COMMUTING HYPONORMAL OPERATORS

James Guyker

Abstract

A hyponormal operator is normal if it commutes with a contraction T of a Hilbert space, whose powers go to zero strongly, such that $1-T^{*} T$ has finite-dimensional range and the coefficients of the characteristic function of T lie in a commutative C^{*}-algebra. The hyponormal operator is a constant multiple of the identity transformation if the rank of $1-T * T$ is one.

Introduction. Let T be a completely nonunitary contraction on Hilbert space such that $1-T^{*} T$ has closed range. There exists a power series $B(z)=\Sigma B_{n} z^{n}$ with operator coefficients which converges and is bounded by one in the unit disk such that T is unitarily equivalent to the difference-quotient transformation in the de Branges-Rovnyak space $\mathscr{O}(B)$ [1, Theorem 4]. The characteristic function $B(z)$ is said to be of scalar type if $\left\{B_{n}: n \geqq 0\right\}$ is a commuting family of normal operators. Inner functions of scalar type were introduced and characterized in [10]. In this paper, it is shown that if $\left\{B_{n}: n=0, \cdots, N\right\}$ is a commuting family of normal operators, then polynomials $p(T)$ in T of degree at most N (weak limits of polynomials in T if $B(z)$ is of scalar type) which satisfy $\|p(T) f\| \geqq$ $\left\|p(T)^{*} f\right\|$ for every f in the range of $1-T^{*} T$ are restrictions of operators which commute with some completely nonunitary, partially isometric extension of T and which satisfy a corresponding property. The construction is made in the space $\mathscr{D}\left(z^{M} B\right)$ for a given positive integer M, and is a modification of an extension procedure of de Branges [1, Theorem 9].

An operator X on Hilbert space is called hyponormal if $\|X f\| \geqq$ $\left\|X^{*} f\right\|$ for every vector f. It is well-known [8] that if X is a hyponormal contraction with no isometric part such that the rank of $1-X^{*} X$ is finite, then X must be a normal operator acting on a finite-dimensional space. To ensure normality, the finite-rank hypothesis may not be replaced by a trace-class condition: for $0<p<\infty$, the weighted shift with weights $\left\{\left(1-\lambda_{n}\right)^{1 / 2}: n \geqq 0\right\}$ where $\left\{\lambda_{n}\right\}$ is a p-summable sequence of real numbers with the property that $0<$ $\lambda_{n} \leqq \lambda_{n-1} \leqq 1(n=1,2, \cdots)$ is a hyponormal, nonnormal contraction X with no isometric part such that $1-X^{*} X$ is in the Schatten-von Neumann class \mathscr{C}_{p}.

A consequence of the above result in conjunction with the lifting theorems of Sarason [9] and Sz.-Nagy-Foiaș [11] is that if T is a finite direct sum of K contractions T_{j}, whose powers tend strongly
to zero, such that the rank of $1-T_{j}^{*} T_{j}$ is one, and if X is any operator which commutes with T and satisfies $\|X f\| \geqq\left\|X^{*} f\right\|$ for all f in the range of $1-T^{*} T$, then X is normal with spectrum consisting of at most K points. In particular, the only hyponormal operators commuting with the restriction of the backward shift to an invariant subspace are scalar multiples of the identity.

I am grateful to Professor Louis de Branges for several invaluable suggestions concerning this paper.

1. Preliminaries. For a fixed Hilbert space \mathscr{C}, the space $\mathscr{C}(\boldsymbol{z})$ is the Hilbert space of power series $f(z)=\Sigma a_{n} z^{n}$ with coefficients in \mathscr{C} such that $\|f(z)\|^{2}=\Sigma\left|a_{n}\right|^{2}$ is finite. Let $B(z)=\Sigma B_{n} z^{n}$ be a power series whose coefficients are operators on \mathscr{C}, and suppose that for each fixed z in the unit disk the series converges, in the strong operator topology, to an operator which is bounded by one. For $f(z)=\Sigma a_{n} z^{n}$ in $\mathscr{C}(z)$, the Cauchy product $B(z) f(z)=\Sigma\left(\sum_{k=0}^{n} B_{k} a_{n-k}\right) z^{n}$ is in $\mathscr{C}(z)$ and defines an operator bounded by one, which will be denoted by T_{B}, on $\mathscr{C}(z)$. The series $B(z)$ is an inner function if T_{B} is a partial isometry.

The de Branges-Rovnyak space $\mathscr{H}(B)$ is the Hilbert space of series $f(z)$ in $\mathscr{C}(z)$ such that

$$
\|f(z)\|_{B}^{2}=\sup \left\{\|f(z)+B(z) g(z)\|^{2}-\|g(z)\|^{2}\right\}
$$

is finite, where the supremum is taken over all elements $g(z)$ of $\mathscr{C}(z)$ ([1], [2], [3]). The space $\mathscr{H}(B)$ is continuously embedded in $\mathscr{C}(z)$, and is isometrically embedded in $\mathscr{C}(z)$ if and only if $B(z)$ is inner, in which case $\mathscr{C}(z)=\mathscr{H}(B) \oplus\left(\right.$ range $\left.T_{B}\right)$. If $f(z)$ is in $\mathscr{H}(B)$, then $(f(\boldsymbol{z})-f(0)) / \boldsymbol{z}$ is in $\mathscr{C}(B)$ and $\|(f(\boldsymbol{z})-f(0)) / \boldsymbol{z}\|_{B}^{2} \leqq\|f(\boldsymbol{z})\|_{B}^{2}-|f(0)|^{2}$. The difference-quotient transformation

$$
R(0): f(z) \longrightarrow \frac{f(z)-f(0)}{z}
$$

defined on $\mathscr{C}(B)$ is a canonical model for contractions T on Hilbert space with no isometric part (i.e., there is no nonzero vector f such that $\left\|T^{n} f\right\|=\|f\|$ for every $n=1,2, \cdots$).

The operator $R(0)^{*}$ on $\mathscr{H}(B)$ is related to $R(0)$ on $\mathscr{H}\left(B^{*}\right)$ where $B^{*}(z)=\Sigma \bar{B}_{n} z^{n}$ if $B(z)=\Sigma B_{n} z^{n}$ and \bar{B}_{n} is the adjoint of B_{n} on \mathscr{C}. The space $\mathscr{D}(B)$ is the Hilbert space of pairs $(f(z), g(z))$ with $f(z)$ in $\mathscr{H}(B)$ and $g(z)$ in $\mathscr{H}\left(B^{*}\right)$ such that if $g(z)=\Sigma a_{n} z^{n}$ then

$$
z^{n} f(z)-B(z)\left(a_{0} z^{n-1}+\cdots+a_{n-1}\right)
$$

belongs to $\mathscr{\mathscr { C }}(B)$ for every $n=1,2, \cdots$, and

$$
\begin{aligned}
& \|(f(z), g(z))\|_{叉(B)}^{2} \\
& \quad=\sup \left\{\left\|z^{n} f(z)-B(z)\left(a_{0} z^{n-1}+\cdots+a_{n-1}\right)\right\|_{B}^{2}+\left|a_{0}\right|^{2}+\cdots+\left|a_{n-1}\right|^{2}: n \geqq 1\right\}
\end{aligned}
$$

is finite. If $(f(z), g(z))$ is in $\mathscr{D}(B)$, then $\left(R(0) f(z), z g(z)-B^{*}(z) f(0)\right)$ is in $\mathscr{D}(B)$ and

$$
\left\|\left(R(0) f(z), z g(z)-B^{*}(z) f(0)\right)\right\|_{\mathscr{S}(B)}^{2}=\|(f(z), g(z))\|_{\mathscr{Q}(B)}^{2}-|f(0)|^{2}
$$

The difference-quotient transformation

$$
D:(f(z), g(z)) \longrightarrow\left(R(0) f(z), z g(z)-B^{*}(z) f(0)\right)
$$

defined on $\mathscr{D}(B)$ is a canonical model for completely nonunitary contractions T on Hilbert space (i.e., there is no nonzero vector f such that $\left\|T^{n} f\right\|=\|f\|=\left\|T^{* n} f\right\|$ for every $\left.n=1,2, \cdots\right)$. The adjoint of D is given by

$$
D^{*}:(f(z), g(z)) \longrightarrow(z f(z)-B(z) g(0), R(0) g(z))
$$

and satisfies $\left\|D^{*}(f(z), g(z))\right\|_{\mathscr{Q}(B)}^{2}=\|(f(z), g(z))\|_{\mathscr{S (B)}}^{2}-|g(0)|^{2}$ for every $(f(z), g(z))$ in $\mathscr{D}(B)$. If D on $\mathscr{D}(B)$ has no isometric part, then D is unitarily equivalent to $R(0)$ on $\mathscr{C}(B)$.

