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ON THE HOMOMORPHIC AND ISOMORPHIC
EMBEDDINGS OF A SEMIFLOW INTO

A RADIAL FLOW

MICHAEL EDELSTEIN

It is the main purpose of this paper to prove the follow-
ing two theorems.

THEOREM I. (Isomorphism) Let (X,R+,f) be a semiflow
on a separable metric space (X, d), having the properties:

( i ) there is an ωβ X such that, for each neighborhood
U of ω, there is a TeR+ with f[X,t]c:U for all t^T;

(ii) for each teR+,f(',t) is a homeomorphism of X
onto a closed subspace of X.
Then (X, R+, f) is isomorphic to a radial semiflow on a
subset of the Hubert Cube in I2.

THEOREM II. (Homomorphism) If (X,R+,f) satisfies the
hypotheses of Theorem I, with (i) replaced by

(iθ Γi{f[X,t]:t^0}={ω} for some ωeX, then {X,R\f)
is homomorphic to a radial semiflow on a subset of the
Hubert Cube C and the subsemiflow induced on Xl{ω} is
isomorphic to a radial semiflow in C.

1* Introduction* Let X be a nonempty subset of a normed
linear space and suppose that, with 0 < λ < 1,

(1) f(x, t) = X*x (0, t) 6 X x R) .

The triple (X, R, / ) , with / as above, determines a dynamical
system or a flow (cf. [4], [5]) on X such that the semitrajectory
of each x Φ 0 is a line segment joining x with the origin 0. The
terms "a radial flow" or "a radial dynamical system" seem appro-
priate. Similarly, with R replaced by J?+, the nonnegative reals,
we refer to (X, i?+, /) as a radial semiflow, or a radial semidynamical
system. By a homomorphic (isomorphic) embedding of (X, R, f)
into (Y, JR, gr) we understand a one-one continuous mapping (a
homeomorphism) h of X into Y such that

H f ( x , * ) ) = g{h{x), t) ((a?, t ) e X x R ) .

A similar definition applies to semiflows. Thus, to say that (X, R+,
f) is isomorphic to a radial semiflow means that a homeomorphism
h of X into a normed linear space exists such that

( 2 ) h(f(x, t)) = X'hix) ((», f)eXx R+) .

In a recent paper L. Janos [3] proved that a semiflow (X, i2+, /)
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on a compact metric space X is isomorphic to a radial semiflow on
a subset X of the Hubert Cube in l2 if the transition map / is one-
one and n {f[X, t]: t ^ 0} is a singleton.

It is the main purpose of this paper to establish the extensions
of the above result to the setting of semiflows on a separable
metric space which were stated in the opening paragraph.

As can be readily verified, conditions (i) and (i') are equivalent
if X is compact metric. Since (ii) is automatically satisfied for a
one-one continuous transition map on a compact metric space, the
above mentioned result of Janos follows as a corollary. On the
other hand it is quite easy to show that the conclusion of Theorem
I cannot be obtained with (i) replaced by (Γ).

An analog for discrete semiflows on a compact metric space
was used by Janos [3] in the proof of his result. While such an
analog was available before (cf. [1], [2]), the corresponding one for
separable metric spaces given here (Theorems 2 and 3) is new and
of independent interest. Also of some interest is the result assert-
ing that the property of radiality is passed on to a flow by the
corresponding property of its discrete subflows (Theorem 1). This
result parallels the "Embedding Lemma" of [3].

2* Inheritance of radiality*

THEOREM 1. Let (X, R, f) be a dynamical system on a nonempty
subset X of l2 with the property that for some λ, 0 < λ < 1, all
nonnegative integers n and all (x, t) e X x R,

( 3 ) f(x, t + n) = Xnf(x, t) .

Then (X, R, f) is isomorphic to a radial flow in l2.

