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CLOSED FACTORS OF NORMAL Z-SEMIMODULES

DANIEL A. MARCUS

Let M be a set of positive integers which is closed under
multiplication and division whenever possible: if m, neM
and m | n, then n/m eM. A closed factor of M is a subset
Ka M which is closed under multiplication and for which
there is another subset Ra M such that every member of
M is uniquely representable as a product kr with ke K and
reR. A theory is developed for determining all closed
factors of a given M. The theory can be adapted to an
analogous problem for convex polyhedral cones.

1* Introduction* The factorization problem for a set S with
a binary operation ° can be stated as follows: Determine all pairs
of subsets A, B of S such that each member of S is uniquely repre-
sentable in the form a°b, aeA, beB. More generally, if the operation
is associative, one can replace the pair (A, B) with a sequence (Alf

• , An) of subsets of S.
Several authors have considered this problem for finite abelian

groups. A special case, involving only subsets of a certain form,
was solved by Hajόs in the course of settling a classical conjecture
of Minkowski on linear forms. (See [10] for a good exposition of
this.) Subsequent work on factorizations of finite abelian group was
done by Hajόs, Redei, Sands, and deBruijn. (References appear in
[10].) Even for finite cyclic groups, the general factorization problem
is unsolved. The corresponding problem for the infinite cyclic group
was settled in a negative sense by Swenson in 1974 [12]. Partial
results had previously been obtained by deBruijn [1], [3].

In [5], Long characterized all factorizations of the set {0, 1, ,
n — 1} under addition. The corresponding problem for certain subsets
of the plane was studied by Stein [11] and Hansen [4].

Complete solutions to the factorization problem have been obtained
for certain semigroups. In [2], deBruijn determined all factorizations
of the additive semigroup of nonnegative integers. The two-dimen-
sional version of this, in which S is the additive semigroup of non-
negative lattice points in the plane, was solved by Niven [9]. In
[6], this author solved the ^-dimensional version for all n, including
infinite-dimensional cases: i.e., for any free commutative monoid.
These results were extended in [7] to include certain submonoids of
a free commutative monoid.

The results obtained in [2], [6], [7] and [9] can be summarized
by saying that every factorization of one of these semigroups can
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be constructed from a descending chain of factors which are closed
under the semigroup operation. (See §11.) For the semigroups con-
sidered in [2], [6] and [9], it is a simple matter to determine all of
the closed factors. (See Proposition 15 in [6].) The latter problem
is more difficult, however, for a wider class of semigroups known as
normal Zsemimodules (defined in §2). While all of the factorizations
of these semigroups are not known, it is possible to characterize all
of the closed factors. That is the subject of the present work.

In § 7 it will be shown how the theory developed here for normal
Z-semimodules can be adapted to an analogous problem for convex
polyhedral cones.

2* Normal Z-semimodules* Let G be free abelian group and
let G+ denote the set of points having nonnegative coordinates with
respect to a fixed Z-basis; thus G+ is a free commutative monoid,
or a free Z-semίmodule. A normal Z-semimodule is any semigroup
which is isomorphic to an intersection G+ Π H, where H is a subgroup
of G. Some familiar examples of normal Z-semimodules are

(1) The nonnegative points in a sublattice of Zn;
(2) The nonnegative integer-valued circulations in a digraph

(Gr+ consists of all nonnegative integer-valued functions on the edges);
(3) The monic polynomials with constant term 1 over a unique

factorization domain (G+ consists of all monic polynomials. This is
a multiplicative free Z-semimodule, as is G+ in all subsequent ex-
amples);

(4) The nonzero principal ideals in a Dedekind domain (G+

consists of all nonzero ideals);
(5) Any set M of positive integers which is closed under mul-

tiplication and division whenever possible:

m, ne M , m\n = > n/m 6 M

(G+ is the set of all positive integers).
It is clear that normal Z-semimodules are the kernels of homo-

morphisms from free Z-semimodules to abelian groups, and that every
such kernel is a normal Z-semimodule. In [8] it is shown that every
normal Z-semimodule is uniquely representable as the kernel of a
homomόrphism G+ —> A (where G+ is a free Z-semimodule and A is
an abelian group) having the property that for each basis element
6 of (?+, the members of G+ not involving 6 (i.e., generated by basis
elements other than 6) map onto A. This property is called strong
surjectivity. We note that the basis elements of a free Z-semimodule
are uniquely determined as the minimal nontrivial elements in the
natural partial ordering.
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The result described above will be used in the present work to
solve the following combinatorial problem:

Let M be a normal Z-semimodule with multiplicative notation.
A direct decomposition, or factorization, of M is a decomposition of
M as a direct product of subsets. Thus if A and B are subsets of
M such that each meM is uniquely representable in the form
ab(a e A, b e B), then M = A x B is a direct decomposition of M. Call
A and £ factors of Λf in this case. A closed factor of M is a factor
of M which is closed under multiplication. The problem is to deter-
mine, in some sense, all closed factors of a given M.

3* Notation and terminology* From now on, the symbol N
denotes a free Z-semimodule with multiplicative notation, and we
employ the notation and terminology of the positive integers: The
basis elements of N are called primes and are denoted by the letters
p, q, r, . Divisibility in N (indicated by a vertical bar) is defined
in the obvious way, as are GCD's and relative primeness. The rank
of N (the number of primes) is an arbitrary cardinal.

The symbol M denotes a normal subsemimodule of N: i.e., a
subset which is closed under multiplication and division whenever
possible, as in Example 5. Equivalently, M is the kernel of a homo-
morphism from N to an abelian group. We will also say that M is
normally embedded in N in this case. Thus M represents a typical
normal Z-semimodule.

