.4. It is clear from our previous remarks that (i)
and (ii) are equivalent, and that (ii) implies (iii), which implies (iv).
We therefore show (iv) implies (i). By the lemma, if M has the
cancellation property, then E/J does in the category of finitely
generated projective i?//-modules. Let E/J = 4 0 B = C0D, with
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A = C. Adding a copy of B to both sides, we obtain E/J 0 B ~
E/JQ)D. Hence, if M has the cancellation property, B = D, so
E/J has the internal cancellation property. As we previously re-
marked, this is equivalent to the statement that E/J is unit regular.

COROLLARY 2.6. If M is a quasi-injective module and E its
endomorphism ring, then the following properties are equivalent:
(i) M has the cancellation property, (ii) M has the substitution pro-
perty, (iii) M has the internal cancellation property, (iv) E/J(E) is
unit regular, (v) M is not isomorphic to a proper summand of
itself.

Proof. If M is quasi-injective, it is well known (see for example
[11, 2.18 and 2.21]) that E/J(E) is von Neumann regular and that
idempotents modulo J(E) can be lifted. This and the previous
theorem imply the equivalence of (i), (ii), (iii), and (iv), none of
which depend on any other property of quasi-injective modules, (iii)
trivially implies (v). (v) implies (i) for quasi-injective modules by
[11, 6.20].

3* Stable range theoretns for endomorphism rings* A number
of theorems are known which assert that certain rings have certain
integers in the stable range. In [3], Bass showed that if S is a
commutative J-Noetherian ring of J-dimension d and R is a finite
S-algebra then d + 1 is in the stable range for R. When S is not
Noetherian the endomorphism ring of a finitely generated S-module
(or i?-module) need not be finite over S, so we need a new result.
In this section, Bass's result is extended to the endomorphism rings
of finitely presented iϋ-modules. The case of finitely generated
modules remains open. Other recent results on stable range are
Heitman's theorem [15] that a commutative ring with (classical)
Krull dimension d has d + 2 in the stable range (d + 1 if it is a
domain) and Stafford's theorem [28] that ideal invariant Noetherian
rings of (noncommutative) Krull dimension d have d + 1 in the stable
range. Both of these are promising, but do not apply to many
endomorphism rings.

LEMMA 3.1. Let A be a cyclic semi-simple module over a ring
R and x}, x2 elements of A such that A = xjt + x2R. Then there is
an reR such that for all central units ueR, A — (xx + x2ur)R.

REMARK. This is a slight generalization of a lemma of Swan's
[30, Lemma 4] which generalizes a lemma due to Bass. Swan's
lemma would suffice for this section, but we will need the more
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general result in the next section.

Proof, There is a submodule B £ x2R such that A = xxR 0 B.
We first find an element b e B, such that A = (x± + b)R. Proceeding
by induction on the length of B, it suffices to show that we can
find such a 6 with a(xx + b) > a(x) (where a(x) is the right annihi-
lator of x). Since a(xt + 6) = φi)Πα(δ), this will be possible unless
α(&i) £ α(J3), where α(B) is a two-sided ideal. If this happens, we
will show B = 0. Since .Aα(I?) £ xji, we may pass to A/Aa(B) and,
in effect, assume a(B) — 0. In this case, a(xx) = 0, so ^JB = i?.
Hence our ring R is actually semi-simple Artinian, and A~RR®B,
which, since A is cyclic, clearly implies B — 0.

Finally, if u is a central unit of R, then multiplication by u
gives an automorphism of any i?-module, so the map of A into itself
taking rx1 + y {y^B) to rxx + yu is an automorphism, and therefore
takes the generator xι + b to another generator, a?x + ίm. This com-
pletes the proof of 3.1.

LEMMA 3.2. A ring E has n in the stable range if and only
if for every cyclic module A and elements at€ A, 1 <̂  i 5̂  r where
r > n, such that A = aJE+ +arE, there are elements 6* e E,
1 <; i ^ r — 1

Proof. This is essentially Bass's proof from [3, 4.1] that if n
is in the stable range for E then it is in the stable range for homo-
morphic images of E. We assume that A = E/I, where I is a right
ideal, and that n is in the stable range for E. lί at = ct + I then
there is an element cr+1 e I such that (cu , cr, cr+1) is right uni-
modular. Since n is in the stable range for E, there are elements
diβE, 1 <£ i ^ r such that (cx + cr+1du , cr + cr+1dr) is a right uni-
modular row. Since I is a right ideal, c, + cr+1d< is in the same
coset as ct, so, in effect, we may assume that the original elements
ct form a right unimodular row. The result now follows immediate-
ly, by again applying the stable range condition.

LEMMA 3.3. Let S be a commutative ring, seS, and T = {teS:
for some x and y in S, xt + ys = 1}. Then if φ: S —> T^S is the
natural map, φ(s) eJ(T^S)f and if f:S—>S' is any ring homo-
morphism such that f(s) e J(Sr), then f factors uniquely through φ.
Furthermore, the correspondence I-^φ^I induces a one-to-one cor-
respondence between the maximal ideals of T^S and those maximal
ideals of S which contain s.