Proof. Applying an idea of M. Bebutov (cf., e.g., [4], p. 333),
we consider the integral

(4)

This improper integral converges since

Σ \U+1\\f(x, t)\\dt = Σ [\\f(x, t + m)\\dt
m=0 Jm w=0 Jo

by (3) then

(5) Π | / 0 M ) i | ώ ί = - r ^ — [\\f(χ, t)\\dt
Jo 1 — λ Jo
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proving convergence. Thus sx(T) — I | |/(#, t)\\dt defines a function

from R to R+.
Clearly, this function is continuous and decreasing for x distinct

from the origin 0. Its range for all x Φ 0 contains {1} as it con-
sists of all positive reals. [Indeed lim^^ sx(T) = 0 by convergence
of the integral in (4) and, on the other hand

Γ \\f(x, t)\\dt ^ λ - [\\f(x, t)\\dt
J-n JO

so that sα(jΓ)->oo as Γ->-oo.]

To each xeX\{0} there corresponds a unique tx such that sx(tx) =
1. The correspondence x-*tx which arises in this manner is clearly
one-one on trajectories lying in X\{0}. Also, if y = f(x, t) then, as
can be readily seen

To prove that tx is continuous in x — a fact needed in the sequel
let {xn} be a sequence in X\{0} with xn —> x Φ 0. Then, we claim,

(7) l imΓll/fo, t)\\dt = l .

Indeed,

Γ l i / f e , t)\\dt - Γ H / f e , ί ) | | d t + i ; \m+)\f(χn, t)\\dt
} t x Jtx m=0Jm

= t°
1 - λ Jo

As f(xn, t) —> f(x, t) uniformly on compact intervals ([4], p. 327), we
obtain in the limit, as n —» c>o f

( 8 ) £ \\f(x,t)\\dt= 1 .

Thus

\ Ii f(%nt t)\\dt = 1 — \ || f ( x n , t ) \ \ d t > 0 a s n > °° .
J t*n J tχ

However this is only possible if tXn —> tx.
Let S be the set of all x in X such that tx = 0; i.e.,

S = j α e X : Γ||/(α? f t ) | | d ί =

In view of the preceding discussion S is a closed subset of X\{0}
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and each trajectory, lying in that subset, meets S at exactly one
point. (In the usual terminology S is a section in X\{0}.)

Let σ: S —> Σ ^ e a homeomorphism onto a subset of H Π C
where H is the hyperplane {x e l2: (x, βχ> = 1}, and C denotes the
Hubert Cube in l2. [That such a homeomorphism exists follows
from the facts that (xl9 x2, • ••)<-* (1? ^ x2, ) sets up an isometry
in l2 and that any separable metric space is homeomorphic with a
subset of the Hubert Cube.] The desired isomorphism is now defined
as the mapping a of X into R Σ obtained by setting

σ(x) = \-**σ(f(x, «.)) G» * 0)

( 9 ) and if 0 e X, σ(0) - 0 .

On X\{0} σ is continuous as the composition of tX9 f and σ. If r >
0 and y erΣ then 7/ = λ*σ(x) <=̂  σ~\X~*y) = a? for some ί e JB; hence
(the existence and) continuity of the inverse. To prove continuity
at 0 of both σ and σ~γ it suffices, in view of the definition (9), to
show that a sequence {xn} in X\{0} converges to 0 if, and only if,

Suppose, first, that tXn —> — °°. If {xw} fails to converge to 0
then we may assume that ||a?Λ|| ^ ε for some ε > 0. As a result,

M = inΐ{\\f(xn, t ) | | : n = l ,2 , -. ; 0 ^ ί ^ l } > 0 .

[Otherwise a sequence {ΐj in [0, 1] and a subsequence {x%i} would
have to exist such that tt —> t* e [0, 1] and /(a?Λi, t<) —> 0. But then
f(Xnί9 t*) = (f(xni, «*-«, + t,)) = / ( / ( ^ , O, tt - *<) -^ 0, implying
xn. -> 0.] Hence by (8), (cf. also (5)),

1 - Γ \\f(x%, t)\\dt = \~m\\f(xn, t)\\dt + J^—Ϋ\\f{χn, t)\\dt

^ (1 - λ)-Vmiί, if - m - 1 ^ *βn ^ - m .

However, for sufficiently large n9 X~mM > 1 — λ, leading to a con-
tradiction.

