
PACIFIC JOURNAL OF MATHEMATICS
Vol. 91, No. 2, 1980

COMMUTING HYPONORMAL OPERATORS

JAMES GUYKER

A hyponormal operator is normal if it commutes with a
contraction T of a Hubert space, whose powers go to zero
strongly, such that 1 — T*T has finite-dimensional range and
the coefficients of the characteristic function of T lie in a
commutative C*-algebra. The hyponormal operator is a con-
stant multiple of the identity transformation if the rank of
1-T*T is one.

Introduction* Let T be a completely nonunitary contraction
on Hubert space such that 1 — T*T has closed range. There exists
a power series B(z) = ΣBnz

n with operator coefficients which con-
verges and is bounded by one in the unit disk such that T is uni-
tarily equivalent to the difference-quotient transformation in the de
Branges-Rovnyak space 3f(B) [1, Theorem 4]. The characteristic
function B{z) is said to be of scalar type if {Bn: n >̂ 0} is a commut-
ing family of normal operators. Inner functions of scalar type were
introduced and characterized in [10]. In this paper, it is shown that
if {Bn: n = 0, — -,N} is a commuting family of normal operators,
then polynomials p(Γ) in Γ of degree at most ΛΓ (weak limits of
polynomials in T if B(z) is of scalar type) which satisfy \\p(T)f\\ ^
||p(T)*/H for every / in the range of 1 — T*T are restrictions of
operators which commute with some completely nonunitary, partially
isometric extension of T and which satisfy a corresponding property.
The construction is made in the space &{zMB) for a given positive
integer M, and is a modification of an extension procedure of de
Branges [1, Theorem 9].

An operator X on Hubert space is called hyponormal if \\Xf\\ ^
||X*/ϋ for every vector /. It is well-known [8] that if X is a hy-
ponormal contraction with no isometric part such that the rank of
1 — X*X is finite, then X must be a normal operator acting on a
finite-dimensional space. To ensure normality, the finite-rank hypo-
thesis may not be replaced by a trace-class condition: for 0 < p < oo,
the weighted shift with weights {(1 — λj1 / 2: n ^ 0} where {Xn} is a
p-summable sequence of real numbers with the property that 0 <
λΛ ^ λ^-i <̂  l(n = 1, 2, •) is a hyponormal, nonnormal contraction X
with no isometric part such that 1 — X*X is in the Schatten-von
Neumann class <^p.

A consequence of the above result in conjunction with the lift-
ing theorems of Sarason [9] and Sz.-Nagy-Foias [11] is that if T is
a finite direct sum of K contractions Tjf whose powers tend strongly
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to zero, such that the rank of 1 — T*T3 is one, and if X is any
operator which commutes with T and satisfies | |X/| | ^ || X*f\\ for
all / in the range of 1 — T* T, then X is normal with spectrum con-
sisting of at most K points. In particular, the only hyponormal
operators commuting with the restriction of the backward shift to
an invariant subspace are scalar multiples of the identity.

I am grateful to Professor Louis de Branges for several invalu-
able suggestions concerning this paper.

l Preliminaries* For a fixed Hubert space ^ , the space ^{z)
is the Hubert space of power series f(z) = Σanz

n with coefficients in
9f such that ||/(z)||2 = Σ\an\

2 is finite. Let B(z) = ΣBnz
n be a power

series whose coefficients are operators on <g% and suppose that for
each fixed z in the unit disk the series converges, in the strong
operator topology, to an operator which is bounded by one. For
f(z) = Σanz* in <gf(z), the Cauchy product B(z)f(z) = Σ(Σt=*Bkan-k)zn

is in ^(z) and defines an operator bounded by one, which will be
denoted by TB9 on <g*(z). The series B(z) is an inner function if TB

is a partial isometry.
The de Branges-Rovnyak space 3ίf{B) is the Hubert space of

series f(z) in ^(z) such that

||/(s)||i = sup{]|/(s) + B(z)g(z)\\2 ~ li^)ii2}

is finite, where the supremum is taken over all elements g(z) of
([1], [2], [3]). The space Sίfiβ) is continuously embedded in
and is isometrically embedded in ^(z) if and only if B(z) is

inner, in which case <if (z) = 2ίf(B) 0 (range TB). If f(z) is in^g%B),
then (/O0-/(0))/s is in Sίfiβ) and \\(f(z)-f(0))M\% ̂  ll/(z)l|!H/(0)|2.
The difference-quotient transformation

defined on έ%f(B) is a canonical model for contractions T on Hubert
space with no isometric part (i.e., there is no nonzero vector / such
that | |Γ / | | = 11/11 for every n = 1, 2, - -).

The operator #(0)* on 3if{B) is related to R(0) on 3ί?(p*) where
B*(z) = ΣBnz

n if B(z) = ΣBnz
n and J5W is the adjoint of B% on <gf.