Proof. N o t e t h a t i f t e T a n d x q + ys — t i n S, t h e n q e T ( s i n c e
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if at + bs = 1 then (ax)q + (ay + b)s = 1). If a/b e T~ιS (b 6 T) then
to show 1 — (a/b)φ(s) is a unit, we show that b — aseT, which is
clear, since (6 — as) + as = 6 and beT (using our previous remark).
This shows that φ(s)eJ(T~1S). If f: S-> S' is a ring homomorphism
and f(s) 6 J(S'), and xt + ys = 1, then /(I — ?/s) is a unit, so /(at) is
a unit, from which our universal property follows. It is clear that
if ikf is a maximal ideal of S then either seJIί or Jlίfl T i s non-
empty, but never both. This shows that the maximal ideals of S
which correspond to maximal ideals of T~*S are precisely those
which contain s. If M is a maximal ideal of T^S, then φ(s) e M
(since φ(s) e J^T^S)) so seφ~ιM. If N is a maximal ideal of S con-
taining φ~λM, then seN, so by our previous remark T~~ιN is a
maximal ideal of T-'S. Since M = T~^~lM, it follows that MQ T^N,
and hence that N — φ~γM. Hence φ~xM is maximal, which completes
the proof of 3.3.

We recall that a J-ideal of a commutative ring is an ideal which
is the intersection of maximal ideals, and that J-prime is a prime
J-ideal. A commutative ring S is J-Noetherian if it satisfies the
ascending chain condition on J-ideals, in which case every J-ideal is
the intersection of a finite number of J-primes. The J-dimension
of S is the maximum of the lengths of chains of J-primes, and the
J-height of a J-prime P is the maximum of the lengths of chains of
J-primes contained in P. The following result generalizes Bass's
theorem in [3] that if S is a commutative J-Noetherian ring of
J-dimension d and R is a finite S-algebra, then d + 1 is in the
stable range for R. The main difference of technique between the
proof that follows and previous proofs of related results is that
we are forced to use induction on a sequence of localizations rather
than on homomorphic images.

THEOREM 3.4. Let S be a commutative J-Noetherian ring of
J-dimension d and R an S-algebra suck that for all J-primes P of
S, RP is a finite SP-algebra. Let Abe a finitely presented R-module
and E the endomorphism ring of A. Then d + 1 is in the stable
range for E.

Proof Let (al9 , ar) be a right unimodular row (r > n) and
L the set of elements of S not contained in any minimal J-prime
(i.e., J-prime of height zero). The maximal ideals of L~XS are pre-
cisely the ideals extended from the minimal J-primes of S (by [31,
Lemma 12.9 and Prop. 5.5] or [22, Thms. 34 and 81]), from which
it follows that (L^S) has only a finite number of maximal ideals.
Since A is finitely presented,

L-'E = EndL-iB(L-lA) .
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It follows from 2.3 that L~ιE is Artinian modulo its radical. Ap-
plying Lemma 3.1, we obtain an element w eα2L~\#+ +αrL~1i£
such that for every XeL, aλ + Xw is a unit in L^E. Choosing a
suitable λ, we may assume that the coefficients of w are all in E,
and if (at + w)v = 1 then v = u/s for some s e L, so we may assume
that w e a2E-\ VarE and (a1 + w)E 2 sE.

We now make a standard remark that is generally useful in
arguments of this sort: that we can without loss replace ax by
aλ + w, if w e a2E-\ VarΈ. Clearly, if (alf , ar) is right uni-
modular, then so is {ax + w, α2, , α r). If (at + w ) ^ + a2x2Λ +
arxr = 1 and (xlf , α̂ -x) is left unimodular, and w = a2w2-\ Varwr

then αiflJi + α2(cc2 + w2cc!) + +ar(xr + wrXχ) = 1 and (a?!, cc2 + t^Λ,
ίcr_! + Wr-iίCx) is again left unimodular. In the particular situation
we have here, this means that without loss of generality, we may
assume that axE 2 sE for some seL.

We now let T = {t e S: for some x and y in S, tx + sy — 1}. An
examination of Lemma 3.3 shows that s eJ(T~ιS), and that the lat-
tice of J-primes of T~ιS is on one-to-one correspondence with a
sublattice of the J-primes of S which does not contain any of the
primes of J-height zero. It follows that T-1S is again J-Noetherian
and of smaller J-dimension than the J-dimension of S. Using finite
presentation again, we see that T~ιE = H£inaT-iR(T~lA), so we may
use induction on the J-dimension to infer that d is in the stable
range for T~ιE. Now E/sE = T'XE/sE), since every element of T
acts as a unit on E/sE (from the definition of T). Hence E/sE =
T-Έ/sT-Ή, so E/sE is a homomorphic image of T~ιE, and hence
has d in the stable range (by 3.2 or [3, 4.1]). Since a±E^sE,
ElaJS is a cyclic module over a ring with d in the stable range.
Using 3.2 again, we can find elements bί9 (1 < i < r) of E such that
ElaJS is generated by the images of the elements α* + arbi9

1 < i < r. It follows that (alf a2 + arb2, , αr_x + αr6r-i) is a right
unimodular row, which completes the proof of the theorem. (Note
that the apparent asymmetry bx — 0 is produced by the fact that
we started out by altering αlβ)

If the ring S is a domain and the module in question is torsion-
free, then the finite presentation requirement can be relaxed. We
note first a general lemma.

LEMMA 3.5. Let A be a finitely generated module over an al-
gebra R over a commutative ring S, T a multiplicatively closed
subset of S, and B a finitely generated R-module such that if xeB
and xt — 0 for some te T then x = 0. Then the natural map

T-Ήom(A, B) ==> Hom(T-\A, T~ιB)
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is an isomorphism.