Next, let xn-^Q and assume, for a contradiction, that tXn-+— ©o.
Then we may assume that ίβiι ^ — m, where m is a fixed positive
integer. Hence,

However, as already observed, ^ - > 0 = > \ \\f(xn9 f)\\dt-^O which is
Jo

impossible.
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Finally, with f(x, t) — y, and by a repeated application of (6),

σ(f(x, t)) = X-tyσifiy, ty)) = \-**+tσ(f(x, t + ty))

- λfλ-*»J(/(α?, ί.)) = X*σ(x)

showing that (X, R, /) is isomorphic with the radial flow (RΣ, R, g),
where g(x, t) — Xιx.

3* Discrete semίflows* In analogy with the definition of a
(continuous) radial semiflow we define a discrete radial semiflow
(X, N+, f) on a nonempty set X in a normed linear space as one
in which

(1') f(x, n) = Xnx

for some λ, 0 < X < 1, and all (x, n) e X x N+.
A continuous mapping / of a metric space M into itself deter-

mines a discrete semiflow (M, N+, f) by setting f(x, n) = fn(x).
Hence a homeomorphism (a one-one continuous mapping) h:M—>l2

satisfying

( * ) h(f(x)) = Xh(x)

with 0 < X < 1, determines an isomorphic (a homomorphic) embedd-
ing into a radial semiflow in l2; namely one for which h(f(x, n)) —
Xnh(x).

For a mapping h to satisfy (*) it is clearly necessary and suffi-
cient that the "coordinate functions" »̂(flc) = <Λ(α&), O » (w = l> 2, . . . ) f

where βΛ is a member of the standard orthonormal basis, do like-
wise; i.e.,

(10) *.(/(*)) = λ f .(a) .

Further, for Λ, to be one-one it is necessary and sufficient that the
family {ψn} distinguishes points; i.e., if x\ x" are distinct members
of X then ψn(x') Φ φ«(x") for some neN+.

By means of such a family of functions it was shown in [1]
that a homeomorphism h:X—>l2 exists satisfying (*) if X is com-
pact metric, /: X —> X is one-one continuous, and

(11) r){f*[X]:n = 1,2, • •} = {ω}

where ω e X.
If compactness is removed from the hypotheses of the above

result then, as simple examples show, the conclusions may no longer
be true even if / is a homeomorphism (onto f[X]). This is due to
the fact that in general h may fail to have a continuous inverse
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at some points of h[X]. Furthermore, the construction of a homeo-
morphism h such that h'1 is continuous at some points, e.g., on
h[X]\{Q}, as in the next theorem, seems inadequate. Hence the need
for the more refined construction which we produce in the proofs
of the following theorems.

3*1* Homomorphisms*

THEOREM 2. Let X be a separable metric space and f a homeo-
morphism of X, onto a closed proper subset of X, satisfying (11).
Then there is a one-one continuous mapping h of X into the
Hiΐbert Cube C in l2 such that h~λ is continuous on h[X]\{0} and
(*) holds.

Proof. Let & be a countable base for the topology of X\f[X]
and let {(J7», Vn): n = 1, 2, •••} be an enumeration of those pairs
(£7, V) 6 & x & for which Ua V. Set

£<*> - \J{B(x,r(x))ι xefk[Vn]},

where B(x, r(x)) denotes the open ball about x, of radius r(x) =
2-^(0?, fk[X]\fk[VJ); (with this choice of r(x) we have B? Π Bp =
0 for ΐ ^ i).

For fc = 0, 1, let α^-i be a continuous mapping into [0,1]
such that

W : ΐ = 0,1, •••,*}] = <>

U /[J7J U U /*[ϋ.]] = 1 .

Since B^ is disjoint from fk[X] for i <L k we have

αf.L:/^1 - 0 .