The space 2f{β) is the Hubert space of pairs (/(#), 0(3))
in £έf(B) and flr(«) in £ίf(B*) such that if #(z) - Σanz

n then

belongs to £l?(β) for every w = 1, 2, , and
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, 9(z))\\mm

= sup{||s /(s) - B(z)(aoz
n-1+- + α . _ 1 ) | | | + |α o | 2 + + K _ X | 2 : n ^ 1}

is finite. If (/(«), </(z)) is in 3f{β), then (R(0)f(z), zg{z) - B*(z)f(0))
is in &(B) and

- B*(z)f(0))\\UB) = ||(/(s), <7(z))ll!(B) - 1/(0)|2 .

The difference-quotient transformation

D: (/(*), </(*)) > (Λ(0)/(s), *(/(*) - B *(*)/«>))

defined on ^ ( β ) is a canonical model for completely nonunitary
contractions T on Hubert space (i.e., there is no nonzero vector /
such that | | Γ / | | = Il/H = | |T* / | | for every n = 1, 2, •)• The
adjoint of D is given by

D*' (/(«), ί/(«)) >(«/(«) ~ B(z)g(0), R(0)g(z))

and satisfies \\D*(J(z), g{z))\\%[B) = \\(f(z), g{z)Wmm - |(/(0)|2 for every
(/0*0, 9(z)) ίn &(B). If D on 3f{β) has no isometric part, then D
is unitarily equivalent to ϋ?(0) on 3ίf(β).

The space £&(B) is a Hubert space with a reproducing kernel
function: for every c in ^ and w in the unit disk, the pairs

/ [1 - B(z)B(w)]c [B*(z) - B(w)]c \
V 1 — zw ' z — w /

and

( [B(z) -

V z — w 1 — zw I

belong to S&iB), where B(w) is the adjoint of B{w) on <g% and,if
(/(«), flτ(«)) is an element of &{B), then

•Pi/ \ T \ \

= </(w), c)
1 — zw z — w

and

z — w
= (g(w), c) .

Suppose that £&(A), &(B) and &(C) are spaces such that
B(z) = A(z)C(z). If (/(«), flr(ί5)) is in 3Γ(A) and if (λ(»), k(z)) is in

), then

), v{z)) = (f(z) + A(z)h(z\ C*(z)g(z) + k(z)) ,

is in &(B), and
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||(w(aθ, v{z))\\%{B) ^ \\(f(z\ g{z))\\%u) + \\(h(z), k(z))\\%l0) .

Moreover, every element (u(z)9 v(z)) in £&{β) has a unique minimal
decomposition in terms of £&(A) and £&(C) such that equality holds
in the above inequality. Factorizations of B(z) correspond to invari-
ant subspaces of D.

2* The lifting theorem* In the following, B(z) = ΣBnz
n is a

power series which converges and is bounded by one in the unit
disk, where the coefficients are operators on a fixed Hubert space ^ .

LEMMA 1. If B(z) = ΣBnz
n, and if A is an operator on &

which commutes with both Bn and Bn for every n, then multiplica-
tion by A is an operator on £&(B)9 bounded by | |4 | | , whose adjoint
is multiplication by A.

Proof. By [2, Theorem 4], the set of elements of the form
(1 - TsTi)f(z), for f{z) in £έf(B), is dense in Sίfiβ), and moreover

- τBn)f{z)\\B = iiα - TBT%)AM\\B

= nα - τBnγ/2Af(z)\\
= iiiiα - τBnr*f(z)\\
^ \\A\\ 11(1 - TBT%Γf{z)\\

11(1 - TBTi)M\\B .

Multiplication by A is therefore defined on a dense subspace of
34f{β) and has a continuous extension to all of Sίfiβ). Further-
more, since Sίf{B) is continuously embedded in ^(#) , the extension
coincides with the restriction of TA to 3(?{J$). Similarly, multiplica-
tion by A is an operator on βίf(β)9 and is the adjoint of multipli-
cation by A since for every f(z) and g(z) in 3(?{β),

(A(l » TBT$)f(z), g(z))B = <(1 - TBT$)Af(z), g(z))B

= (Af(z\ g(z))

= </(»), Ag(z))

= <(1 - TBT%)f{z), Ag(z))B .

The lemma now follows from the definition of the norm in &{JS)
and the polarization identity.

The following result generalizes a direct consequence of Lemma
1. The convention Σ*( ) — 0 when s < r is observed.

LEMMA 2. Let B(z) — ΣBnz
n and let A be an operator on &

which commutes with both Bn and Bn for every n = 0, , N. If
X and Y (or X* and Y*) are polynomials in the difference-quotient
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transformation D in &{B) of degrees at most N whose coefficients
and their adjoίnts commute with A and Bn for every n, then

l - B(z)B(0)]c , ΛBl

- B(z)B(0)]Ad , !**
Z

- B(z)B(0)]Ac, [^*ω

for every e and d in <&.