Proof. If φ is the natural map and φ{f) = 0 then f(A) Q{xeB:
for some teT9 tx = 0}. By hypothesis, / = 0 so φ is injective. Let
#eHom(T~M., T^B) and let {xly •••,«*} be a set of generators for
A. If g(x4) — y,/** (with yi G S , ίi e Γ) and t is the product of tu

then (fflO(A) £ ΉB), where ψ: B-* T~ιB is the natural map (which,
in this case, is injective). If h: A—>B is defined by h{x) = tg{x),
then clearly g = φ(h/t), so # eφ(T~1Ή.om(A, B)). This shows that φ
is surjective.

THEOREM 3.6. Let S be a commutative J-Noetherian domain of
J-dimension d and R an S-algebra such that for all J-primes P of
S, RP is a finite SP-algebra. Let A be a finitely generated R-module
which is torsion-free as an S-module, and E the endomorphism
ring of A. Then d + 1 is in the stable range for E.

Proof. The proof is the same as that of 3.4, using S-torsion-
freeness and Lemma 3.5 instead of finite presentation.

This is the most general result known to the author about the
stable range of endomorphism rings. Some more specialized results
concerning endomorphism rings with two in the stable range are in
the following two sections. Stafford's previously mentioned stable
range theorem [28] includes, in particular, fully bounded Noetherian
rings, and we present a generalization of this which also includes
the classical examples of finite algebras over commutative J-Noe-
therian rings (but, as far as we can tell, does not include the result
of 3.4). We need first a lemma to replace 3.1. The following lemma
was obtained independently by the author [39] and Stafford [28].

LEMMA 3.7. Let R be a semi-prime right Goldie ring, aeR,
and I a right ideal such that aR + / is an essential right ideal.
Then there is a be I such that (a + b)R is essential.

THEOREM 3.8. Let R be a ring and J an ideal contained in
the Jacobson radical of R such that R/J is a semiprime right Goldie
ring. Assume that R/J is bounded (that is, every essential right
ideal contains an essential ideal), and that for every essential
ideal I of R/J, (R/J)/I has d in the stable range, where d is some
integer, d^l. Then R has d + 1 in the stable range.

Proof. We may assume / = 0. If (alf •••, ar) is a right uni-
modular row, then by 3.7 there is a w e a j t H f- arR such that
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(e&i + w)R is essential. By the argument in the second paragraph
of the proof of 3.4, we may replace ax by αx + w, and assume that
aλR is essential. In this case, axR contains an essential ideal /, and
R/diR may be regarded as a cyclic ϋ?/I-module. Just as in the proof
of 3.4, an application of Lemma 3.2 completes the proof.

In a mild extension of the previous theory to the noncommuta-
tive case, we will consider rings R such that for every simple
module S, R/a(S) is Artinian, where a(S) is the annihilator of S. In
such a ring, the radical is the intersection of the maximal two-
sided ideals. We will call an ideal in such a ring R a J-ideal if it
is an intersection of maximal (two-sided) ideals. A J-prime is a
prime ideal which is a J-ideal, and a ring is J-Noetherian if it
satisfies the ascending chain condition on J-ideals. R has J-dimension
n if every chain of J-primes has at most n + 1 elements, and n is
the smallest integer for which this is true. We call an ideal / in
R a Goldie ideal if R/I is a right Goldie ring, and we call I semi-
prime if it is the intersection of prime ideals. In particular, every
J-ideal is semiprime. We will need the following lemma from [26,
1.3 and 1.4]:

LEMMA 3.9. If S is a right Goldie semiprime ideal, then S is
the intersection of a finite number of Goldie prime ideals. IfS =
P1 Π Π Pn = Qx n * Π Qm where the Pt and Q3 are Goldie prime
ideals such that if Pi Q Po or Qi £ Qά then i = j , then m — n and,
after rearrangement. Pi = Qίf i = 1, , n. The Pt that appear in
such a representation are precisely the primes minimal over S.
Conversely, if {Plf , P J is a set of right Goldie primes then S —
PilΊ nP* is a right Goldie semiprime ideal. Hence the set of
right Goldie semiprime ideals is in one-to-one correspondence with
the set of finite sets of mutally incomparable right Goldie primes.

THEOREM 3.10. Let R be a ring such that for every simple
module S, R/a(S) is Artinian, and such that R is J-Noetherian and
of J-dimension d. Suppose in addition that for each J-prime P,
R/P is right Goldie and bounded. Then d + 1 is in the stable range
for R.

Proof. We first need to note that every J-ideal of R is a finite
intersection of J-primes. This is standard in the commutative case,
and the proof here is similar, but we will give it for completeness.
(It is lifted from the proof of [22, Thm. 87]). If the result were
false, then since R is J-Noetherian, there would be a J-ideal I
maximal with respect to the property that it is not such an inter-
section. Since I can not be prime, there are strictly larger ideals A
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and B with ABQI. For any ideal X, we let /-rad(X) be the inter-
section of the maximal ideals containing X. If K = /-rad(A) and
L = /-rad(j?), then K and L are /-ideals larger than /, and hence
are finite intersections of /-primes, so it will suffice to prove that
Kf)L = I. If not, since / is a /-ideal, there is some maximal ideal
M which contains I but does not contain / Π K, and hence contains
neither A nor B. In this case, R = M + A — M + B, so R = R2 =
M2 + AM + MB + AB, and since AB Q IQ M, R2 £ M, which is im-
possible.