The space $\mathscr{D}(B)$ is a Hilbert space with a reproducing kernel function: for every c in \mathscr{C} and w in the unit disk, the pairs

$$
\left(\frac{[1-B(z) \bar{B}(w)] c}{1-z \bar{w}}, \frac{\left[B^{*}(z)-\bar{B}(w)\right] c}{z-\bar{w}}\right)
$$

and

$$
\left(\frac{[B(z)-B(\bar{w})] c}{z-\bar{w}}, \frac{\left[1-B^{*}(z) B(\bar{w})\right] c}{1-z \bar{w}}\right)
$$

belong to $\mathscr{D}(B)$, where $\bar{B}(w)$ is the adjoint of $B(w)$ on \mathscr{C}, and if $(f(z), g(z))$ is an element of $\mathscr{D}(B)$, then
$\left\langle(f(z), g(z)), \quad\left(\frac{[1-B(z) \bar{B}(w)] c}{1-z \bar{w}}, \frac{\left[B^{*}(z)-\bar{B}(w)\right] c}{z-\bar{w}}\right)\right\rangle_{\mathscr{O}(B)}=\langle f(w), c\rangle$
and

$$
\begin{gathered}
\left\langle(f(z), g(z)), \quad\left(\frac{[B(z)-B(\bar{w})] c}{z-\bar{w}}, \frac{\left[1-B^{*}(z) B(\bar{w})\right] c}{1-\bar{w} \bar{w}}\right)\right\rangle_{\mathscr{D}(B)} \\
=\langle g(w), c\rangle .
\end{gathered}
$$

Suppose that $\mathscr{D}(A), \mathscr{D}(B)$ and $\mathscr{D}(C)$ are spaces such that $B(z)=A(z) C(z)$. If $(f(z), g(z))$ is in $\mathscr{D}(A)$ and if $(h(z), k(z))$ is in $\mathscr{D}(C)$, then

$$
(u(z), v(z))=\left(f(z)+A(z) h(z), C^{*}(z) g(z)+k(z)\right),
$$

is in $\mathscr{D}(B)$, and

$$
\|(u(z), v(z))\|_{\mathscr{Q}(B)}^{2} \leqq\|(f(z), g(z))\|_{פ(A)}^{2}+\|(h(z), k(z))\|_{פ(C)}^{2} .
$$

Moreover, every element $(u(z), v(z))$ in $\mathscr{D}(B)$ has a unique minimal decomposition in terms of $\mathscr{D}(A)$ and $\mathscr{D}(C)$ such that equality holds in the above inequality. Factorizations of $B(z)$ correspond to invariant subspaces of D.
2. The lifting theorem. In the following, $B(z)=\Sigma B_{n} z^{n}$ is a power series which converges and is bounded by one in the unit disk, where the coefficients are operators on a fixed Hilbert space \mathscr{C}.

Lemma 1. If $B(z)=\Sigma B_{n} z^{n}$, and if A is an operator on \mathscr{C} which commutes with both B_{n} and \bar{B}_{n} for every n, then multiplication by A is an operator on $\mathscr{D}(B)$, bounded by $\|A\|$, whose adjoint is multiplication by \bar{A}.

Proof. By [2, Theorem 4], the set of elements of the form ($\left.1-T_{B} T_{B}^{*}\right) f(z)$, for $f(z)$ in $\mathscr{\mathscr { C }}(B)$, is dense in $\mathscr{H}(B)$, and moreover

$$
\begin{aligned}
\left\|A\left(1-T_{B} T_{B}^{*}\right) f(z)\right\|_{B} & =\left\|\left(1-T_{B} T_{B}^{*}\right) A f(z)\right\|_{B} \\
& =\left\|\left(1-T_{B} T_{B}^{*}\right)^{1 / 2} A f(z)\right\| \\
& =\left\|A\left(1-T_{B} T_{B}^{*}\right)^{1 / 2} f(z)\right\| \\
& \leqq\|A\|\left\|\left(1-T_{B} T_{B}^{*}\right)^{1 / 2} f(z)\right\| \\
& =\|A\|\left\|\left(1-T_{B} T_{B}^{*}\right) f(z)\right\|_{B} .
\end{aligned}
$$

Multiplication by A is therefore defined on a dense subspace of $\mathscr{H}(B)$ and has a continuous extension to all of $\mathscr{H}(B)$. Furthermore, since $\mathscr{H}(B)$ is continuously embedded in $\mathscr{C}(z)$, the extension coincides with the restriction of T_{A} to $\mathscr{H}(B)$. Similarly, multiplication by \bar{A} is an operator on $\mathscr{H}(B)$, and is the adjoint of multiplication by A since for every $f(z)$ and $g(z)$ in $\mathscr{H}(B)$,

$$
\begin{aligned}
\left\langle A\left(1-T_{B} T_{B}^{*}\right) f(z), g(z)\right\rangle_{B} & =\left\langle\left(1-T_{B} T_{B}^{*}\right) A f(z), g(z)\right\rangle_{B} \\
& =\langle A f(z), g(z)\rangle \\
& =\langle f(z), \bar{A} g(z)\rangle \\
& =\left\langle\left(1-T_{B} T_{B}^{*}\right) f(z), \bar{A} g(z)\right\rangle_{B} .
\end{aligned}
$$

The lemma now follows from the definition of the norm in $\mathscr{D}(B)$ and the polarization identity.

The following result generalizes a direct consequence of Lemma 1. The convention $\sum_{r}^{s}(\cdot)=0$ when $s<r$ is observed.

Lemma 2. Let $B(z)=\Sigma B_{n} z^{n}$ and let A be an operator on \mathscr{C} which commutes with both B_{n} and \bar{B}_{n} for every $n=0, \cdots, N$. If X and Y (or X^{*} and Y^{*}) are polynomials in the difference-quotient
transformation D in $\mathscr{D}(B)$ of degrees at most N whose coefficients and their adjoints commute with A and B_{n} for every n, then

$$
\begin{aligned}
& \left\langle X\left([1-B(z) \bar{B}(0)] c, \frac{\left[B^{*}(z)-\bar{B}(0)\right] c}{z}\right)\right. \\
& \left.Y\left([1-B(z) \bar{B}(0)] A d, \frac{\left[B^{*}(z)-\bar{B}(0)\right] A d}{z}\right)\right\rangle_{\mathscr{D}(B)} \\
& \quad=\left\langle X\left([1-B(z) \bar{B}(0)] \bar{A} c, \frac{\left[B^{*}(z)-\bar{B}(0)\right] \bar{A} c}{z}\right)\right. \\
& \left.Y\left([1-B(z) \bar{B}(0)] d, \frac{\left[B^{*}(z)-\bar{B}(0)\right] d}{z}\right)\right\rangle_{\mathscr{\Omega}(B)}
\end{aligned}
$$

for every c and d in \mathscr{C}.
Proof. Let $X=\sum_{0}^{N} A_{n} D^{n}$ and $Y=\sum_{0}^{N} C_{n} D^{n}$. Let the nth coefficient of the power series for $1-B(z) \bar{B}(0)$ be denoted by \hat{B}_{n}, and let $K(0, z) c=\left([1-B(z) \bar{B}(0)] c,\left(\left[B^{*}(z)-\bar{B}(0)\right] c\right) / z\right)$ for every c in \mathscr{C}. By Lemma 1 , multiplication by A_{n} and by C_{n} are operators on $\mathscr{D}(B)$ for every n, and by the difference-quotient and polarization identities we have the following:

$$
\begin{aligned}
\left\langle A_{m+n}\right. & \left.D^{m+n} K(0, z) c, C_{n} D^{n} K(0, z) A d\right\rangle_{\mathscr{D}(B)} \\
= & \left\langle D^{n} A_{m+n} D^{m} K(0, z) c, D^{n} K(0, z) C_{n} A d\right\rangle_{0(B) \mathscr{D}(B)} \\
= & \left\langle A_{m+n} D^{m} K(0, z) c, K(0, z) C_{n} A d\right\rangle_{\infty(B)} \\
& -\sum_{i=0}^{n-1}\left\langle A_{m+n} \hat{B}_{m+i} c, \hat{B}_{\imath} C_{n} A d\right\rangle \\
= & \left\langle A_{m+n} \hat{B}_{m} c, C_{n} A d\right\rangle-\sum_{i=0}^{n-1}\left\langle A_{m+n} \hat{B}_{m+i} \bar{A} c, \hat{B}_{i} C_{n} d\right\rangle \\
= & \left\langle A_{m+n} \hat{B}_{m} \bar{A} c, C_{n} d\right\rangle-\sum_{i=0}^{n-1}\left\langle A_{m+n} \hat{B}_{m+i} \bar{A} c, \hat{B}_{i} C_{n} d\right\rangle \\
= & \left\langle A_{m+n} D^{m+n} K(0, z) \bar{A} c, C_{n} D^{n} K(0, z) d\right\rangle_{\mathscr{D}(B)} .
\end{aligned}
$$

The identity now follows for X and Y by linearity and conjugation of inner products.

Similarly, the identity holds for X^{*} and Y^{*} polynomials in D since

$$
\begin{aligned}
\left\langle D^{* m+n}\right. & \left.\bar{A}_{m+n} K(0, z) c, D^{* n} \bar{C}_{n} K(0, z) A d\right\rangle_{\mathscr{S}(B)} \\
= & \left\langle D^{* m} \bar{A}_{m+n} K(0, z) c, \bar{C}_{n} K(0, z) A d\right\rangle_{\mathscr{O}(B)} \\
& -\sum_{i=1}^{n}\left\langle\bar{A}_{m+n} \bar{B}_{m+i} c, \bar{C}_{n} \bar{B}_{i} A d\right\rangle \\
= & \left\langle\bar{A}_{m+n} K(0, z) c, \bar{C}_{n} D^{m} K(0, z) A d\right\rangle_{\mathscr{S}(B)} \\
& -\sum_{i=1}^{n}\left\langle\bar{A}_{m+n} \bar{B}_{m+i} \bar{A} c, \bar{C}_{n} \bar{B}_{i} d\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
= & \left\langle\bar{A}_{m+n} K(0, z) \bar{A} c, \bar{C}_{n} D^{m} K(0, z) d\right\rangle_{\mathscr{O}(B)} \\
& -\sum_{i=1}^{n}\left\langle\bar{A}_{m+n} \bar{B}_{m+i} \bar{A} c, \bar{C}_{n} \bar{B}_{i} d\right\rangle \\
= & \left\langle D^{* m+n} \bar{A}_{m+n} K(0, z) \bar{A} c, D^{* n} \bar{C}_{n} K(0, z) d\right\rangle_{\mathscr{S}(B)}
\end{aligned}
$$