Proof. Let X = JJAnD« and Y = Σ°CnD
n. Let the wth coef-

ficient of the power series for 1 — B(z)B(0) be denoted by Bn, and let
K(fi, z)c = ([1 - B(z)B(0)]e, ([B*(z) - B(fl)]c)/z) for every c in <&. By
Lemma 1, multiplication by An and by Cn are operators on &(B)
for every n, and by the difference-quotient and polarization identities
we have the following:

3, z)c, CnD
nK(O, z)Ad)SiB)

= (DnAm+nD
mK(O, z)c, DnK(O,

= <^m + κZ>^(0, z)e, K(0, z)C

-Σ(Am+κBm+ic,B£nAd)

= (Am+Jmc, CκAd) - Σ (Am+nBm+iΆc, BtCnd)
ί=Q

= (Am+JmAc, Cnd) - Σ (Am+nBm+iΆc, BtCnd}

, z)Ae, CnD"K(0, z)d>alB) .

The identity now follows for X and Y by linearity and conjugation
of inner products.

Similarly, the identity holds for X* and Y* polynomials in D
since

= <Z>*mAm+ϊlίΓ(O, z)c, CKK(Q, z)Ad)Cί[B

- Σ <Am+nBm+ic, CnBtAd)

- Σ <A.+.5,+ 1Ao, CΛd}
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= αm+%iΓ(O, z)Ac, CnD™K(O,

- Σ <Άm+nBm+iAc, CnB4)

= (D*m+nAm+nK(O, z)Ac, D*nCnK(O, z)d)^B) .

LEMMA 3. // B(z) = ΣBnz
n where BiBύ = Bβt for every i, j =

0, , JV, and if X is a polynomial of scalar type in the difference-
quotient transformation D in 3f{β) of degree at most N whose coef-
ficients commute with Bn for every n, then the following identity
holds for every c in ^:

DX ( U -

+

DΣ*([1 -

- B(z)B(0)]B(0)c,
2

&{B)

Proof Let X = ΣJ> AnD% and let Bn and ϋΓ(0, z)c be defined as
in Lemma 2. Let &~ be the family of transformations T in 3f{B)
which satisfy

\\DTK(09 z)c\\%{B) + ||Γ*JΓ(O, z)BoBoc\\%m

= \\DT*K(0, z)BQc\\%{B) + ||ΓJSΓ(O, z)Boc\\%{B)

for every c in <&*.
By Fuglede's theorem [4], An commutes with Bm for every m,

and hence by Lemma 1, multiplication by An is a normal operator
on 3f{JB). Moreover, AnD

n is in &~ for every n = 0, , Nf since

\\D(AnD«)K(0, z)c\\%{B) + \\D*nAnK(0, z)BQBoc\\%{B)

z)B0B0Anc\\%ίB) -

d5.BoA.ol' - -±(\B{Anc
i l

and similarly

\\AnD"K(0, z)BQc\\%m
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[\\D*nK(0, z)B0Anc\\%iB) -

+ \\\K(0, z)B0Anc\\%{B) - Σ \BiB0Anc\2']
L 1=0 J

(\B0Ane\2 -

c|2 - 2\B0B0Ane|2 + |B0B0B0Anc |2) - t

Next, observe that if S and T belong to J ^ , then S + T belongs
to ^~ if and only if

Re[<ΓZ(0, z)B,c, SK(0, z)Boc)mB)

( 2.i) _- <£>TίΓ(0, z)c,DSK(0, z)c}mB)]

= Re[(T*K(0, z)B0B0c, S*K(0, z)BaB<s

- (DT*K{0, z)Boc, DS*K(0,

for every c in if. For m ^ 1, let S = ^L^" and Γ = ^m+MZ>m+B. By
the difference-quotient identity and polarization,

(TK(0, z)Boc, SK(0, z)Boc)&iB) - (DTK(0, z)c, DSK(0, z)c)mB)

= (D»D™Aa+nK(0, z)Bac, D K(0, z)A%B,c)mB)

- (D»D^Am+nK(0, z)e, D»DAnK(0, z)c}mm

= [(D™Am+nK(0, z)Bac, K(0, z)AnBoc)^B) - Σ (Am+Jm+iBoc, B.

- [(DDmAa+nK(0, z)c, DK(0, z)AΆc)mm - g (Am+Jm+ic,

= [(Am+nBmBoc, AnBoc) - (An+nBmc, Anc} + (Am+nBmc, BQAnc}]

+ Σ (Am+Jm+ic, AnBtc) - Σ (Am+κBm+iBoc,

= Σ (A^AA^BtC, c) - ΣΪdA^Aj^BJBoC, Boc) .