From 3.9, it follows that every J-ideal I of R is right Goldie,
and the hypotheses of the theorem also imply that R/I is bounded.
(If I = P1Π Π Pn, where the Pt are minimal over I, and Q and Qif

(ΐ = 1, , n) are the quotient rings of R/I and R/P^ respectively,
then we can identify Q = QiX xQ». If L is an essential left
ideal of R/I, the Lf\Qi is essential in R/Pi9 and hence contains an
essential two-sided ideal in R/Pu which can be identified with an
ideal Bt Q (R/I) Π Qt. The ideal B = Bx x x Bn is the desired
bound.)

We now prove 3.10 by induction on d. As usual we may as-
sume that Jacobson radical is zero, which, by the previous argu-
ment, shows that we may assume that R is a bounded semiprime
right Goldie ring. Since an essential two-sided ideal is not contain-
ed in any minimal /-prime (using 3.9 mildly again), we see that
any two-sided essential ideal I, R/I satisfies all of the hypotheses
of the theorem and its /-dimension is one less. An application of
3.9 and the induction hypothesis completes the proof.

4* Special results for Krull dimension one*

THEOREM 4.1. Let S be a commutative ring of Krull dimension
one with a finite number of minimal primes, and R an S-algebra
such that for every prime P of S, RP is a finite SP-algebra. Let A
be a finitely generated R-module and assume that either A is finitely
presented or that S is a domain and A is S-torsion-free. Then 2
is in the stable range for End(A).

Proof Let E = End(-A). If L is the set of elements of S not
in any minimal prime then either hypothesis implies that L~ιE =
EndL-ii2(L~1A). By 2.3, L~λE is Artinian modulo its radical, and has
1 in the stable range. Following the proof of 3.4, we see that it
will suffice to show that if s e L, and T — {t e S: for some x and y
in S, tx + sy — 1}, then one is in the stable range for T-1E. Prom
3.3 it is clear that T^S/JiT^S) is zero dimensional, and the hypo-
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theses imply that T~ιE = Endr-^iT-'A), so by the proof of [13,
Theorem 18], it follows that one is in the stable range for T~ιE,
as desired.

We now remind the reader that there is a theory of Krull
dimension for noncommutative rings which agrees with the usual
Krull dimension for commutative Noetherian rings, but not, in gen-
eral, for other commutative rings. For details we refer to [14]. In
particular, a ring R has (noncommutative) Krull dimension at most
one if for every descending chain of right ideals Iλ 2 72 S> Ϊ2 In Ώ, ,
all but a finite number of the factors I3 /Ij+1 are Artinian.

THEOREM 4.2. If R is a ring with {noncommutative) Krull
dimension at most one, than 2 is in the stable range for R.

Proof. As usual we may assume J{R) = 0. By [14, 3.4] R is
then a semiprime right Goldie ring, so that if ax + by + cz — 1, we
may use 3.7 and the argument in paragraph two of the proof of
3.4 and assume that aR is essential in RB. By [14, 6.1] since R is
semiprime, this implies that R/aR has Krull dimension zero and
hence is Artinian. It will therefore suffice to show that if A is a
cyclic Artinian module over any ring R and A = bR + cR then for
some r eR, A = (a + br)R. If iζ is the intersection of the maximal
submodules of A, then it is easy to verify that A/K is semi-simple
and that it will suffice to find an r such that A = K + (a + br)A.
We therefore may assume that K = 0, in which case our result is
just 3.1.

COROLLARY 4.3. If R is a ring of {noncommutative) Krull
dimension one and P is a finitely generated projective R-module,
then one is in the stable range for End(P). In particular, if
P φ P 0 P φ I s P φ Γ then Y=P®P®X and if P@P®X~

then Z~Pf^X where

Proof. This follows from the results of section one and [14,
1.2], which shows that End(P) has Krull dimension at most one.
Swan's example [29] shows that there can arise modules P' in the
above situation which are not isomorphic to P.

J.C. Robson has pointed out that the above result can be used
to provide an alternative proof of Stafford's theorem in [28] that
if R is a Noetherian domain and for some integer k, Mk{R) is a
principal left and right ideal ring, then Mn{R) is a principal left
and right ideal ring for all n ^ 2. We obtain an expanded result
(which could also be obtained easily from Stafford's argument). Here
Mk{R) is the k x k matrix ring over R, and we use the term "Dede-
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kind ring" in the sense of Robson [27, 6]. For information on
principal ideal rings, we refer to [18]. We recall that if R is a left
principal ideal ring and right Noetherian, then R is the product of
an Artinian ring and prime rings. Since primeness is a Morita in-
variant, we restrict attention to matrix rings over prime rings.

THEOREM 4.4. If R is a Noetherian prime ring, then the fol-
lowing properties of R are equivalent:

( i ) for so me integer k, Mk(R) is a principal left and right
ideal ring;

(ii) R is Morita equivalent to a principal left and right ideal
ring;

(iii) either (a) R is a principal left and right ideal ring, or
(b) R is a domain and Mk(R) is a principal left and right ideal
ring for all k ^ 2;

(iv) R is a Dedekind prime ring and for every essential right
I there is a finitely generated free module F such that F φ 1 is
free.