Lemma 3. If $B(z)=\Sigma B_{n} z^{n}$ where $B_{i} \bar{B}_{j}=\bar{B}_{j} B_{i}$ for every $i, j=$ $0, \cdots, N$, and if X is a polynomial of scalar type in the differencequotient transformation D in $\mathscr{D}(B)$ of degree at most N whose coefficients commute with B_{n} for every n, then the following identity holds for every c in \mathscr{C} :

$$
\begin{aligned}
& \left\|D X\left([1-B(z) \bar{B}(0)] c, \frac{\left[B^{*}(z)-\bar{B}(0)\right] c}{z}\right)\right\|_{\mathscr{I}(B)}^{2} \\
& \quad+\left\|X^{*}\left([1-B(z) \bar{B}(0)] \bar{B}(0) B(0) c, \frac{\left[B^{*}(z)-\bar{B}(0)\right] \bar{B}(0) B(0) c}{z}\right)\right\|_{\mathscr{B}(B)}^{2} \\
& =\left\|D X^{*}\left([1-B(z) \bar{B}(0)] \bar{B}(0) c, \frac{\left[B^{*}(z)-\bar{B}(0)\right] \bar{B}(0) c}{z}\right)\right\|_{\mathscr{\Omega}(B)}^{2} \\
& \quad+\left\|X\left([1-B(z) \bar{B}(0)] B(0) c, \frac{\left[B^{*}(z)-\bar{B}(0)\right] B(0) c}{z}\right)\right\|_{\Xi_{(B)}}^{2}
\end{aligned}
$$

Proof. Let $X=\sum_{0}^{N} A_{n} D^{n}$, and let \hat{B}_{n} and $K(0, z) c$ be defined as in Lemma 2. Let \mathscr{F} be the family of transformations T in $\mathscr{D}(B)$ which satisfy

$$
\begin{aligned}
& \|D T K(0, z) c\|_{\mathscr{\text { (B) }}}^{2}+\left\|T^{*} K(0, z) \bar{B}_{0} B_{0} c\right\|_{\mathscr{\text { (B) }}}^{2} \\
& \quad=\left\|D T^{*} K(0, z) \bar{B}_{0} c\right\|_{\mathscr{(B)}}^{2}+\left\|T K(0, z) B_{0} c\right\|_{\mathscr{\mathscr { C }}(B)}^{2}
\end{aligned}
$$

for every c in \mathscr{C}.
By Fuglede's theorem [4], A_{n} commutes with \bar{B}_{m} for every m, and hence by Lemma 1, multiplication by A_{n} is a normal operator on $\mathscr{D}(B)$. Moreover, $A_{n} D^{n}$ is in \mathscr{F} for every $n=0, \cdots, N$, since $\left\|D\left(A_{n} D^{n}\right) K(0, z) c\right\|_{\mathscr{(B)}}^{2}+\left\|D^{* n} \bar{A}_{n} K(0, z) \bar{B}_{0} B_{0} c\right\|_{\mathscr{(B)}}^{2}$
$=\left[\left\|K(0, z) A_{n} c\right\|_{\mathscr{O}(B)}^{2}-\sum_{i=0}^{n}\left|\hat{B}_{i} A_{n} c\right|^{2}\right]$
$+\left[\left\|K(0, z) \bar{B}_{0} B_{0} A_{n} c\right\|_{\mathscr{\mathscr { }}(B)}^{2}-\sum_{i=1}^{n}\left|\overline{\hat{B}}_{i} \bar{B}_{0} A_{n} c\right|^{2}\right]$
$=\left(\left|A_{n} c\right|^{2}-\left|\bar{B}_{0} A_{n} c\right|^{2}\right)-\left(\left|A_{n} c\right|^{2}-2\left|\bar{B}_{0} A_{n} c\right|^{2}+\left|B_{0} \bar{B}_{0} A_{n} c\right|^{2}\right)$
$+\left(\left|\bar{B}_{0} B_{0} A_{n} c\right|^{2}-\left|\bar{B}_{0}^{2} B_{0} A_{n} c\right|^{2}\right)-\sum_{i=1}^{n}\left(\left|\hat{B}_{i} A_{n} c\right|^{2}+\left|\hat{B}_{i} B_{0} A_{n} c\right|^{2}\right)$
$=\left|B_{0} A_{n} c\right|^{2}-\left|B_{0}^{3} A_{n} c\right|^{2}-\sum_{i=1}^{n}\left(\left|\widehat{B}_{i} A_{n} c\right|^{2}+\left|\hat{B}_{i} B_{0} A_{n} c\right|^{2}\right)$
and similarly
$\left\|D\left(D^{* n} \bar{A}_{n}\right) K(0, z) \bar{B}_{0} c\right\|_{\mathscr{\mathscr { }}(B)}^{2}+\left\|A_{n} D^{n} K(0, z) B_{0} c\right\|_{\mathscr{(B)}}^{2}$

$$
\begin{aligned}
= & {\left[\left\|D^{* n} K(0, z) \bar{B}_{0} A_{n} c\right\|_{\mathscr{O}(B)}^{2}-\left|\overline{\hat{B}}_{n} \bar{B}_{0} A_{n} c\right|^{2}\right] } \\
& \quad+\left[\left\|K(0, z) B_{0} A_{n} c\right\|_{\overparen{O}(B)}^{2}-\sum_{i=0}^{n-1}\left|\widehat{B}_{i} B_{0} A_{n} c\right|^{2}\right] \\
= & \left(\left|\bar{B}_{0} A_{n} c\right|^{2}-\left|\bar{B}_{0}^{2} A_{n} c\right|^{2}-\sum_{i=1}^{n}\left|\hat{B}_{i} A_{n} c\right|^{2}\right)+\left(\left|B_{0} A_{n} c\right|^{2}-\left|\bar{B}_{0} B_{0} A_{n} c\right|^{2}\right) \\
& \quad-\left(\left|B_{0} A_{n} c\right|^{2}-2\left|\bar{B}_{0} B_{0} A_{n} c\right|^{2}+\left|B_{0} \bar{B}_{0} B_{0} A_{n} c\right|^{2}\right)-\sum_{i=1}^{n}\left|\hat{B}_{i} B_{0} A_{n} c\right|^{2} \\
= & \left|B_{0} A_{n} c\right|^{2}-\left|B_{0}^{3} A_{n} c\right|^{2}-\sum_{i=1}^{n}\left(\left|\hat{B}_{i} A_{n} c\right|^{2}+\left|\hat{B}_{i} B_{0} A_{n} c\right|^{2}\right) .
\end{aligned}
$$

Next, observe that if S and T belong to \mathscr{F}, then $S+T$ belongs to \mathscr{F} if and only if
$\operatorname{Re}\left[\left\langle T K(0, z) B_{0} c, S K(0, z) B_{0} c\right\rangle_{\mathscr{G}(B)}\right.$

$$
\begin{gather*}
\left.-\langle D T K(0, z) c, D S K(0, z) c\rangle_{\mathscr{E}(B)}\right] \tag{2.1}\\
=\operatorname{Re}\left[\left\langle T^{*} K(0, z) \bar{B}_{0} B_{0} c, S^{*} K(0, z) \bar{B}_{0} B_{0} c\right\rangle_{\mathscr{S}(B)}\right. \\
\left.-\left\langle D T^{*} K(0, z) \bar{B}_{0} c, D S^{*} K(0, z) \bar{B}_{0} c\right\rangle_{\mathscr{S}(B)}\right]
\end{gather*}
$$

for every c in \mathscr{C}. For $m \geqq 1$, let $S=A_{n} D^{n}$ and $T=A_{m+n} D^{m+n}$. By the difference-quotient identity and polarization,

$$
\begin{aligned}
& \left\langle T K(0, z) B_{0} c, S K(0, z) B_{0} c\right\rangle_{\mathscr{T}(B)}-\langle D T K(0, z) c, D S K(0, z) c\rangle_{\mathscr{O}(B)} \\
& =\left\langle D^{n} D^{m} A_{m+n} K(0, z) B_{0} c, D^{n} K(0, z) A_{n} B_{0} c\right\rangle_{\mathscr{O}(B)} \\
& \quad-\left\langle D^{n} D^{m+1} A_{m+n} K(0, z) c, D^{n} D A_{n} K(0, z) c\right\rangle_{\mathscr{O}(B)} \\
& =\left[\left\langle D^{m} A_{m+n} K(0, z) B_{0} c, K(0, z) A_{n} B_{0} c\right\rangle_{\mathscr{D}(B)}-\sum_{i=0}^{n-1}\left\langle A_{m+n} \widehat{B}_{m+i} B_{0} c, \hat{B}_{i} A_{n} B_{0} c\right\rangle\right] \\
& \quad-\left[\left\langle D D^{m} A_{m+n} K(0, z) c, D K(0, z) A_{n} c\right\rangle_{\mathscr{O}(B)}-\sum_{i=1}^{n}\left\langle A_{m+n} \hat{B}_{m+i} c, \widehat{B}_{i} A_{n} c\right\rangle\right] \\
& =\left[\left\langle A_{m+n} \hat{B}_{m} B_{0} c, A_{n} B_{0} c\right\rangle-\left\langle A_{m+n} \widehat{B}_{m} c, A_{n} c\right\rangle+\left\langle A_{m+n} \hat{B}_{m} c, \widehat{B}_{0} A_{n} c\right\rangle\right] \\
& \quad+\sum_{i=1}^{n}\left\langle A_{m+n} \hat{B}_{m+i} c, A_{n} \hat{B}_{i} c\right\rangle-\sum_{i=0}^{n-1}\left\langle A_{m+n} \hat{B}_{m+i} B_{0} c, A_{n} \widehat{B}_{i} B_{0} c\right\rangle \\
& =\sum_{i=1}^{n}\left\langle A_{m+n} \bar{A}_{n} \hat{B}_{m+i} \overline{\hat{B}}_{i} c, c\right\rangle-\sum_{i=0}^{n-1}\left\langle\left(A_{m+n} \bar{A}_{n} \hat{B}_{m+i} \overline{\hat{B}}_{i}\right) B_{0} c, B_{0} c\right\rangle .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \left\langle T^{*} K(0, z) \bar{B}_{0} B_{0} c, S^{*} K(0, z) \bar{B}_{0} B_{0} c\right\rangle_{\mathscr{O}(B)} \\
& -\left\langle D T^{*} K(0, z) \bar{B}_{0} c, D S^{*} K(0, z) \bar{B}_{0} c\right\rangle_{\mathscr{D}(B)} \\
& =\left\langle D^{* n} D^{* n} \bar{A}_{m+n} K(0, z) \bar{B}_{0} B_{0} c, D^{* n} K(0, z) \bar{A}_{n} \bar{B}_{0} B_{0} c\right\rangle_{\geqslant(B)} \\
& -\left\langle D^{* n} D^{* m} \bar{A}_{m+n} K(0, z) \bar{B}_{0} c, D^{* n} K(0, z) \bar{A}_{n} \bar{B}_{0} c\right\rangle_{\mathscr{Q}(B)} \\
& +\left\langle\bar{A}_{m+n} \overline{\hat{B}}_{m+n} \bar{B}_{0} c, \bar{A}_{n} \overline{\hat{B}}_{n} \bar{B}_{0} c\right\rangle \\
& =\left[\left\langle D^{* m} \bar{A}_{m+n} K(0, z) \bar{B}_{0} B_{0} c, K(0, z) \bar{A}_{n} \bar{B}_{0} B_{0} c\right\rangle_{\mathscr{V}(B)}\right. \\
& \left.-\sum_{i=1}^{n}\left\langle\bar{A}_{m+n} \overline{\hat{B}}_{m+i} \bar{B}_{0} c, \bar{A}_{n} \widehat{\widehat{B}}_{i} \bar{B}_{0} c\right\rangle\right]
\end{aligned}
$$