Similarly,

<Γ*ϋΓ(0, z)BoBoe, S*K(0, ^

- (DT*K(0, z)Bac, DS*K(0,

= (D*y*mAm+»K(0, z)B0B0c, D*«K(0,

- (D*nD*mAm+KK(0, z)B0c> D*"K(0, z)AnBoc)

= KD*mΆm+nK(0, z)B0Boc, K(0, z)AnBaBoe}mB)

- Σ <A»+A+î ββ, AΛ
i l
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, z)Boc, K(0, z)A«Boc)mB) - Σ (Am+nBm+ic, AM

= [(Am+nBmBoBoc, ΛΛBoC) - (AM+nBmBoc,

Σ <Λ+A+A AAC> - Σ (Am+Jm+i
i

Σ

= Σ <c, Am+nAnBm+iBic'> - Σ

Taking real parts, we have that ^ contains AnD
n + Am+nD

m+n, and
hence by the linearity of the inner products in (2.1), J^ contains X.

LEMMA 4. If B(z) is of scalar type, then the identity in Lemma
3 holds for weak limits X of sequences of polynomials in the dif-
ference-quotient transformation D whose coefficients lie in a (fixed)
commutative G*-algebra containing the coefficients of B(z).

Proof, As in the proof of Lemma 3, the identity (2.1) holds
whenever S and T are polynomials of scalar type in D whose coef-
ficients commute with the coefficients of B(z). It follows that (2.1)
holds for S an arbitrary such polynomial in D and T = X> and sub-
sequently for S = T = X. Therefore X satisfies the identity of
Lemma 3.

REMARK 1. By Lemma 4 and Sarason's theorem [9], if the coef-
ficient space ^ is one-dimensional and B(z) is inner, then the identity
in Lemma 3 holds for arbitrary operators X commuting with D. This
is false for spaces ^ of higher dimension, as the following example
shows.

EXAMPLE. Let B{z) = (b^ 6 ? Λ where b(z) = Σbnz
n is a scalar

inner function, and let X = L Λ D. Then the identity in Lemma

3 holds for c = ( J ) only if either b0 = 0 or 16X | = 1 - |60

12

THEOREM 1. Let D be the difference-quotient transformation in
a space &(B), and suppose that 1 — D*D has closed range. Let X
be an operator on S${B) which satisfies

\\X(f(z), ff(«)

/or ê  er?/ (/(z),_ 0(s))_ ΐrc ίfce r α ^ β of 1 - D*Iλ /
where either Bβά — BάBι for every i, j = 0, , N and X is a poly-
nomial of scalar type in D of degree at most N whose coefficients
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commute with Bn for every n, or, B{z) is of scalar type and X is
the limit, in the weak operator topology, of a sequence of poly-
nomials in D whose coefficients lie in a commutative C*-algebra
containing B% for every n, then X is unitarily equivalent to the
restriction to an invariant subspace of an operator Y — YM on
&{zMB) (M = 1, 2, •) which commutes with the partially isometric
difference-quotient transformation V = VM in £&(zMB) and which
satisfies

WVdiίvλ v(?))\\ u > II Y*(iι('7Λ QI(^W\\ u
| | l\U/\6), V\ά))\ \^(z V β) == \\ -L \^\^J, V\Z) )\\.ίs (z]I B)

for every (u(z), v(z)) in the kernel of V. Moreover, V — (Σf Φ Sf) φ F
where S3- is a truncated shift of index j and the first M powers
of V are partial isometries such that the kernel of F* has trivial
intersection with the subspace Σ f Φ V*J~ι ker V. If the dimension
of <& is finite, then Y"= (Σf φYj)®Y where Y3 and Ϋ commute
with S* and V, respectively, and Y3 is normal for every j. In
this case, Y = (Σf φ Z3) φ Z where Z5 is a normal operator on the
space V*3~]kerV, and p(YQZ) = 0 for some nonzero {scalar) poly-
nomial p{z) of degree not exceeding the dimension of &'.

Proof. Since ||(1 - DD*)u*D{f(z), g{z))\\mB) = |S(0)/(0)| for every
(/(«), g(z)) in 3f(B) and (1 - DD*)xnD = D(l - D*D)m, with analogous
identities for 1 — D*D, it follows that the restriction of 1 — D*D
to the closure of its range is unitarily equivalent to the restriction
of 1 — BQBQ to the closure of its range. Therefore, since 1 — D*D
has closed range, so does 1 — BQB0.

Let K{0, z)c = ([1 - B{z)B{0)]c, [B*(z) - S(0)]φ) for every c_ in
^ . Define a transformation λ on ^ as follows: if c = (1 — BQB0)d
for some (uniquely determined) vector d in the range of 1 — B0B0,
then Xc is the unique vector which satisfies

, α> = (XK{0, z)Bod, K{0, z)a)£

for every a in r#\ if (1 — B0B0)c = 0, define Xc to be the zero vector.
Since 1 — B0B0 has closed range, it follows that λ is continuous.