Proof. Each of the conditions implies that R is a Dedekind
prime ring. Every Dedekind prime ring is Morita equivalent to a
Dedekind domain, so we let D be this domain. Every protective
D-module is the direct sum of a free module and a right ideal [6].
Now if D is Morita equivalent to a principal left and right ideal
ring, then there is some finitely generated protective module P such
that every submodule of P is a homomorphic image of P. If Q is
projective of the same rank as P, then Q is a homomorphic image
of P only if they are isomorphic. Hence, if k is the rank of P,
then Rk = Rk~ι φ / for every nonzero right ideal /. 4.3 implies im-
mediately that R2 = R(& I, so that every projective D-module is
either free or isomorphic to a right ideal. This immediately implies
that for all n ^ 2, Mn(R) is a principal ideal ring, and also that
every ring Morita equivalent to D is either a domain or a matrix
ring over D. This shows the equivalence of (i), (ii) and (iii) in
Theorem 4.4. Turning to (iv), given 4.3 this means that for every
essential right ideal /, R φ / = R2, so (iv) implies (i), and (i) trivi-
ally implies (iv). This completes the proof of the theorem.

REMARK. From [40] we know that the Weyl algebra AL is an
example of a simple Dedekind ring which is not a principal left
and right ideal ring but which has the property that M2{A^) is a
principal left and right ideal ring. An example which is an order
over a commutative Dedekind domain, is in [29]. In the proof of
Theorem 3 of [29], Swan constructs a maximal order A in a quater-
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nion algebra, with a left ideal P such that P 0 4 = Λ@ Λ and P is
not principal. In addition, he shows that the class number of Λ is
2, so that every nonzero left ideal of A is either principal or iso-
morphic to P. It is clear from this that M2(Λ) is a principal left
and right ideal ring. Examples of algebras in characteristic p with
this property have recently been discovered by V. Jategaonkar [19].

5* Cancellation theorems for torsion-free Abelian groups,
Modules over valuation rings, and complex tori*

LEMMA 5.1. Let M be a torsion-free module of finite rank over
an integral domain R and let f: M—+ M be an injective endo-
morphism. Then there is an r eR, r Φ 0, such that rM^

REMARK. This was proved for R — Z by Jόnsson in [20]. I do
not know who first gave a proof valid in this generality. The fol-
lowing argument is due to E. A. Walker. Note that in the Abelian
group case, the lemma says that a subgroup of M isomorphic to M
has finite index.

Proof. Let K be the quotient field of R and regard / as an
endomorphism of K(x)M. By the Cayley-Hamilton theorem, / is a
root of its characteristic polynomial, so we have an equation

/* + r.-J- 'H- +rj= -det(/) .

Since each r, is a fraction, we can let r be the product of the de-
nominators times — det(/), and we see that for every xeM, rxe
f(M), as desired. (Since / is injective, det(/) ^ 0, so r Φ 0.)

THEOREM 5.2. Let R be a principal ideal domain, let E be an
R-algebra which is torsion-free and of finite rank over R, and let
J be the radical of E. Assume that E = pE for all but a finite
number of primes p of R. Then EjJ is an Artinian ring.

Proof Let K be the quotient field of R. E® K is a finite di-
mensional ϋΓ-algebra, with nilpotent radical N. It is easy to see
that N Π E is a nilpotent ideal of E, and E/(N Π E) is an order in
(E (x) K)/N, which is an Artinian semi-simple ring. It suffices to
prove the result for E/(N ΓΊ E), so we will assume N = 0.

If D is the maximal divisible ϋί-submodule of E, then D is an
ideal of E, since it is a fully-invariant iϋ-submodule. Since D can
be identified with D® K, D is actually an ideal, and hence a sum-
mand, of the ring £7 (x) K. We therefore have a ring decomposition
E = fl© Ef, where D is semi-simple Artinian, and Ef is a torsion-
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free i?-algebra with no divisible i?-submodules other than 0. Clearly,
JQE', and it will suffice to prove that E'/J is Artinian. Let m be
the product of the prime elements of R which do not divide E.
Since R is a principal ideal domain, if Ef has rank k, then every
finitely generated i?-submodule of Er can be generated by k ele-
ments, so E'/mE' is a finitely generated, Artinian iϋ-module. (If
R = Z, E'/mE' is finite of order at most mk.) The result will
therefore be proved if we show that J 2 mEf.

If x e mEr then 1 — x includes (by right multiplication) the
identity map on E'/mE'. We show that right multiplication by
1 — x is an ϋϊ-automorphism of E'. For convenience, we denote
this i?-endomorphism by /. If y e ker(/), and y Φ 0, then there is
a y' eE' and an integer n such that ny' — y and y' (mE' (since,
otherwise, the iϋ-submodule Ky'ΠE' would be divisible). Since E'
is torsion-free, y' e ker(/), which would imply that the induced map
on E'/mE' was not one-to-one. This implies that / is injective, so
we must show f(E') — E'. Since for every prime p not dividing E'
we have E' = pE' + /(£"), by hypothesis, we conclude that E'/f{E')
is a divisible module. By the previous lemma, there is a nonzero
reR such that r(E'/f(E')) = 0. The only divisible module with this
property is 0, so E' = f(E'), as desired.

COROLLARY 5.3. If A, B, and C are Abelian groups, A is
torsion-free of finite rank, and A 0 B = A 0 C, and if there is a
finite set π of primes such that either (i) A = pA for all primes
p, p&π, or (ii) B = pB for all primes p, p&π, then B = C.