$$
\begin{aligned}
& -\left[\left\langle D^{* n} \bar{A}_{m+n} K(0, z) \bar{B}_{0} c, K(0, z) \bar{A}_{n} \bar{B}_{0} c\right\rangle_{\mathscr{S}(B)}-\sum_{i=1}^{n}\left\langle\bar{A}_{m+n} \overline{\widehat{B}}_{m+i} c, \bar{A}_{n} \overline{\widehat{B}}_{2} c\right\rangle\right] \\
& +\left\langle\bar{A}_{m+n} \overline{\hat{B}}_{m+n} \bar{B}_{0} c, \bar{A}_{n} \overline{\hat{B}}_{n} \bar{B}_{0} c\right\rangle \\
& =\left[\left\langle\bar{A}_{m+n} \overline{\hat{B}}_{m} \bar{B}_{0} B_{0} c, \bar{A}_{n} \bar{B}_{0} B_{0} c\right\rangle-\left\langle\bar{A}_{m+n} \widehat{\hat{B}}_{m} \bar{B}_{0} c, \bar{A}_{n} \bar{B}_{0} c\right\rangle\right] \\
& +\sum_{i=1}^{n}\left\langle\bar{A}_{m+n} \overline{\hat{B}}_{m+i} c, \bar{A}_{n} \overline{\hat{B}}_{i} c\right\rangle-\sum_{i=1}^{n-1}\left\langle\bar{A}_{m+n} \overline{\hat{B}}_{m+i} \bar{B}_{0} c, \bar{A}_{n} \overline{\hat{B}}_{i} \bar{B}_{0} c\right\rangle \\
& =\sum_{\imath=1}^{n}\left\langle c, A_{m+n} \bar{A}_{n} \hat{B}_{m+i} \overline{\hat{B}}_{i} c\right\rangle-\sum_{i=0}^{n-1}\left\langle B_{0} c,\left(A_{m+n} \bar{A}_{n} \hat{B}_{m+i} \overline{\hat{B}}_{i}\right) B_{0} c\right\rangle .
\end{aligned}
$$

Taking real parts, we have that \mathscr{F} contains $A_{n} D^{n}+A_{m+n} D^{m+n}$, and hence by the linearity of the inner products in (2.1), \mathscr{F} contains X.

Lemma 4. If $B(z)$ is of scalar type, then the identity in Lemma 3 holds for weak limits X of sequences of polynomials in the dif-ference-quotient transformation D whose coefficients lie in a (fixed) commutative C^{*}-algebra containing the coefficients of $B(z)$.

Proof. As in the proof of Lemma 3, the identity (2.1) holds whenever S and T are polynomials of scalar type in D whose coefficients commute with the coefficients of $B(z)$. It follows that (2.1) holds for S an arbitrary such polynomial in D and $T=X$, and subsequently for $S=T=X$. Therefore X satisfies the identity of Lemma 3.

Remark 1. By Lemma 4 and Sarason's theorem [9], if the coefficient space \mathscr{C} is one-dimensional and $B(z)$ is inner, then the identity in Lemma 3 holds for arbitrary operators X commuting with D. This is false for spaces \mathscr{C} of higher dimension, as the following example shows.

Example. Let $B(z)=\left(\begin{array}{cc}b(z) & 0 \\ 0 & b(z)\end{array}\right)$ where $b(z)=\Sigma b_{n} z^{n}$ is a scalar inner function, and let $X=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right) D$. Then the identity in Lemma 3 holds for $c=\binom{1}{0}$ only if either $b_{0}=0$ or $\left|b_{1}\right|=1-\left|b_{0}\right|^{2}$.

Theorem 1. Let D be the difference-quotient transformation in a space $\mathscr{D}(B)$, and suppose that $1-D^{*} D$ has closed range. Let X be an operator on $\mathscr{D}(B)$ which satisfies

$$
\|X(f(z), g(z))\|_{\mathscr{O}(B)} \geqq\left\|X^{*}(f(z), g(z))\right\|_{\mathscr{D}(B)}
$$

for every $(f(z), g(z))$ in the range of $1-D^{*} D$. If $B(z)=\Sigma B_{n} z^{n}$ where either $B_{i} \bar{B}_{j}=\bar{B}_{j} B_{i}$ for every $i, j=0, \cdots, N$ and X is a polynomial of scalar type in D of degree at most N whose coefficients
commute with B_{n} for every n, or, $B(z)$ is of scalar type and X is the limit, in the weak operator topology, of a sequence of polynomials in D whose coefficients lie in a commutative C^{*}-algebra containing B_{n} for every n, then X is unitarily equivalent to the restriction to an invariant subspace of an operator $Y=Y_{M}$ on $\mathscr{D}\left(z^{M} B\right)(M=1,2, \cdots)$ which commutes with the partially isometric difference-quotient transformation $V=V_{M}$ in $\mathscr{D}\left(z^{\prime \prime} B\right)$ and which satisfies

$$
\|Y(u(z), v(z))\|_{\Sigma\left(z^{u}{ }^{u}\right)} \geqq\left\|Y^{*}(u(z), v(z))\right\|_{\circ\left(z^{\prime}{ }^{\prime} B\right)}
$$

for every $(u(z), v(z))$ in the kernel of V. Moreover, $V=\left(\sum_{1}^{H} \oplus S_{j}^{*}\right) \oplus \hat{V}$ where S_{j} is a truncated shift of index j and the first M powers of \hat{V} are partial isometries such that the kernel of \hat{V}^{*} has trivial intersection with the subspace $\sum_{1}^{H} \oplus \hat{V}^{* j-1}$ ker \hat{V}. If the dimension of \mathscr{C} is finite, then $Y=\left(\sum_{1}^{n} \oplus Y_{j}\right) \oplus \hat{Y}$ where Y_{j} and \hat{Y} commute with S_{j}^{*} and \hat{V}, respectively, and Y_{j} is normal for every j. In this case, $Y=\left(\sum_{1}^{H} \oplus Z_{j}\right) \oplus Z$ where Z_{j} is a normal operator on the space $V^{* j-1} k e r V$, and $p(Y \ominus Z)=0$ for some nonzero (scalar) polynomial $p(z)$ of degree not exceeding the dimension of \mathscr{C}.

Proof. Since $\left\|\left(1-D D^{*}\right)^{1 / 2} D(f(z), g(z))\right\|_{D(B)}=|\bar{B}(0) f(0)|$ for every $(f(z), g(z))$ in $\mathscr{D}(B)$ and $\left(1-D D^{*}\right)^{1 / 2} D=D\left(1-D^{*} D\right)^{1 / 2}$, with analogous identities for $1-D^{*} D$, it follows that the restriction of $1-D^{*} D$ to the closure of its range is unitarily equivalent to the restriction of $1-B_{0} \bar{B}_{0}$ to the closure of its range. Therefore, since $1-D^{*} D$ has closed range, so does $1-B_{0} \bar{B}_{0}$.

Let $K(0, z) c=\left([1-B(z) \bar{B}(0)] c,\left[B^{*}(z)-\bar{B}(0)\right] c / z\right)$ for every c in \mathscr{C}. Define a transformation $\hat{\lambda}$ on \mathscr{C} as follows: if $c=\left(1-B_{0} \bar{B}_{0}\right) d$ for some (uniquely determined) vector d in the range of $1-B_{0} \bar{B}_{0}$, then $\hat{\lambda} c$ is the unique vector which satisfies

$$
\langle\hat{\lambda} c, a\rangle=\left\langle X K(0, z) B_{0} d, K(0, z) a\right\rangle_{\mathscr{X}(B)}
$$

for every a in \mathscr{C}; if $\left(1-B_{0} \bar{B}_{0}\right) c=0$, define $\hat{\lambda} c$ to be the zero vector. Since $1-B_{0} \bar{B}_{0}$ has closed range, it follows that $\hat{\lambda}$ is continuous.