To compute λ*, observe that the range of 1 — B0B0 reduces λ:
let b be in the kernel of 1 — B0BQ. Since BQ is normal, |2?0&| = |δ| ==
|506|, and hence ([B*(z) - B(0)]6)« = ([B(z) - B(0)]b)z = 0. Moreover,
the kernel of 1 - B0B0 reduces Bo, so that K(0, z)b = (0, 0). It fol-
lows that b is orthogonal to λ(l — B0BQ)d for every vector d, and
thus, since b was arbitrary, the range of 1 — B0BQ reduces λ. The-
refore, if c = (1 — B0B0)d for some vector d in the range of 1 — B0B0,
then by Lemmas 1 and 2, X*e is the unique vector which satisfies

<λ*c, α> = (X*K(Q, z)B,d, K(0, z)a)mB)
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for every a if ^ in (1 — B0B0)c = 0, then clearly λ*c = 0.
By the definitions of the norms in Sίf{β) and 3Γ{β\ it follows

that the transformation

W:(f(z),g(z)) >{zMf(z),g{z))

takes 2${B) isometrically into
Let (u(z)f v(z)) be in &(zMB). The minimal decomposition of

(u(z), v(z)) with respect to £&(&) and &{zM) is of the form

{u{z\ v(z)) = (f{z)

with (/(«), g(z)) in ^ ( B ) and ( Σ o * " 1 ^ Σo*" 1 ^-!-^) in ^ ( ^ ) for
some vectors ĉ  in ^ . Define a transformation Y in &{zMB) as
follows:

- VMWX{f{z\ g{z))

Since V, W, X, λ, and minimal decompositions are linear, it
follows that Y is linear. Moreover, Y is continuous since V, W,
X, and λ are continuous and

\\(u{z), V{Z))\\%{ZMB) = \\(f(z), g(z))\\%{B)

By a straightforward computation,

VY(u(z), v(z)) - V*WDX(f(z), g(z))

+ Σ 1 Vi+ι WX(
o \

M—l

0

Also by [1, Theorem 5(D)], the minimal decomposition of V(u(z), v(z))
in &(zMB) is obtained with

)f g(z))

in &(B) and
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in &r(zM). Therefore YV(uz), v(z)) = VY{u{z), v{z)) since X commutes
with D.

Since

, zMg(z)) = (f(z) + B(z) 09 z
Mg(z) + 0)

is minimal in &(z*B) with (f(z), g(z)) in &{E) and (0, 0) in
we have that X is unitarily equivalent to the restriction of Y to
the subspace VMW&(B).

The kernel of V consists of all elements of the form (c, zM~1B9"{z)c)
for c in <&. The minimal decomposition of (c, zM-1B*(z)e) in
is obtained with K(0, z)c in &{β) and (S(0)c, β^BίO)^) in
Therefore, since F7(c, zM~ιB*(z)c) = 77(β, z*-ιB*(z)c) - (0, 0), it fol-
lows that Γ(c, «Jf-1B*(«)c) = (rf, ^ ^ J B * ^ ) ^ where d is the unique
vector which satisfies

(2.2) <d, α> = <XK(0, z)c, K(0, z)a)mB) + <λ£(0)c, α>

for every α in ^ .
To compute the action of Y* on (c, zM~ιB*(z)c), let (u(z), v(z)) be

in ^ ( ^ ^ 5 ) and write

, v(z)) = (f(z) + B(z)(MΣejzήf zMg{z) + Σ! cM-λ-
\ \ o /

minimally with (/(«), flr(2)) in ^ ( S ) and (Σf-1 cόz\ Σf" 1 c^-!-^3) in
. Then

(c, λco>

where (/2(«), g2(z)) — X*K(0, z)c. Since (u(z), v(z)) was arbitrary, it
follows that

Y*(c, z'-'B Wc)

Since

and

it is sufficient to show

for all c in <g% where d = d(c) is defined by (2.2).
Let c be in <g?. Write c = (1 — B0BQ)a + δ where α is in the
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range of 1 - B0B0 and (1 - B0B0)b = 0. As above, X*b = 0 = XB(0)b
and K(0, z)b = (0, 0). Thus, we may assume 6 = 0, and c = (1 — B0B0)a.
In this case, by Lemmas 1 and 2, and the normality of 2?0,

= (X*K(0,

= (X*K(0, z)a,

= \\X*Kφ,

Therefore by hypothesis and Lemmas 1 and 2,

||X*iΓ(0,2)c||!,tB)

^ | | X ^ ( 0 f z)(l - B0B0y
2a\\%lB) - \\X*K{0, z)B0a\\%{s)

+ \\X*K(0,z)B0B0aψ(B)

= \\XK(0, z)a\\%m - \\XK(0, z)Baa\\%m - \\X*K(0, z)B,a\\lm

+ \\X*K(O,z)BoBoa\\%<m
= [\\DXK(0, z)a\\%m + \dn - \\XK(0, z)Boa\\%{B)