To define α^n-υ for integers m ^ 0 pick, for m > 0, an arbitrary
continuous extension of O ^ - I ^ - D , where

un-uf-1 on f[X]

(1 on

and, for other subscripts

Thus

(12) αίίU-!,/ = αίϊ-iβ-D (m = 0, ± 1 , w = 1, 2, .)
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A countable family of coordinate functions ψ(k): X —> [0, 1] is now
obtained by setting

ψl» = ( l - λ ) Σ λ ^ α ί ϊ ^ .
i i t = — k

By (12), and the fact that a^-k^^J = a^Jk+ι = 0, we have

ι(k) J: /I \ \ V Λ«*+*>v(fc) -^
γn J — \-* *\>) s J *̂ » W 2m(2w—1)J

m=—A

— ( 1 — X) 2lt
m=-k+l

2lt λ* &2m(2
=-k+l

λ) Σ
m=-k+l

showing that (10) holds for all coordinate functions. To define h:
X-^Cc ϊ2 let {ψy. j — 1,2, •} be an enumeration of ffifc)} and set

A standard argument, omitted here, shows that h is continuous. To
prove that h is one-one, let xu x2 be distinct points of X and suppose
that x, = f\yί)9 x2 = fk*{y2) with ^ ^ k2 and ̂  6 X\/[X]. Choose
n such that a^iyj = 1 and a^{y2) = 0. Then

while

^ic)(»2) = (1 - λ) Σ λ αίϊi^-!,^) ^ λ

Hence ir%\x2) ^ λtio)(^i) and h(xx) Φ h{x2).
To prove continuity of h~λ at Λ(»), x Φ 0, let {Λ(OPJ: n=l,2, •}

be a sequence in ft[X]\{0} converging to Λ(ίc) and suppose that a; =
f\y) for some & ̂  0 and y e X\f[X], Suppose xn -+»a?. Quite clearly
a subsequence {xn} and an ε > 0 must then exist such that d(xn.9

f5{y)) ^ e for all i = 1, 2, and i = 0, 1, ••-,&. [If not, then a
subsequence {a?̂ } exists such that xni -» x but xn —> /y(y) for some
i ^ &; but then h(xn.) -> h(f>'(y)) = Xj~kh(x) Φ h(x).] Let w be such
that each 5 ^ is contained in the open ball about fj(y), of radius
ε and yeVn. Then

<Uxni) - 0 and aίlUPXy)) = 1 (j = 1, 2, -, &).

Hence ^f (y) = l=*fί\x) = Xh; while
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ir<*>(χ ) = (1 - λ) Σ λ-+*αίS«n_ 1 )(α l κ)
m = — k

= (1 - λ)λfc Σ λ-αίiίβ,_1)(a;.l) ^ λ*+1 = Xψίk)(x) .

Clearly then 11 /&(#„.) — Λ(a?) 11 is bounded away from zero, against the
assumption that h(x%) —> A(a ).

3«2* Isomorphism* In the next theorem we have the stronger
conclusion that h is a homeomorphism. As in the case of Theorem
I, where (i) is stronger than (i'), it is necessary to strengthen con-
dition (11) by the discrete counterpart of condition (i). Thus we
shall assume that the following hypothesis is satisfied.

There exists a ω e X such that for every neighborhood U of ω
there is a positive integer N with the property that

(13) f*[X] c U

for n Ξ> N.
(A simple argument shows that in a compact metric space (11)

and (13) are equivalent.)

THEOREM 3. Let X be as in Theorem 2 with (11) replaced by
(13). Let 0 < λ < 1. Then a homeomorphism h of X into the
Hilbert Cube C in l2 exists such that h(f(x)) = Xh(x).

Proof Let Bn be an open ball about ω, of radius e/n with
ε > 0 such that J5X Φ X. By (13) there are integers iV1 < N2 <
< Nn < such that

Let aln__x\ X-> [0, 1] be a continuous function such that a2n^[fNn[X]] =
0 and aln_γ[X\Bn] = 1.

Let a2(2»-o be a continuous extension of oc2%~if~ι to the whole of
X and, recursively, let α2m(2w_1) be a continuous extension of
a^-iten-i)/-1 to the whole of X. Define a^-m^^: X->[0,l\ (m =
1,2, ) by setting

This defines a family {a^^^: m = 0, ± 1 , •; n = 1, 2, •} of con-
tinuous mappings into [0,1] such that for all integers m,

(14) Oί2™(2n-l)f — &2m~1{2n-l)

and
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(15) α,.^,, =0(m£-N%).

Let now

ΐrn(x) = (1 - λ)λsr»-1 Σ λ α,.β._1)(a!)

(w = 1, 2, - x e X) .