To compute $\hat{\lambda}^{*}$, observe that the range of $1-B_{0} \bar{B}_{0}$ reduces $\hat{\lambda}$: let b be in the kernel of $1-B_{0} \bar{B}_{0}$. Since B_{0} is normal, $\left|\bar{B}_{0} b\right|=|b|=$ $\left|B_{0} b\right|$, and hence $\left(\left[B^{*}(z)-\bar{B}(0)\right] b\right) z=([B(z)-B(0)] b) z=0$. Moreover, the kernel of $1-B_{0} \bar{B}_{0}$ reduces \bar{B}_{0}, so that $K(0, z) b=(0,0)$. It follows that b is orthogonal to $\hat{\lambda}\left(1-B_{0} \bar{B}_{0}\right) d$ for every vector d, and thus, since b was arbitrary, the range of $1-B_{0} \bar{B}_{0}$ reduces $\hat{\lambda}$. Therefore, if $c=\left(1-B_{0} \bar{B}_{0}\right) d$ for some vector d in the range of $1-B_{0} \bar{B}_{0}$, then by Lemmas 1 and $2, \hat{\lambda}^{*} c$ is the unique vector which satisfies

$$
\left\langle\hat{\lambda}^{*} c, a\right\rangle=\left\langle X^{*} K(0, z) \bar{B}_{0} d, K(0, z) a\right\rangle_{\mathscr{(}(B)}
$$

for every a if \mathscr{C}; in $\left(1-B_{0} \bar{B}_{0}\right) c=0$, then clearly $\hat{\lambda}^{*} c=0$.
By the definitions of the norms in $\mathscr{H}(B)$ and $\mathscr{D}(B)$, it follows that the transformation

$$
W:(f(z), g(z)) \longrightarrow\left(z^{M} f(z), g(z)\right)
$$

takes $\mathscr{D}(B)$ isometrically into $\mathscr{D}\left(z^{M} B\right)$.
Let $(u(z), v(z))$ be in $\mathscr{\mathscr { }}\left(z^{M} B\right)$. The minimal decomposition of ($u(z), v(z)$) with respect to $\mathscr{D}(B)$ and $\mathscr{D}\left(z^{M}\right)$ is of the form

$$
(u(z), v(z))=\left(f(z)+B(z)\left(\sum_{0}^{M-1} c_{j} z^{j}\right), z^{M} g(z)+\sum_{0}^{M-1} c_{M-1-j} z^{j}\right)
$$

with $(f(z), g(z))$ in $\mathscr{D}(B)$ and $\left(\sum_{0}^{M-1} c_{j} z^{j}, \sum_{0}^{M-1} c_{M-1-j} z^{j}\right)$ in $\mathscr{D}\left(z^{M}\right)$ for some vectors c_{j} in \mathscr{C}. Define a transformation Y in $\mathscr{D}\left(z^{M} B\right)$ as follows:

$$
\begin{aligned}
& Y(u(z), v(z))=V^{M} W X(f(z), g(z)) \\
& \quad+\sum_{0}^{M-1} V^{j} W X\left(\frac{[B(z)-B(0)] c_{M-1-j}}{z},\left[1-B^{*}(z) B(0)\right] c_{M-1-j}\right) \\
& \quad+\left(\sum_{0}^{M-1}\left(\hat{\lambda} c_{j}\right) z^{j}, B^{*}(z)\left(\sum_{0}^{M-1}\left(\hat{\lambda} c_{M-1-j}\right) z^{j}\right)\right) .
\end{aligned}
$$

Since $V, W, X, \hat{\lambda}$, and minimal decompositions are linear, it follows that Y is linear. Moreover, Y is continuous since V, W, X, and $\hat{\lambda}$ are continuous and

$$
\|(u(z), v(z))\|_{\mathscr{\mathscr { L }}{ }^{M} M_{B}}^{2}=\|(f(z), g(z))\|_{\mathscr{(B)}}^{2}+\sum_{0}^{M-1}\left|c_{j}\right|^{2} .
$$

By a straightforward computation,

$$
\begin{aligned}
& V Y(u(z), v(z))=V^{M} W D X(f(z), g(z)) \\
& \quad+\sum_{0}^{M-1} V^{j+1} W X\left(\frac{[B(z)-B(0)] c_{M-1-j}}{z},\left[1-B^{*}(z) B(0)\right] c_{M-1-j}\right) \\
& \quad+\left(\sum_{0}^{M-2}\left(\widehat{\lambda} c_{j+1}\right) z^{j}, B^{*}(z)\left(\sum_{0}^{M-2}\left(\widehat{\lambda} c_{M-1-j}\right) z^{j+1}\right)\right) .
\end{aligned}
$$

Also by [1, Theorem 5(D)], the minimal decomposition of $V(u(z), v(z))$ in $\mathscr{O}\left(z^{M} B\right)$ is obtained with

$$
\left(f_{1}(z), g_{1}(z)\right)=D(f(z), g(z))+\left(\frac{[B(z)-B(0)] c_{0}}{z},\left[1-B^{*}(z) B(0)\right] c_{0}\right)
$$

in $\mathscr{D}(B)$ and

$$
\left(h_{1}(z), k_{1}(z)\right)=\left(\sum_{0}^{M-2} c_{j+1} z^{j}, \sum_{0}^{M-2} c_{M-1-j} z^{j+1}\right)
$$

in $\mathscr{D}\left(z^{M}\right)$. Therefore $\left.Y V(u z), v(z)\right)=V Y(u(z), v(z))$ since X commutes with D.

Since

$$
\left(f(z), z^{M} g(z)\right)=\left(f(z)+B(z) \cdot 0, z^{M} g(z)+0\right)
$$

is minimal in $\mathscr{D}\left(z^{M} B\right)$ with $(f(z), g(z))$ in $\mathscr{D}(B)$ and $(0,0)$ in $\mathscr{D}\left(z^{M}\right)$, we have that X is unitarily equivalent to the restriction of Y to the subspace $V^{M} W \mathscr{D}(B)$.

The kernel of V consists of all elements of the form $\left(c, z^{M-1} B^{*}(z) c\right)$ for c in \mathscr{C}. The minimal decomposition of $\left(c, z^{M-1} B^{*}(z) c\right)$ in $\mathscr{D}\left(z^{M} B\right)$ is obtained with $K(0, z) c$ in $\mathscr{D}(B)$ and $\left(\bar{B}(0) c, z^{V-1} \bar{B}(0) c\right)$ in $\mathscr{D}\left(z^{M}\right)$. Therefore, since $V Y\left(c, z^{M-1} B^{*}(z) c\right)=Y V\left(c, z^{M-1} B^{*}(z) c\right)=(0,0)$, it follows that $Y\left(c, z^{M-1} B^{*}(z) c\right)=\left(d, z^{M-1} B^{*}(z) d\right)$ where d is the unique vector which satisfies

$$
\begin{equation*}
\langle d, a\rangle=\langle X K(0, z) c, K(0, z) a\rangle_{\mathscr{D}(B)}+\langle\hat{\lambda} \bar{B}(0) c, a\rangle \tag{2.2}
\end{equation*}
$$

for every a in \mathscr{C}.
To compute the action of Y^{*} on $\left(c, z^{M-1} B^{*}(z) c\right)$, let $(u(z), v(z))$ be in $\mathscr{D}\left(\boldsymbol{z}^{M} B\right)$ and write

$$
(u(z), v(z))=\left(f(z)+B(z)\left(\sum_{0}^{M-1} c_{j} z^{j}\right), z^{M} g(z)+\sum_{0}^{M-1} c_{M-1-j} z^{j}\right)
$$

minimally with $(f(z), g(z))$ in $\mathscr{D}(B)$ and $\left(\sum_{0}^{M-1} c_{j} z^{j}, \sum_{0}^{M-1} c_{M-1-j} z^{j}\right)$ in $\mathscr{O}\left(\boldsymbol{z}^{M}\right)$. Then

$$
\begin{aligned}
& \left\langle Y^{*}\left(c, z^{M-1} B^{*}(z) c\right),(u(z), v(z))\right\rangle_{\mathscr{A}\left(z^{M} B\right)} \\
& \quad=\langle K(0, z) c, X(f(z), g(z))\rangle_{\mathscr{A}(B)}+\left\langle c, \hat{\lambda} c_{0}\right\rangle \\
& \quad=\left\langle\left(f_{2}(z)+B(z) \hat{\lambda}^{*} c, z^{M} g_{2}(z)+z^{M-1} \hat{\lambda}^{*} c\right),(u(z), v(z))\right\rangle_{\mathscr{(}\left(z^{M} M_{B}\right)}
\end{aligned}
$$

where $\left(f_{2}(z), g_{2}(z)\right)=X^{*} K(0, z) c$. Since $(u(z), v(z))$ was arbitrary, it follows that

$$
Y^{*}\left(c, z^{M-1} B^{*}(z) c\right)=\left(f_{2}(z)+B(z) \widehat{\lambda}^{*} c, z^{M} g_{2}(z)+z^{M-1} \hat{\lambda}^{*} c\right)
$$

Since

$$
\left\|Y^{*}\left(c, z^{M-1} B^{*}(z) c\right)\right\|_{\mathscr{(}\left(z^{M} B\right)}^{2} \leqq\left\|X^{*} K(0, z) c\right\|_{\mathscr{X}(B)}^{2}+\left|\hat{\lambda}^{*} c\right|^{2}
$$

and

$$
\left\|Y\left(c, z^{M-1} B^{*}(z) c\right)\right\|_{\mathscr{Q}\left(z{ }^{\left.H_{B}\right)}\right.}^{2}=\left\|\left(d, z^{M-1} B^{*}(z) d\right)\right\|_{\mathscr{S}_{\left(z^{H} B\right)}^{2}}^{2}=|d|^{2}
$$

it is sufficient to show

$$
\left\|X^{*} K(0, z) c\right\|_{\mathscr{(B)}}^{2} \leqq|d|^{2}-\left|\hat{\lambda}^{*} c\right|^{2}
$$

for all c in \mathscr{C}, where $d=d(c)$ is defined by (2.2).
Let c be in \mathscr{C}. Write $c=\left(1-B_{0} \bar{B}_{0}\right) a+b$ where a is in the
range of $1-B_{0} \bar{B}_{0}$ and $\left(1-B_{0} \bar{B}_{0}\right) b=0$. As above, $\hat{\lambda}^{*} b=0=\hat{\lambda} \bar{B}(0) b$ and $K(0, z) b=(0,0)$. Thus, we may assume $b=0$, and $c=\left(1-B_{0} \bar{B}_{0}\right) a$. In this case, by Lemmas 1 and 2, and the normality of B_{0},

$$
\begin{aligned}
& \left\|X^{*} K(0, z) c\right\|_{\mathscr{E}(B)}^{2} \\
& =\left\langle X^{*} K(0, z)\left(1-B_{0} \bar{B}_{0}\right) a, X^{*} K(0, z)\left(1-B_{0} \bar{B}_{0}\right) a\right\rangle_{\mathscr{\mathscr { C }}(B)} \\
& =\left\langle X^{*} K(0, z) a, X^{*} K(0, z)\left(1-B_{0} \bar{B}_{0}\right) a\right\rangle_{\mathscr{(}(B)} \\
& -\left\langle X^{*} K(0, z) B_{0} \bar{B}_{0} a, X^{*} K(0, z) a\right\rangle_{\mathscr{A}(B)}+\left\|X^{*} K(0, z) B_{0} \bar{B}_{0} a\right\|_{\mathscr{E}(B)}^{2} \\
& =\left\|X^{*} K(0, z)\left(1-\bar{B}_{0} B_{0}\right)^{1 / 2} a\right\|_{\mathscr{(}(B)}^{2}-\left\|X^{*} K(0, z) \bar{B}_{0} a\right\|_{\mathscr{Q}(B)}^{2} \\
& +\left\|X^{*} K(0, z) \bar{B}_{0} B_{0} a\right\|_{\mathscr{E}(B)}^{2} .
\end{aligned}
$$