Proof. In case (i), the endomorphism ring of A is a ring of
the sort described in Theorem 5.2, so 2.1 and 2.2 prove the result.
We prove case (ii) by reducing it to case (i). We first show that in
case (ii), C = pC for all primes p9p g π. Since (A 0 C)/p(A 0 C) ~
A/pA®C/pC, and (AφB)/p(A®B)^A/pAf wesee that either C=pC
or A/pA is isomorphic to a proper summand of itself, which is im-
possible since it is finite. We next let B' and C be the subgroups
of B and C consisting of elements of finite order prime to the
elements of π. B' and C are torsion divisible groups, and thus
summands of B and C. Since A is torsion-free, B' and C are pre-
cisely the subgroups of A 0 B and A 0 C consisting of elements of
finite order prime to the elements of π9 so B' = C", and if B =
B'®B" and C=C'®C", we have A@C" ^A®B". We may
assume, therefore, that B' = C = 0. In this case, if we localize at
π, we have Bπ = B and Cπ = C. Since Λ φ ΰ ^ i . φ C π , and Aπ is
torsion-free of finite rank, and is divisible by all primes not in it,
we conclude from case (i) that Bπ = Cπ, whence B = C.
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Case (ii) above, in the special case in which B and C also have
finite rank, was obtained by Lady in [24].

A number of generalizations of the above results and of 5.6
below are possible to torsion-free modules over special classes of
domains. We mention only the following, for a non-Noetherian
valuation ring, by which we mean a commutative domain whose
ideal lattice is a chain.

THEOREM 5.4. If R is a valuation ring and E a torsion-free
R-algebra of finite rank, then E/J(E) is Artinian. In particular,
every torsion-free R-module of finite rank has the cancellation pro-
perty.

Proof. If E/J(E) is not Artinian, then E has homomorphic
images which are semi-simple i?-inodules of arbitrary finite length.
Now if A is a finitely generated ϋ?-submodule of E, then since R is
a valuation ring, A is a free module of rank at most equal to the
rank of E as an UN-module. In particular, if M is the maximal
ideal of R, then the ϋyM-dimension of A/MA is bounded by the
ϋί-rank of E. This property is inherited by homomorphic images,
so if k is the rank of E, and N is a jR-homomorphic image of E,
and B is a finitely generated iϋ-submodule of N, then B/MB has
rank at most k. This implies that in any direct sum decomposition
of N as an R-module there are at most k summands. It follows
that there is a bound on the length of cyclic, semi-simple ϋ7-modules,
which, by our original remark, implies that E/J(E) is Artinian.

THEOREM 5.5. If A is a torsion-free Abelian group of rank
one, and A is not isomorphic to Z, then A has the cancellation
property if an& only if it has the substitution property.

Proof. Fuchs and Loonstra show in [10] that such a group A
has the cancellation property if and only if for every positive
integer n, every automorphism of A/nA lifts to an automorphism
of A. If E is the endomorphism ring of A, then there is an induced
ring homomorphism E —> Enά(A/nA) whose kernel is easily seen to
be nE. The map E —• End(A/nA) is surjective since every endo-
morphism of the cyclic group A/nA is given by multiplication by
some integer. Hence, if A has the cancellation property, then for
every integer n, every unit in E/nE comes from a unit of E. If
ax + by = 1 in E then modulo bE, ax = 1, so a is a unit modulo b,
and the condition says that for some t e E, a + bt is a unit in E.
If a + bt = u then au~ι + btu~ι = 1, so 1 is in the stable range for
E, and A has the substitution property.
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We remark that examples in [7] show that there are subrings
E of the ring of rational numbers which are not Artinian modulo
their radicals and which do have 1 in the stable range. These can
be used to give a variety of examples of rank one groups with the
cancellation property.

THEOREM 5.6. If A is a torsion-free Abelian group of finite
rank, then 2 is in the stable range for End(A), and if X is an
Abelian group and 4 © 4 φ l = 4 0 7 , then Y=XQ)A', where
A! is a group such that i © i = i φ i ' .

Proof. It suffices to show that 2 is in the stable range for any
Z-algebra which is torsion-free of finite rank. As in the proof of
5.2 we see that such a ring E has a nilpotent ideal N such that
E/N is a torsion-free ϋΓ-algebra which is semiprime. We may as-
sume N = 0, so that E is semiprime. If I is an essential left ideal
of E then I contains a regular element, so I contains a left ideal
isomorphic (as a left module) to E. Lemma 5.1 implies that there
is an integer n, n Φ 0, with nE £ I. nE is an ideal and E/nE is
finite. Since finite rings have one in the stable range (2.2), 3.8 im-
plies that E has 2 in the stable range.

REMARK. The smallest group A known to the author for which
such an A! exists which is not isomorphic to A has rank 16. (The
existence of such a group follows from Swan's example [29] of a
ring A which is free Abelian of rank 16 with a projective module
P such that P 0 / f = Λ 0 Λ a s left modules, with P £ Λ. Find the
Abelian group A by applying Zassenhaus's existence theorem [41],
and use the correspondence (as in [2]) between projective Λ-modules
and summands of direct sums of copies of A to get the example).

In particular, if A has rank one, then End(A) is a principal
ideal ring, so 4 0 A = 4 φ A ' implies A = A'. Combining our re-
sult with a special case of Theorem 2 of [2], we see that if A is a
torsion-free Abelian group of rank one, and X and Y are noniso-
morphic torsion-free Abelian groups with A 0 I = 4 φ 7 , then
neither X nor Y has a summand isomorphic to A, but both must
have subgroups of finite index which do have summands isomorphic
to A.