- [\\DX*K(0, z)B,a\\lw + |λ*c|2] + \\X*Kφ, z)BoBoa\\%m

since a — c + BoBoa. Hence by Lemmas 3 and 4,

\\X*K(0, z)c\\%m^W-\\*e\"

and therefore
\\Y(u(z), V(Z))\UMB) ^ \\Y*(u(z), v{z))\\mzMB)

for every (u(z), v(z)) in the kernel of V.
By [6, Lemma 2.2], V, •••, VM are partial isometries and hence

so are their ad joints. The form of V then follows from a slight
modification of [5, Theorem 4.1]. In particular, S3 is the restriction
of F* to the space ^ = v (span) {V*^: i = 0, , j — 1} where
ΐfy = ker F* n V*j~' ker F(i = 1, - , M).

Suppose that ^ is finite-dimensional. Since YV = VY, the
kernel of V is invariant under Y, and since it is finite-dimensional,
the restriction Zι of Y to the kernel of V has an eigenvector, say

) , e2(z)). Since

it follows that (e^z), e2(z)) is a reducing eigenvector for F. By con-
sidering the restriction of Y to ker V Q {{e1{z)9 e2(z))} and proceeding
by induction, we have that the kernel of V reduces Y, and Zx is
normal. If λx, •••, λ^ are the eigenvalues of Zx repeated according
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to multiplicity, then p(Zt) = 0 where p(z) = ΐlΐ'iz - λ, ). Also note
that c ^ = ker F*Πker V is a finite-dimensional invariant subspace
of the normal operator Zt = F*|kCrF and hence r%^ reduces F, and
the restriction Yγ of Y to 3ί?x is normal.

For the induction step, assume that <ĝ  , £%?$, and F*J~Jker V
(j = 1, , J — 1; 2 ^ J <̂  M) reduce Y, and the restriction of Y to
each of these subspaces is normal. Since the range of F* reduces
Y, if (r(s), s(z)) is in the range of F*, then Y(r{z), s{z)) =
7 * 7 Γ ( φ ) , «(s)) - 7*77(r(2), s(z)) and F*(r(z), s{z)) = F*Γ*F(r(2),

*(*))•

Let (u(z), <z)) be in F* / - 1ker F. Since Y*Y = 7 Γ * on the
space F* J~ 2kerF, F F = F F , and F(w(s), v(s)) is in F*''"2kerF, it
follows that

Y*Y(u(z), v{z)) = V*Y*(VV*)YV(u(z), v(z))

), v{z))

- F*Γ[(1 -

Now (1 - VV*)Y*V(u(z), v{z)) belongs to (1 - FF*)F* t7~2ker Fwhich
in turn is contained in ker F* Π F*J~2ker F = ^ - t . By the induc-
tion hypothesis, <r^J-ι reduces Y. Therefore,

Y*Y(u(z), v{z)) = V*YVV*Y*V(uiz), v{z))

= YY*{u{z), v{z)) .

It follows that

\\Yiu{z\ V(3))IU<,V*> = \\Y*{<Z)9 V{Z))\\^%.«B)

for all (u(z), viz)) in F*'7~]ker F, and, since F*JΓ~1ker F is a finite-
dimensional invariant subspace for Y*, we have that F * J " 1 k e r F
reduces Y as above, and the restriction Zr/ of Y to F*/~1ker F is
normal. Clearly, p(Σί θ Zs) - 0 since p(Γ*)(F* i " 1 ker F) =
F* J"^(^i)ker F - {0} for every j = 1, - , J.

Next, ^j reduces Y and F |^ v is normal since <g*> = ker F*Π
F*7~'ker F is a finite-dimensional invariant subspace of Y*f and the
restriction of F* to F*J~1ker F is normal.

Finally, £ίfj reduces Y and F | ^ J is normal since Vic^jii = 0, ,
J — 1) is a finite-dimensional invariant subspace of F which is con-
tained in F* j r" ί"1ker F, and the restriction of F to F*/""<"1ker F is
normal.

COROLLARY 1. Let D be the difference-quotient transformation
in a space £&{B) with a finite-dimensional coefficient space ^ , and
suppose that D has no isometric part. Let X be an operator on
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which satisfies

/or everyjf(z\ g(z)) in the range of 1 - D*D. I
where BiBά = BjBt for every i, j = 0, , N, and X is a polynomial
of scalar type in D of degree at most N whose coefficients commute
with Bn for every n, then either X is multiplication by an operator
on ^ or the dimension of &{B) is finite [^Nx (dim ^ ) 2 ] . More-
over, if B(z) is of scalar type, and X is the limit, in the weak
operator topology, of a sequence of polynomials in D whose coeffici-
ents lie in a commutative C*-algebra containing Bn for every n,
then p(X) — 0 for some nonzero (scalar) polynomial p{z) of degree
not exceeding the dimension of ^.