Therefore by hypothesis and Lemmas 1 and 2,
$\left\|X^{*} K(0, z) c\right\|_{\mathscr{G}(B)}^{2}$

$$
\begin{aligned}
& \leqq\left\|X K(0, z)\left(1-\bar{B}_{0} B_{0}\right)^{1 / 2} a\right\|_{\mathscr{Y}(B)}^{2}-\left\|X^{*} K(0, z) \bar{B}_{0} a\right\|_{\mathscr{Q}(B)}^{2} \\
& +\left\|X^{*} K(0, z) \bar{B}_{0} B_{0} a\right\|_{\mathscr{E}(B)}^{2} \\
& =\|X K(0, z) a\|_{\mathscr{\mathscr { (B) }}}^{2}-\left\|X K(0, z) B_{0} a\right\|_{\mathscr{\mathscr { } (B)}}^{2}-\left\|X^{*} K(0, z) \bar{B}_{0} a\right\|_{\mathscr{Q}(B)}^{2} \\
& +\left\|X^{*} K(0, z) \bar{B}_{0} B_{0} a\right\|_{\bar{Y}(B)}^{2} \\
& =\left[\|D X K(0, z) a\|_{\mathscr{Q}(B)}^{2}+|d|^{2}\right]-\left\|X K(0, z) B_{0} a\right\|_{\mathscr{Q}(B)}^{2} \\
& -\left[\left\|D X^{*} K(0, z) \bar{B}_{0} a\right\|_{\S(B)}^{2}+\left|\hat{\lambda}^{*} c\right|^{2}\right]+\left\|X^{*} K(0, z) \bar{B}_{0} B_{0} a\right\|_{\mathscr{(B)}}^{2}
\end{aligned}
$$

since $a=c+B_{0} \bar{B}_{0} a$. Hence by Lemmas 3 and 4 ,

$$
\left\|X^{*} K(0, z) c\right\|_{\mathscr{Y}(B)}^{2} \leqq|d|^{2}-\left|\hat{\lambda}^{*} c\right|^{2}
$$

and therefore

$$
\|Y(u(z), v(z))\|_{\mathscr{\mathscr { }}\left(z^{\left.M_{B}\right)}\right.} \geqq\left\|Y^{*}(u(z), v(z))\right\|_{\mathscr{V}\left(z^{M_{B}}\right)}
$$

for every $(u(z), v(z))$ in the kernel of V.
By [6, Lemma 2.2], V, \cdots, V^{M} are partial isometries and hence so are their adjoints. The form of V then follows from a slight modification of [5, Theorem 4.1]. In particular, S_{j} is the restriction of V^{*} to the space $\mathscr{H}_{j}=v$ (span) $\left\{V^{i} \mathscr{C}_{j}: i=0, \cdots, j-1\right\}$ where $\mathscr{C}_{j}=\operatorname{ker} V^{*} \cap V^{* j-1} \operatorname{ker} V(j=1, \cdots, M)$.

Suppose that \mathscr{C} is finite-dimensional. Since $Y V=V Y$, the kernel of V is invariant under Y, and since it is finite-dimensional, the restriction Z_{1} of Y to the kernel of V has an eigenvector, say $\left(e_{1}(z), e_{2}(z)\right)$. Since

$$
\left\|Y\left(e_{1}(z), e_{2}(z)\right)\right\|_{\mathscr{\mathscr { }}\left(z^{M} M_{B}\right)} \geqq\left\|Y^{*}\left(e_{1}(z), e_{2}(z)\right)\right\|_{\mathscr{\mathscr { } (z ^ { \prime } M _ { B })}}
$$

it follows that $\left(e_{1}(z), e_{2}(z)\right.$) is a reducing eigenvector for Y. By considering the restriction of Y to $\operatorname{ker} V \ominus\left\{\left(e_{1}(z), e_{2}(z)\right)\right\}$ and proceeding by induction, we have that the kernel of V reduces Y, and Z_{1} is normal. If $\lambda_{1}, \cdots, \lambda_{K}$ are the eigenvalues of Z_{1} repeated according
to multiplicity, then $p\left(Z_{1}\right)=0$ where $p(z)=\prod_{1}^{K}\left(z-\lambda_{j}\right)$. Also note that $\mathscr{\mathscr { C }}_{1}=\operatorname{ker} V^{*} \cap \operatorname{ker} V$ is a finite-dimensional invariant subspace of the normal operator $Z_{1}^{*}=\left.Y^{*}\right|_{\text {ker } V}$ and hence $\mathscr{\mathscr { C }}_{1}$ reduces Y, and the restriction Y_{1} of Y to \mathscr{C}_{1} is normal.

For the induction step, assume that $\mathscr{C}_{j}, \mathscr{C}_{j}^{\prime}$, and $V^{*^{j-1}} \operatorname{ker} V$ $(j=1, \cdots, J-1 ; 2 \leqq J \leqq M)$ reduce Y, and the restriction of Y to each of these subspaces is normal. Since the range of V^{*} reduces Y, if $(r(z), s(z))$ is in the range of V^{*}, then $Y(r(z), s(z))=$ $V^{*} V Y(r(z), s(z))=V^{*} Y V(r(z), s(z))$ and $Y^{*}(r(z), s(z))=V^{*} Y^{*} V(r(z)$, $s(z)$).

Let $(u(z), v(z))$ be in $V^{* J-1}$ ker V. Since $Y^{*} Y=Y Y^{*}$ on the space $V^{* J-2} \operatorname{ker} V, V Y=Y V$, and $V(u(z), v(z))$ is in $V^{* J-2} \operatorname{ker} V$, it follows that

$$
\begin{aligned}
Y^{*} Y(u(z), v(z)) & =V^{*} Y^{*}\left(V V^{*}\right) Y V(u(z), v(z)) \\
& =V^{*} Y^{*} Y V(u(z), v(z)) \\
& =V^{*} Y Y^{*} V(u(z), v(z)) \\
& =V^{*} Y\left[\left(1-V V^{*}\right)+V V^{*}\right] Y^{*} V(u(z), v(z)) .
\end{aligned}
$$

Now $\left(1-V V^{*}\right) Y^{*} V(u(z), v(z))$ belongs to $\left(1-V V^{*}\right) V^{* J-2}$ ker V which in turn is contained in $\operatorname{ker} V^{*} \cap V^{*, J-2} \operatorname{ker} V=\mathscr{C}_{J-\downarrow}$. By the induction hypothesis, \mathscr{C}_{j-1} reduces Y. Therefore,

$$
\begin{aligned}
Y^{*} Y(u(z), v(z)) & =V^{*} Y V V^{*} Y^{*} V(u(z), v(z)) \\
& =Y Y^{*}(u(z), v(z))
\end{aligned}
$$

It follows that

$$
\|Y(u(z), v(z))\|_{\approx\left(z^{1} J_{B)}\right.}=\left\|Y^{*}(u(z), v(z))\right\|_{\mathscr{\varepsilon}\left(z^{3 /} B\right)}
$$

for all $(u(z), v(z))$ in $V^{*^{J-1}} \operatorname{ker} V$, and, since $V^{*^{J-1}} \operatorname{ker} V$ is a finitedimensional invariant subspace for Y^{*}, we have that $V^{* J-1} \operatorname{ker} V$ reduces Y as above, and the restriction Z, of Y to $V^{*^{J-1}}$ ker V is normal. Clearly, $\quad p\left(\sum_{i}^{J} \oplus Z_{j}\right)=0$ since $\bar{p}\left(Y^{*}\right)\left(V^{* j-1} \operatorname{ker} V\right)=$ $V^{* \jmath-1} \bar{p}\left(Z_{1}^{*}\right)$ ker $V=\{0\}$ for every $j=1, \cdots, J$.

Next, \mathscr{C}_{J} reduces Y and $\left.Y\right|_{\mathscr{C}_{J}}$ is normal since $\mathscr{C}_{J}=\operatorname{ker} V^{*} \cap$ $V^{* J-1} \operatorname{ker} V$ is a finite-dimensional invariant subspace of Y^{*}, and the restriction of Y^{*} to $V^{* J-1}$ ker V is normal.

Finally, \mathscr{H}_{J} reduces Y and $\left.Y\right|_{\mathscr{C}_{J}}$ is normal since $V^{i} \mathscr{C}_{J}(i=0, \cdots$, $J-1$) is a finite-dimensional invariant subspace of Y which is contained in $V^{*^{J-i-1}}$ ker V, and the restriction of Y to $V^{* J-i-1}$ ker V is normal.