For further results on cancellation and related questions for
torsion-free Abelian groups of finite rank, it is convenient to localize
the category of Abelian groups. We recall that two torsion-free
Abelian groups of finite rank are quasi-isomorphic if each iso-
morphic to a subgroup of the other, or, equivalently (by 5.1) if one
is isomorphic to a subgroup of finite index in the other. Walker
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points out in [36] that this is isomorphism in a new category ob-
tained by taking the torsion-free groups as the objects but by taking
for the morphisms the groups [M, N] = Q (x) Έίomz(M, N). Formal-
izing this, we let , j ^ be the category of torsion-free groups of
finite rank, and define J < to be the category with the same objects
as *$/ and with morphisms Q 0 Komz(M, N). Clearly, we could
similarly localize at a prime ideal, defining J^ p ) . We give a general
definition:

DEFINITION. Let j y be an additive category, and R a com-
mutative ring such that there is an ϋί-module structure on each of
the morphism groups J^(X, Y) and such that the composition map
,J^(X, Y)χj*f(Y, Z)-*J&(X, Z) is Ή-bilinear. Then for any mul-
tiplicatively closed subset S of R not containing zero we define
S~\W to be category whose objects are the same as those of Jϊf
and whose morphism groups are defined by

(S~\J^)(X, Y) = S-\J*(X, Y)) .

We note that if Jtf consists of finitely presented ^-modules,
then this corresponds to the usual localization of the objects, but
otherwise the result is quite different. If S consists of all elements
of R not in some prime ideal P, then, as usual, we denote S~\Ssf
by j*S.

LEMMA 5.7. // M and N are torsion-free Abelian groups of
finite rank, and J^f is the category of torsion-free Abelian groups
of finite rank, then M and N are isomorphie in *Szf{p) {for a prime
p) if and only if M is isomorphie to a subgroup of N of finite
index prime to p.

Proof If f/s and g/t are elements of J*ip)(M, N) and .J*ΪP)(N, M)
which are mutal inverses, then fg 6 End(iSr) is just multiplication by
st (using the fact that the map Hom(ikf, JV) —> Hom(ilf, N)(p) is in-
jective). It follows that / and g are injective and that M/g(N) and
N/f(M) are finite groups annihilated by st, which proves the stated
result.

DEFINITION. TWO torsion-free groups M and N of finite rank are
of the same genus if they are isomorphie in j ^ p ) for all primes p.

LEMMA 5.8. If M and N are torsion-free groups of finite rank,
M and N are of the same genus if and only if for every positive
integer n, there is a subgroup Mf of N of index prime to n such
that M = M\
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Proof. Let S be the set of integers relatively prime to n, and
work in the category S~XS^', where J ^ is the category of Abelian
groups. By the argument of Lemma 5.7, it will suffice to show that
if M and N are in the same genus, then they are isomorphic in the
category S~ιS$?. Now if X is an object in any additive category
in which idempotents split, the functor taking M to Hom(X, M)
gives (as before) a category equivalence from the category of sum-
mands of finite direct sums of copies of X to the category of
finitely generated projective End(X)-modules. We therefore let E —
End(ikf0iV), so that S~XE is the endomorphism ring of M®N in
S~\JV, and we must show that M = S-Ήom(Af 0 N, M) and N =
S~Ήom(Afφ N, N) are isomorphic as jS~\E7-modules. Since S~λE
is an algebra over S~ιZ, which is Artinian modulo its radical, [13,
Theorem 4] implies that two finitely presented S'^-modules are iso-
morphic if they are locally isomorphic—i.e., in this case if Mip) = Nip)

for all primes p not contained in S. This follows immediately from
the fact that M and N are isomorphic in ._£<„,.

REMARK. This shows that our notion of genus coincides with
Lady's notion [24] of "near-isomorphism". We use the term genus
to make clear the connection with other areas of algebra in which
this term is standard, such as the theory of lattices over orders
over Dedekind rings, and finitely generated nilpotent groups. The
above proof uses ring-theoretic machinery which is more powerful
than necessary, and a more elementary proof has been given by
Arnold [1].

THEOREM 5.9. If M and N are torsion-free Abelian groups of
finite rank, then M and N are of the same genus if and only if
there is a positive integer n such that Mn = Nn.

REMARK. This should be compared with Jacobinski's result [17,
2.8] which is the corresponding result for lattices over orders, and
[38] which contains the corresponding result for finitely generated
groups with finite commutator subgroups.

Proof. If Mn = Nn, then certainly Mn and Nn are isomorphic
in J^p,. If E = End(ikfφ JV), and we use the category equivalence
between summands of direct sums of copies of M © N and projective
^/-modules, and M and N correspond to the projective modules M
and N, then what we have to prove is that if (M{p))

n ~ (N{p))
n then

M(p) = N(p). This is what is usually called the "nth root property"
for projective modules over the ring E{p). This follows directly
from [13, Theorem 19], but can be argued directly as follows: two
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finitely generated protective modules over a ring R with Jacobson
radical J are isomorphic if and only if they are isomorphic modulo
/. If / is the radical of E{p), then by 5.2 above, Eip)/J is Artinian.
Finitely generated modules over an Artinian ring satisfy the nth
root property because they satisfy a Krull Schmidt theorem.