Proof. Since D has no isometric part, B(z)c is in Sίf{β) for
some vector c only if c — 0, and by [2, Lemma 4], J%f(B) contains
no nonzero element of the form B(z)c. Therefore by the minimal
decomposition of an element of £&{zB) in terms of 3t{β) and
it follows that the difference-quotient transformation V on
has no isometric part. Moreover, as in the proof of Theorem 1,
since 1 — B0B0 has closed range, so does 1 — D*D.

By Theorem 1, X is unitarily equivalent to a part of an operator
Y on £$(zB) which commutes with V and satisfies

\\Y(u{z), v{z))\\mzB) ^ \\Y*(u(z), v(z))\\mzB)

for all (u(z), v(z)) in the kernel of V. Moreover, the kernel of V
reduces Y and p( Y)ker V = {0} for some nonzero polynomial p(z) of
degree at most the dimension of ^. Since V has no isometric part,
&{zB) is the closed span of the subspaces F*"ker V (n = 0, 1, •)•
Therefore, since p(Y*) commutes with F*w, p(Y) = 0 and hence
P(X) - 0.

Suppose that X is a nonconstant, scalar type polynomial in D of
degree at most N. By the above, q(D) = 0 for some scalar type
polynomial q(z) of degree at most JVx dim ^ . Since D has no iso-
metric part, D is unitarily equivalent to R(0) on βέ?(B). Since any
countable family of commuting normal operators on a finite-dimen-
sional space has a common eigenvector, g(i2(0))( = 0) is the restric-
tion of an operator on &{z) of the form Σf i m ί r 0^(i2(O),) where
qt(z) is a scalar polynomial of degree at most Nx dim & and 22(0),
is the difference-quotient transformation on ^ ( 2 ) where ^ is one-
dimensional. Since the eigenspace corresponding to an eigenvalue of
12(0)4 is one-dimensional, and since the dimension of the kernel of a
finite product of operators does not exceed the sum of the dimen-
sions of the kernels of the factors, it follows that the dimension of
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(and hence of &{&)) does not exceed iVx (dim <if )2.

3* Applications* The following result extends [3, Problem 110]
and [7, Corollary 1].

THEOREM 2. Let T be a contraction on Hiΐbert space such that
rank (1 — TT*) ^ rank (1 — T*T) — 1, and suppose that T has no
isometric part. If X is the weak limit of a sequence of polynomials
in T, and if f is a nonzero vector in the range of 1 — Γ* T, then
\\Xf\\ ^ ||X*/II with equality holding only if X is a scalar multiple
of the identity.

Proof. By [2, Theorem 1] and [3, Theorem 15], T is unitarily
equivalent to the difference-quotient transformation in a space £&{Ή)
where the coefficient space is one-dimensional. The theorem now
follows by applying Corollary 1.

THEOREM 3. Let T be a contraction on Hilbert space such that
Tn(n = 1, 2, •) tends strongly to zero, and suppose that T —
Σ ί Θ Tj where the rank of 1 — T*TS is one for every j . If X is
an operator which commutes with T and satisfies \\Xf\\ ^ ||-3Γ*/II
for every vector f in the range of 1 — T*T, then X is normal with
spectrum consisting of at most K points.

Proof. By [3, Theorem 12], there exist scalar inner functions
bά(z) (j — 1, >",K) such that T is unitarily equivalent to the dif-
ference-quotient transformation i?(0) in £ίf(B) where

is an inner function of scalar type. The proof proceeds by induction
on K.

If K — 1, then by Sarason's theorem [9], X is the weak limit
of a sequence of polynomials in i2(0); and hence by [3, Theorem 13]
and Theorem 2, X is a scalar multiple of the identity.

Assume that the theorem is true for the difference-quotient
transformations in spaces SίfiB) of the form 2ί?{B) = Σ ί Θ ^^Φs)
for all integers L, 1 ^ L < K, where the δ/s are scalar inner func-
tions. Let X commute with 22(0) on ^(J3) = Σ ί θ ^Φi) and
satisfy ||X/(z)|| ^ ||X*/(z)ll for every f(z) in the range of
1 — 22(O)*22(O), where bd(z) is a scalar inner function for every j .
By the Sz.-Nagy-Foias lifting theorem [11], X is the restriction of
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an operator on <if(s) = Σ ί θ ^ (z) of the form (T$i4)κxκ where ςr,
is the space of complex numbers and φiS{z) is a bounded analytic
(scalar) function on the unit disk for all i and j . Moreover, since
3f?(β) is invariant under (T*i3)KXK, the range of TB is invariant
under (Tφj.)κxκ, and hence for each k, 1 <^k ̂  K, g>jk(z)bj(z) is con-
tained in the range of Tb]c for every j = 1, , K.