Corollary 1. Let D be the difference-quotient transformation in a space $\mathscr{D}(B)$ with a finite-dimensional coefficient space \mathscr{C}, and suppose that D has no isometric part. Let X be an operator on
$\mathscr{D}(B)$ which satisfies

$$
\|X(f(z), g(z))\|_{\mathscr{D}(B)} \geqq\left\|X^{*}(f(z), g(z))\right\|_{\mathscr{Y}(B)}
$$

for every $(f(z), g(z))$ in the range of $1-D^{*} D$. If $B(z)=\sum B_{n} z^{n}$ where $B_{i} \bar{B}_{j}=\bar{B}_{j} B_{i}$ for every $i, j=0, \cdots, N$, and X is a polynomial of scalar type in D of degree at most N whose coefficients commute with B_{n} for every n, then either X is multiplication by an operator on \mathscr{C} or the dimension of $\mathscr{D}(B)$ is finite $\left[\leqq N \times(\operatorname{dim} \mathscr{C})^{2}\right]$. Moreover, if $B(z)$ is of scalar type, and X is the limit, in the weak operator topology, of a sequence of polynomials in D whose coefficients lie in a commutative C^{*}-algebra containing B_{n} for every n, then $p(X)=0$ for some nonzero (scalar) polynomial $p(z)$ of degree not exceeding the dimension of \mathscr{C}.

Proof. Since D has no isometric part, $B(z) c$ is in $\mathscr{H}(B)$ for some vector c only if $c=0$, and by [2, Lemma 4], $\mathscr{H}(B)$ contains no nonzero element of the form $B(z) c$. Therefore by the minimal decomposition of an element of $\mathscr{D}(z B)$ in terms of $\mathscr{D}(B)$ and $\mathscr{D}(z)$, it follows that the difference-quotient transformation V on $\mathscr{D}(z B)$ has no isometric part. Moreover, as in the proof of Theorem 1, since $1-B_{0} \bar{B}_{0}$ has closed range, so does $1-D^{*} D$.

By Theorem 1, X is unitarily equivalent to a part of an operator Y on $\mathscr{D}(z B)$ which commutes with V and satisfies

$$
\|Y(u(z), v(z))\|_{\mathscr{D}(z B)} \geqq\left\|Y^{*}(u(z), v(z))\right\|_{\mathscr{D}(z B)}
$$

for all $(u(z), v(z))$ in the kernel of V. Moreover, the kernel of V reduces Y and $p(Y)$ ker $V=\{0\}$ for some nonzero polynomial $p(z)$ of degree at most the dimension of \mathscr{C}. Since V has no isometric part, $\mathscr{D}(z B)$ is the closed span of the subspaces $V^{* n} \operatorname{ker} V(n=0,1, \cdots)$. Therefore, since $\bar{p}\left(Y^{*}\right)$ commutes with $V^{*^{n}}, p(Y)=0$ and hence $P(X)=0$.

Suppose that X is a nonconstant, scalar type polynomial in D of degree at most N. By the above, $q(D)=0$ for some scalar type polynomial $q(z)$ of degree at most $N \times \operatorname{dim} \mathscr{C}$. Since D has no isometric part, D is unitarily equivalent to $R(0)$ on $\mathscr{H}(B)$. Since any countable family of commuting normal operators on a finite-dimensional space has a common eigenvector, $q(R(0))(=0)$ is the restriction of an operator on $\mathscr{C}(z)$ of the form $\sum_{1}^{\text {dim }} \oplus q_{i}\left(R(0)_{i}\right)$ where $q_{i}(z)$ is a scalar polynomial of degree at most $N \times \operatorname{dim} \mathscr{C}$ and $R(0)_{i}$ is the difference-quotient transformation on $\mathscr{C}_{i}(z)$ where \mathscr{C}_{i} is onedimensional. Since the eigenspace corresponding to an eigenvalue of $R(0)_{i}$ is one-dimensional, and since the dimension of the kernel of a finite product of operators does not exceed the sum of the dimensions of the kernels of the factors, it follows that the dimension of
$\mathscr{H}(B)$ (and hence of $\mathscr{O}(B))$ does not exceed $N \times(\operatorname{dim} \mathscr{C})^{2}$.
3. Applications. The following result extends [3, Problem 110] and [7, Corollary 1].

Theorem 2. Let T be a contraction on Hilbert space such that rank $\left(1-T T^{*}\right) \leqq r a n k\left(1-T^{*} T\right)=1$, and suppose that T has no isometric part. If X is the weak limit of a sequence of polynomials in T, and if f is a nonzero vector in the range of $1-T^{*} T$, then $\|X f\| \leqq\left\|X^{*} f\right\|$ with equality holding only if X is a scalar multiple of the identity.

Proof. By [2, Theorem 1] and [3, Theorem 15], T is unitarily equivalent to the difference-quotient transformation in a space $\mathscr{D}(\boldsymbol{B})$ where the coefficient space is one-dimensional. The theorem now follows by applying Corollary 1.

Theorem 3. Let T be a contraction on Hilbert space such that $T^{n}(n=1,2, \cdots)$ tends strongly to zero, and suppose that $T=$ $\sum_{1}^{K} \oplus T_{j}$ where the rank of $1-T_{j}^{*} T_{j}$ is one for every j. If X is an operator which commutes with T and satisfies $\|X f\| \geqq\left\|X^{*} f\right\|$ for every vector f in the range of $1-T^{*} T$, then X is normal with spectrum consisting of at most K points.

Proof. By [3, Theorem 12], there exist scalar inner functions $b_{j}(z)(j=1, \cdots, K)$ such that T is unitarily equivalent to the dif-ference-quotient transformation $R(0)$ in $\mathscr{H}(B)$ where

$$
B(z)=\left(\begin{array}{cccc}
b_{1}(z) & & & 0 \\
& \cdot & & \\
0 & & & b_{K}(z)
\end{array}\right)
$$

is an inner function of scalar type. The proof proceeds by induction on K.

If $K=1$, then by Sarason's theorem [9], X is the weak limit of a sequence of polynomials in $R(0)$; and hence by [3, Theorem 13] and Theorem 2, X is a scalar multiple of the identity.

Assume that the theorem is true for the difference-quotient transformations in spaces $\mathscr{H}(B)$ of the form $\mathscr{H}(B)=\sum_{1}^{L} \oplus \mathscr{H}\left(b_{j}\right)$ for all integers $L, 1 \leqq L<K$, where the b_{j} 's are scalar inner functions. Let X commute with $R(0)$ on $\mathscr{H}(B)=\sum_{1}^{K} \bigoplus \mathscr{H}\left(b_{j}\right)$ and satisfy $\|X f(z)\| \geqq\left\|X^{*} f(z)\right\|$ for every $f(z)$ in the range of $1-R(0)^{*} R(0)$, where $b_{j}(z)$ is a scalar inner function for every j. By the Sz.-Nagy-Foias lifting theorem [11], X is the restriction of
an operator on $\mathscr{C}(z)=\sum_{1}^{K} \oplus \mathscr{C}_{j}(z)$ of the form $\left(T_{\varphi_{i j}}^{*}\right)_{K \times K}$ where \mathscr{C}_{j} is the space of complex numbers and $\varphi_{i j}(z)$ is a bounded analytic (scalar) function on the unit disk for all i and j. Moreover, since $\mathscr{H}(B)$ is invariant under $\left(T_{\varphi_{i j}}^{*}\right)_{K \times K}$, the range of T_{B} is invariant under $\left(T_{\varphi_{j i}}\right)_{K \times K}$, and hence for each $k, 1 \leqq k \leqq K, \varphi_{j k}(z) b_{j}(z)$ is contained in the range of $T_{b_{k}}$ for every $j=1, \cdots, K$.

For a fixed integer $j_{0}\left(1 \leqq j_{0} \leqq K\right)$, consider an element of $\mathscr{C}(B)$ of the form $f(z)=\sum_{1}^{K} \oplus\left[1-b_{j}(z) \bar{b}_{j}(0)\right] x_{j}$ where $x_{j_{0}}=1$ and $x_{j}=0$ for all $j \neq j_{0}$. Since $f(z)$ is in the range of $1-R(0)^{*} R(0)$, we have that

$$
\begin{align*}
\|X f(z)\|^{2} & =\sum_{i=1}^{K}\left\|T_{\varphi_{i j_{0}}}^{*}\left[1-b_{j_{0}}(z) \bar{b}_{j_{0}}(0)\right]\right\|^{2} \tag{3.1}\\
& \geqq\left\|X^{*} f(z)\right\|^{2} \\
& =\sum_{i=1}^{K}\left\|P_{i} T_{\varphi_{i_{0}}}\left[1-b_{j_{0}}(z) \bar{b}_{j_{0}}(0)\right]\right\|^{2} \\
& =\sum_{i=1}^{K}\left\|P_{i} \varphi_{j_{j_{0}}}(z)\right\|^{2}
\end{align*}
$$

where P_{i} is the (orthogonal) projection of $\mathscr{C}_{i}(z)$ onto $\mathscr{C}\left(b_{i}\right)$. Moreover, by the case $K=1$,

$$
\begin{aligned}
\left\|P_{j_{0}} \varphi_{i j_{0}}(z)\right\| & =\left\|P_{j_{0}} T_{\varphi_{i j_{0}}}\left[1-b_{j_{0}}(z) \bar{b}_{j_{0}}(0)\right]\right\| \\
& \geqq\left\|T_{\varphi_{i j_{0}}}^{*}\left[1-b_{j_{0}}(z) \bar{b}_{j_{0}}(0)\right]\right\|
\end{aligned}
$$

for every $i=1, \cdots, K$. Therefore,

$$
\begin{aligned}
\sum_{\substack{i=1 \\
i \neq j_{0}}}^{K}\left\|P_{j_{0}} \varphi_{i j_{0}}(z)\right\|^{2} & \geqq \sum_{\substack{i=1 \\
i \neq j_{0}}}^{K}\left\|T_{\varphi_{i j}}^{*}\left[1-b_{j_{0}}(z) \bar{b}_{j_{0}}(0)\right]\right\|^{2} \\
& \geqq \sum_{\substack{i=1 \\
i \neq j_{0}}}^{K}\left\|P_{i} \varphi_{j_{0} i}(z)\right\|^{2}
\end{aligned}
$$