Then ψn: X—>[0, 1] is continuous and by (14) and (15),

= (1 - X)XN-~1 Σ λwα2™-Wl)0*0

- (1 - λ)λ* Σ λmα2~<«-i>(a0 - λ t (»)

showing that (10) is satisfied.
To define h:X->l2 let {ψό: j = 1, 2, •••} be an enumeration of

{fn} U {̂ ifc)} where {^} is as in the proof of Theorem 2. Set

The continuity of h, the existence of h~ι and the continuity of h~ι

at h(x) Φ 0 follows, as in the proof of Theorem 2, from the relevant
properties of {ψ^}. To prove continuity of h~ι at 0 let {h(xn)} be
a sequence converging to 0 and suppose that {xn} fails to converge
to 0. Then a subsequence {xn.} and a positive integer w exist such
that {xn.} is in X\Bn. Hence α2»-i(ί» <) = l (ί = 1» 2, )ι a n d
therefore ψn(xn.) ^ (1 — λ)λ^-\ It follows that ||A(α?Λ<)|| is bounded
away from zero, against the assumption that {h(xj} converges to
the origin.

4* Main results*

Proof of Theorem I. Fix λ, 0 < λ < 1, and set f(x) = f{x, 1).
The mapping /: X—> X satisfies the hypotheses of Theorem 3. Hence
there is a homeomorphism h of Xinto the Hubert Cube with h(f(x)) —
Xh(x) or, in terms of discrete semiflows,

h(f(x, n)) - h(Hx)) = X%h(x)), (xeX).

Let Γ be the set of all y in l2 with the property that for some
nonnegative integer n, Xny e h[X]9 and define g: Y x JB —> Y by
setting

(16) g(y, t) = X-m-«h(f(h-\X«y), t + m))
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where m and n are the smallest nonnegative integers such that
Xny e h[X] and t + m ^ 0.

From the fact that

f(x, t + m + m') = f{f{x, t + m), m') (xeX; t + m ^ 0; m' ^ 0)

and

h(f(f(x, t + m), m')) = λm'Λ(/(α, t + m))

it follows that

χ-m-m'h(f(x, t + m + m')) = X~mh(f(x, t + m))

showing that (16) holds for any nonnegative integer m with m +
t^O (and not only for the smallest one with the said property).
A similar argument, omitted here, shows that (16) remains true
with n replaced by n'.

To verify the additivity of g let

ff(y9 * + * ' )= X-m-m'-nh{f{h-\X«y), t + t' + m + m'))

where Xny e h[X], t + m ^ 0, t' + w! ^ 0. We have

Hf(h~χxny), t + m)) = Xm+ng(y, t) e h[X]

and

g(g(y9 t), V) - χ-m-n-™'h(f(h-χxm+ng(y, t\ V + m')))

showing that

To sum up, Y is a nonempty subset of ϊ2, (Y, J?, c/) is a dynamical
system and for t e R, k a nonnegative integer, we obtain (by choos-
ing positive integers n9 m with Xnyeh[X], t + m ^ 0) that

, ί + fc) = X-m-nh(f(h-\Xny), t + k + m))

= \kX-m-%h{f(h-\\ny\ t + m))) = λfc (̂?/, t)

so that the hypotheses of Theorem 1 are satisfied. Hence (F, R, g)
is isomorphic to a radial flow in l2. Furthermore, we may assume
that the set S, in the proof of Theorem 1, is disjoint from h[X].
(Otherwise it may be replaced by X~nS with n sufficiently large.) It
follows that (X, R+, f) is isomorphic to a radial semiflow on a subset
of the Hubert Cube.

Proof of Theorem II. As in the preceding proof fix λ, 0 < λ < l
and set f(x) — f(x9 1). The mapping f:X—>X satisfies the hypo-
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theses of Theorem 2. Hence there is a one-one continuous mapping
h of X into the Hubert Cube in l2 such that h(f(x)) = Xh(x) with
h~λ continuous on /ι[X]\{0}.

The rest of the preceding proof applies verbatim with the only
change that (Y, R, g) as defined there is homomorphic (rather than
isomorphic) to a radial flow on a subset of the Hubert Cube in l2.
Hence (X, R+, f) is homomorphic to such a semiflow.
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