For a fixed integer j0 (1 <£ j 0 ^ ϋΓ), consider an element oΐβ^(B)
of the form /(z) = Σ ί θ [1 ~ 6y(«)&y(O)]iCy where α?io = 1 and xs = 0
for all i ^ io Since f(z) is in the range of 1 — i2(O)*i2(O), we have
that

(3.1) | |X/(z)||2 = Σ \\πiJQ[l - bJ0(z)bJ0(0)]\\

where Pt is the (orthogonal) projection of ^(z) onto <%?(bt). More-
over, by the case K = 1,

for every ΐ = 1, • • , K. Therefore,

^ Σ

which holds for all j0 = 1, , ϋΓ.
Combining the above inequalities, by induction we have the

following:

Σ
ί=2

Σ
i=2

Σ (ΣIIΓJ J l - δ.φδΛO)]!!' - Σ
Ϊ=2 \y=i y=2
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Σ ί ί ; W/tMW - Σ
i=2 \j=l j=2

The above inequalities are therefore equalities and in particular

= .Σ im Λ [ l - 6,(2)5

for every i = 1, , K. Hence by the case K — 1, it follows that
the restriction of T%H to 3ίfQ)ϊ) is a scalar XH times the identity
for all j Φ i, and

(3.2) ΣM^ΣIλtfl2

3*i 3±i

for every i = 1, , K. Therefore by (3.1) and the case K = 1, the
restriction of T%u to <%fφϊ) is a scalar λM times the identity for
every i = 1, , ίΓ, and consequently X = (\j)Kχκ

Suppose first that 3ff$ύ — Sif(b3) for all i and j. In this case,
the range of 1 — R(β)*R(0) reduces X, and since it is finite-dimen-
sional and the restriction of X to it is hyponormal, it follows that
I I * - 1 * 1 on the range of 1 - R(0)*R(0).

Let h(z) be an arbitrary element of 3ίf{B). Then h{z) is the
limit of a sequence of vectors of the form ^S R(0γ3fά{z) where fό(z)
is in the range of 1 - J2(O)*i2(O) for every j. Since XX* and X*X
commute with #(0)*y, we have that XX*ft(z) = X*Xh(z). Hence X
is normal.

Let λi, , λjc be the eigenvalues of the restriction of X to the
range of 1 — R(0)*R(0), listed according to multiplicity, and let τ]3 =
V{f(z) 6 3f?(β)\ Xf(z) = Xjf(z)}. Since X is normal, if λ* ^ λ, , then
r]ί is orthogonal to Ύ)ά. Moreover, since R(Q) has no isometric part
and Xi?(0)* = R(0)*X, it follows that S(f{β) - V{^, : i = 1, -- ,K}.
Therefore, X is diagonalizable with sp(X) = {λ̂  : j = 1, , K}.

Finally, suppose that 3(?Q)ύ Φ 3(fQ>ϊ) for at least one pair (i, j).
There exists a space β^(biQ) which is minimal in the sense that for
every i either ^ ( δ j = ^^(δ ί o) or ^^(δ<) is not contained in ^ ( 6 < 0 ) .
Let i2 be the set of indices i such that £^(b%) = ^^(6 l o). Then
Ω Φ {1, , if} by assumption, and for every ί in β and i not in i2,
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λ 4 ί - 0. B y (3.2),

ieΩ i,jeΩ

HΩ

Therefore, xiS — 0 = XH for every i in Ω and j not in β. It follows
that the space Σie^Θ^X&i) reduces X, that the restriction of X
to this space satisfies the induction hypothesis and hence is normal
with spectrum consisting of at most card Ω points. Similarly, the
restriction of X to Σi^Θ^^(&i) is normal with spectrum at most
K — card Ω points, and consequently X is normal with spectrum at
most K points.

COROLLARY 2. Let X commute with the difference-quotient
transformation D in a space 3^{B) where B(z) is an inner function
of scalar type and the coefficient space ^ is finite-dimensional. If

11 *(/(*) , ff(s))IUu» ^ II * * ( / ( * ) , flr(s))IUu»

for every (f(z), g(z)) in the range of 1 — D*D, then X is a normal
operator whose spectrum consists of a finite number (<idim^) of
points.

Proof. Since any countable family of commuting normal oper-
ators on a finite-dimensional space has a common eigenvector, it fol-
lows that 3ί{B) — Σ i i m ^ Θ - ^ ( ^ ) where bs(z) is a scalar inner func-
tion for all j . Corollary 2 is therefore an immediate consequence
of Theorem 3.

REMARK 2. The analytic Toeplitz operator Tψ on ^{z) with &
one-dimensional, for the symbol φ{z) an inner function, is a uni-
versal model for unilateral shifts. Therefore, the restriction of T$
to an arbitrary invariant subspace is a canonical model for contrac-
tions whose powers tend strongly to zero. A consequence of Corol-
lary 2 is that the restriction of T* to an arbitrary invariant sub-
space of the backward shift Γ* is never hyponormal (i.e., only if it
is a scalar times the identity).
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