which holds for all $j_{0}=1, \cdots, K$.
Combining the above inequalities, by induction we have the following:

$$
\begin{aligned}
\sum_{i=2}^{K} \| & P_{1} \varphi_{i 1}(z) \|^{2} \\
& \geqq \sum_{i=2}^{K}\left\|T_{\varphi_{i 1}}^{*}\left[1-b_{1}(z) \bar{b}_{1}(0)\right]\right\|^{2} \\
& \geqq \sum_{i=2}^{K}\left\|P_{i} \varphi_{1 i}(z)\right\|^{2} \\
& \geqq \sum_{i=2}^{K}\left(\sum_{\substack{j=1 \\
j \neq \imath}}^{K} \| T_{\psi i i}\right. \\
& {\left.\left[1-b_{i}(z) \bar{b}_{i}(0)\right]\left\|^{2}-\sum_{\substack{j=2 \\
j \neq i}}^{K}\right\| P_{i} \varphi_{j i}(z) \|^{2}\right) }
\end{aligned}
$$

$$
\begin{aligned}
& \geqq \sum_{i=2}^{K}\left(\sum_{\substack{j=1 \\
j \neq i}}^{K}\left\|P_{j} \varphi_{i j}(z)\right\|^{2}-\sum_{\substack{j=2 \\
j \neq i}}^{K}\left\|P_{i} \varphi_{j i}(z)\right\|^{2}\right) \\
& =\sum_{i=2}^{K}\left\|P_{1} \varphi_{i 1}(z)\right\|^{2}
\end{aligned}
$$

The above inequalities are therefore equalities and in particular

$$
\begin{aligned}
\sum_{\substack{j_{j=1}=1 \\
j \neq i}}^{K}\left\|P_{i} T_{\varphi_{j i}}\left[1-b_{i}(z) \bar{b}_{i}(0)\right]\right\|^{2} & =\sum_{\substack{j=1 \\
j \neq i}}^{K}\left\|T_{\varphi_{j_{i}}}^{*}\left[1-b_{i}(z) \bar{b}_{i}(0)\right]\right\|^{2} \\
& =\sum_{\substack{j=1 \\
j \neq i}}^{K}\left\|P_{j} T_{\varphi_{i j}}\left[1-b_{i}(z) \bar{b}_{i}(0)\right]\right\|^{2} \\
& \leqq \sum_{\substack{j=1 \\
j \neq i}}^{K}\left\|T_{\varphi_{i j}}\left[1-b_{i}(z) \bar{b}_{i}(0)\right]\right\|^{2}
\end{aligned}
$$

for every $i=1, \cdots, K$. Hence by the case $K=1$, it follows that the restriction of $T_{\varphi_{j i}}^{*}$ to $\mathscr{C}\left(b_{i}\right)$ is a scalar $\lambda_{j i}$ times the identity for all $j \neq i$, and

$$
\begin{equation*}
\sum_{\substack{j=1 \\ j \neq i}}^{K}\left|\lambda_{j i}\right|^{2} \leqq \sum_{\substack{j=1 \\ j \neq i}}^{K}\left|\lambda_{i j}\right|^{2} \tag{3.2}
\end{equation*}
$$

for every $i=1, \cdots, K$. Therefore by (3.1) and the case $K=1$, the restriction of $T_{\stackrel{\omega}{i i}^{*}}^{*}$ to $\mathscr{H}\left(b_{i}\right)$ is a scalar $\lambda_{i i}$ times the identity for every $i=1, \cdots, K$, and consequently $X=\left(\lambda_{i j}\right)_{K \times K}$.

Suppose first that $\mathscr{C}\left(b_{i}\right)=\mathscr{C}\left(b_{j}\right)$ for all i and j. In this case, the range of $1-R(0)^{*} R(0)$ reduces X, and since it is finite-dimensional and the restriction of X to it is hyponormal, it follows that $X X^{*}=X^{*} X$ on the range of $1-R(0)^{*} R(0)$.

Let $h(z)$ be an arbitrary element of $\mathscr{H}(B)$. Then $h(z)$ is the limit of a sequence of vectors of the form $\sum_{0}^{n} R(0)^{* j} f_{j}(z)$ where $f_{j}(z)$ is in the range of $1-R(0)^{*} R(0)$ for every j. Since $X X^{*}$ and $X^{*} X$ commute with $R(0)^{* j}$, we have that $X X^{*} h(z)=X^{*} X h(z)$. Hence X is normal.

Let $\lambda_{1}, \cdots, \lambda_{K}$ be the eigenvalues of the restriction of X to the range of $1-R(0)^{*} R(0)$, listed according to multiplicity, and let $\eta_{j}=$ $\vee\left\{f(z) \in \mathscr{H}(B): X f(z)=\lambda_{j} f(z)\right\}$. Since X is normal, if $\lambda_{i} \neq \lambda_{j}$, then η_{i} is orthogonal to η_{j}. Moreover, since $R(0)$ has no isometric part and $X R(0)^{*}=R(0)^{*} X$, it follows that $\mathscr{C}(B)=\vee\left\{\eta_{j}: j=1, \cdots, K\right\}$. Therefore, X is diagonalizable with $\operatorname{sp}(X)=\left\{\lambda_{j}: j=1, \cdots, K\right\}$.

Finally, suppose that $\mathscr{C}\left(b_{i}\right) \neq \mathscr{C}\left(b_{j}\right)$ for at least one pair (i, j). There exists a space $\mathscr{H}\left(b_{i_{0}}\right)$ which is minimal in the sense that for every i either $\mathscr{H}\left(b_{i}\right)=\mathscr{H}\left(b_{i_{0}}\right)$ or $\mathscr{H}\left(b_{i}\right)$ is not contained in $\mathscr{H}\left(b_{i_{0}}\right)$. Let Ω be the set of indices i such that $\mathscr{H}\left(b_{i}\right)=\mathscr{H}\left(b_{i_{0}}\right)$. Then $\Omega \neq\{1, \cdots, K\}$ by assumption, and for every i in Ω and j not in Ω,
$\lambda_{i j}=0 . \quad$ By (3.2),

$$
\sum_{\substack{i \in \Omega \\ j \in \Omega}}\left|\lambda_{j i}\right|^{2} \leqq \sum_{i, j \in \Omega}\left(\left|\lambda_{i j}\right|^{2}-\left|\lambda_{j i}\right|^{2}\right)=0 .
$$

Therefore, $\lambda_{i j}=0=\lambda_{j i}$ for every i in Ω and j not in Ω. It follows that the space $\sum_{i \in \Omega} \oplus \mathscr{H}\left(b_{i}\right)$ reduces X, that the restriction of X to this space satisfies the induction hypothesis and hence is normal with spectrum consisting of at most card Ω points. Similarly, the restriction of X to $\sum_{i \varepsilon \Omega} \oplus \mathscr{H}\left(b_{i}\right)$ is normal with spectrum at most K - card Ω points, and consequently X is normal with spectrum at most K points.

Corollary 2. Let X commute with the difference-quotient transformation D in a space $\mathscr{D}(B)$ where $B(z)$ is an inner function of scalar type and the coefficient space \mathscr{C} is finite-dimensional. If

$$
\|X(f(z), g(z))\|_{\mathscr{D}(B)} \geqq\left\|X^{*}(f(z), g(z))\right\|_{\mathscr{O}(B)}
$$

for every $(f(z), g(z))$ in the range of $1-D^{*} D$, then X is a normal operator whose spectrum consists of a finite number ($\leqq \operatorname{dim} \mathscr{C}$) of points.

Proof. Since any countable family of commuting normal operators on a finite-dimensional space has a common eigenvector, it follows that $\mathscr{D}(B)=\sum_{1}^{\text {dim }} \oplus \mathscr{D}\left(b_{j}\right)$ where $b_{j}(z)$ is a scalar inner function for all j. Corollary 2 is therefore an immediate consequence of Theorem 3 .

REMARK 2. The analytic Toeplitz operator T_{φ} on $\mathscr{C}(z)$ with \mathscr{C} one-dimensional, for the symbol $\varphi(z)$ an inner function, is a universal model for unilateral shifts. Therefore, the restriction of T_{ψ}^{*} to an arbitrary invariant subspace is a canonical model for contractions whose powers tend strongly to zero. A consequence of Corollary 2 is that the restriction of T_{φ}^{*} to an arbitrary invariant subspace of the backward shift T_{z}^{*} is never hyponormal (i.e., only if it is a scalar times the identity).

References

1. L. de Branges, Factorization and invariant subspaces, J. Math. Anal. Appl., 29 (1970), 163-200.
2. L. de Branges and J. Rovnyak, Canonical models in quantum scattering theory, Perturbation Theory and its Applications in Quantum Mechanics, pp. 295-391, Wiley, New York, 1966.
3. Square Summable Power Series, Holt, Rinehart, and Winston, New York, 1966.
4. B. Fuglede, A commutativity theorem for normal operators, Proc. N. A. S., 36 (1950), 35-40.
5. J. Guyker, A structure thearem for operators with closed range, Bull. Austral. Math. Soc., 18 (1978), 169-186.
6. , On partial isometries with no isometric part, Pacific J. Math., 62 (1976), 419-433.
7. _—, Reducing subspaces of contractions with no isometric part, Proc. Amer. Math. Soc., 45 (1974), 411-413.
8. C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Z., 116 (1970), 323-330.
9. D. Sarason, Generalized interpolation in H^{∞}, Trans. Amer. Math. Soc., 127 (1967), 179-203.
10. M. J. Sherman, A spectral theory for inner functions, Trans. Amer. Math. Soc., 135 (1969), 387-398.
11. B. Sz.-Nagy and C. Foiaṣ, Dilatation des commutants d'opérateurs, C. R. Acad. Sci. Paris, 266 (1968), 493-495.

Received June 5, 1979 and in revised form February 21, 1980.
SUNY College at Buffalo
Buffalo, N.Y. 14222
and
Purdue University
Lafayette, IN 47907