We now turn to the converse. We first remark that if X, Y
and W are finite rank torsion-free groups in the same genus, then
X is a summand of 7 φ W, and, further, if I φ Γ ^ Γ φ l f ,
then X' is in the same genus as X. All of this follows from Lady's
results [24].

We now define an equivalence relation on the isomorphism clas-
ses in the genus of a particular group X by defining Y and W to
be equivalent if for some positive integer n9 X

n 0 Y = Xn 0 W.
This is clearly an equivalence relation. We denote the equivalence
class of Y by [Y]. We define a group structure on these equival-
ence classes by defining [Y] + [W] = [U] if Wφ Y ~ 1 0 U. By
Lady's result cited in the previous paragraph, such a U exists, and
any two such U are clearly equivalent. The group so obtained is
denoted Dx. For future reference, we note that we could equally
well have defined [ U] by requiring only that for some positive integer
n, X % 0 W@ Y = Xn+ι 0 U. It is clear that this operation is com-
mutative and associative, that [X] is an identity, and that the in-
verse of [U] is [V], where Z70 V = Xξ& X (again using Lady's
result to show that such a V exists). By Lady's theorem, every
group in the genus is isomorphic to a summand of X 0 X, so by
[23] there are only a finite number of isomorphism types in the
genus, so the group we have defined is a finite group. If W is a
group in the genus of X, one easily computes that the element
k[W] can be represented by U, where for some integer n, Xn 0 Wk =
χn+k-iφ u I n particular, if k is the order of [W] in Dx, then
Xn 0 Wk = Xn+k. If k ̂  2, the fact that 2 is in the stable range
for End(Z) implies that Wk ~ X\ If A? = 1 then [W] = [X] so
W®X^X@X. Adding W we obtain W® W@ X = TF0 X 0 X
The original equation shows that the right hand side is isomorphic
to X\ so W2 0 X = X2 0 X. The fact that 2 is in the stable range
for End(X) again applies, and shows that W2 = X2. This completes
the proof of the theorem.

COROLLARY 5.10. // X, Y, and W are torsion-free Abelian
groups of finite rank and I φ Γ = I 0 W , then for some positive
integer n, Yn = Wn.

Proof The hypothesis implies that I φ Γ and I φ W are iso-
morphic in J&lP). By 5.2, 2.1 and 2.2, cancellation holds in J^p) so
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Y and W are isomorphic in j#[p) for all primes p. They are there-
fore in the same genus, and the result follows from the previous
theorem.

REMARK. This theorem and its corollary have been generalized
slightly to modules over orders over certain Dedekind rings by
Arnold in [1]. Starting from this result, Goodearl [12] studies a
generalization of the stable range conditions of this paper, and con-
cludes that in 5.10, the finite rank condition on Y and W can be
dropped.

We recall that a complex torus of complex dimension n is an
analytic group of the form Cn/L where L is a lattice in Cn and is
therefore a free Abelian group of rank 2n. If A = C*/L and B —
Cm/M then we recall [32, Thm.32] that Ή.om(A, B), the set of ana-
lytic group homomorphisms, is exactly the set of holomorphic maps
preserving the identity, and can be identified with those elements
of Hom^(L, M) which extend to C-linear maps Cn -*Cm. It is easily
verified that the category of complex tori is an additive category
with cokernels in which idempotents split, and such that the ho-
morphism groups are all finitely generated torsion-free groups. If
A is an object in an additive category in which idempotents split,
and E — End(A), the functor taking X to Hom(A, X) gives an equi-
valence of categories between the category of summands of finite
direct sums of copies of A and the category of finitely generated
projective JS?-modules. Just as in the previous work in this section,
given two complex tori A and B, any question about whether A is
a factor of B or of a product of copies of B or whether for some
integer n, An = Bn, becomes a question about projective modules
over End(Ax J5). To draw conclusions about these projective modules
we can proceed in two ways. Since any finitely generated torsion-
free ^-algebra is the endomorphism ring of a torsion-free group
[40], the theory can be reduced to Abelian group theory. On the
other hand, since we can factor out the nil radical without loss
when dealing with projective modules, we can assume that Eξ$Q
is a semi-simple Q-algebra, thus reducing the theory to classical re-
sults on orders.

THEOREM 5.11. If Jzf is the category of complex tori, the tori
A and B are isomorphic in J^fip) (i.e., A and B are of the same
genus) for all primes p if and only if for every positive integer n,
there is an isogeny A —• B such that the order of the kernel is
prime to n. If A and B are of the same genus, then AxA = BxC,
where C is another torus of the same genus. Two is in the stable
range for the endomorphism ring of a torus, so if A, B, and C
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are tori, and Ax Ax B = AxC, then C ̂  A'xB, where A' x A =
Ax A. If End(-A) is commutative, and, in particular, if A has
(complex) dimension one, then C = AxB. If A, B, and C are tori
and AxC = AxB, then B and C are of the same genus, and, final-
ly, B and C are of the same genus if and only if for some positive
integer n, Bn ~ Cn.

Most of the above theorem follows immediately from the pre-
ceding remarks. We regard the stated interpretation of the notion
of genus as obvious. The fact that if a torus has complex dimen-
sion one then its endomorphism ring is commutative follows from
the fact that it is a subring of the ring of complex numbers, and
the result on cancelling tori with commutative endomorphism ring
follows from Vasconcelos's result [33, 1.5] that if R is a commuta-
tive ring and R@R~R@I then R = I.
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