For a subset XaN, let [X] denote the set of all products of
elements of X, including the empty product 1. We write [x, y, •••]
for [{x, y, •••}]. Thus [X] is the monoid generated by X,

Let (X) denote the group generated by X, so that (N) is the
free abelian group generated by the primes of N. A subsemimodule
SaN is normally embedded in N iff <S> ΓΊ N - S.

Call an element x e X minimal in X if it has no divisors in X
other than itself and 1. Equivalently, x is minimal in the division
ordering on X — {1}. Denote by Xmin the set of all minimal elements
in X.

It is easy to see that for M normally embedded in N, N = [Mmin].
For subsets X, YczN, define

X/Y - {x e X: y \ x Vy e Y, y Φ 1} .

Clearly X/Y = X/Ymi\
Finally, for subsets X, YczN, define

XY= {xy .xeX, y e Y} .

4* Examples of closed factors*
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EXAMPLE 1. For any M, let {mifiel} be a family of pair wise
relatively prime members of M, indexed by some set /. Then

[wv ίel]

is a closed factor of M, the complementary factor being

{m e M: mi J( m Vi e /} .

This should be regarded as a trivial sort of closed factor.

EXAMPLE 2. N = [p, q] (where p and q are understood to be the
primes of N) and M is the kernel of the mapping

N—>zμz

determined by

p\ >1, q\ . 3 .

Then M — [p\ q\ pq], and [p\ q\ p2q2] is a closed factor of M. The
complementary factor is {1, pq}.

EXAMPLE 3. N = [p, q, r, s] and M is the kernel of the mapping
N->Z@{Zj2Z) determined by

qy-

r H

S h

—- (i, o)
— (-1,0)

— (i, i)

— (-i,i).

Then M = [pq, rs, p2s2, q2r2], and [pqrs, p2s2, q2r2] is a closed factor of

M. The complementary factor is [pq] U [rs].

EXAMPLE 4. N— [p, q, r, s], and M is the kernel of the mapping
N —> Z determined by

Q

r\ > 2

si > - 2 .

Then M — [pq, rs, p2s3, q2r*], and [p2s3, q2rz] is a closed factor of M.

The complementary factor is

{paqarhsb: a,beZ;a,b^0; and α < 2 or b < 3} .

We note some common features in all of these examples. First,
in each case the complementary factor consists of everything in M
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which is not divisible by any of the generators of the closed factor.
We will see that the complementary factor always has this form.
More interestingly, in each case the closed factor has the form

M Π [w<: iel]

where the nt are pairwise relatively prime members of N. In Example
1 the Πi are just the m ί t In Examples 2-4 the closed factors are,
respectively,

Mn[p\q2]

M Π [ps, qr]

M n [p\ q\ τ\ s3] .

We will prove (Theorem 2) that all closed factors have this form.
However such intersections are not always factors, as the following
shows:

EXAMPLE 5. N = [p, q\, and N is the kernel of the mapping
N-+ Z/AZ defined by p, q ι-> 1. Thus M= [p\ p% p2q\ pq\ q% The in-
tersection Jlίn [p2, #2] = [p4, P2q2, q*] is not a factor of M since if it were,
the complementary factor would contain pq* and p*q; but then the
equation (p%pqz) = (p2q2)(p*q) would contradict unique representation.

5* Theory of normal Z-semimodules* Let M and N be as in
§2. Clearly M is the kernel of the natural mapping

φ:N >

We define congruence mod M in terms of this mapping. For nu n2 e
N, we have

M) iff ψ(n^) = φ(n2) .

This is just congruence mod the group <M>, so that

nt = w2(mod M) iff n1mι = n2m2 for some mlf m2eM.

We note that neMi& n = l(modM), since N f] (M) = M.
Let f:N-*G be any mapping (i.e., semigroup homomorphism)

from N to an abelian group G, and suppose that M is the kernel.
It is easy to show that the following conditions are equivalent:

(1) The image of / is a subgroup of G;
(2) Every member of N divides some member of M.
When these conditions hold, the kernel of the induced group

homomorphism (N)-^G is just <ikί>; it follows that image of / is
naturally isomorphic to (N}/(M). In particular, any surjective
mapping N-+G having kernel M is equivalent to φ.
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We can always arrange [for a given M to be the kernel of a
surjective mapping from some free Z-semimodule by removing the
primes of N which fail to divide anything in M. It is possible,
however, to attain stronger conditions:

In accordance with the definition in §1, φ is strongly surjective
if and only if for each prime p, the restriction

{n eNipJf n) > (N}/(M)

is surjective.

THEOREM 0. Every normal Zsemimodule can be represented as
the kernel M of a strongly surjective mapping from a free Zsemi-
module N to an abelian group G. This representation is unique
up to isomorphism.

This is Theorem 1 in [8] for the special case R — Z. The mapping
referred to can be assumed to be the natural mapping from N to
(N)I(M), as noted earlier for any surjective mapping.

Thus we can assume that the embedding M c N is such that φ
is strongly surjective. This embedding, which is uniquely determined
up to isomorphism, is called the canonical embedding of M. The
factor group (N)/(M) is an invariant of M, called the cogroup of M.

In [8] it is also shown (Lemma 1) that φ is strongly surjective
if and only if each neN is a GCD from M:

VneN, n = GGΌ(mlf , mt) for some mlf , mt e M .

Finally we note that as an immediate consequence of Theorem 0
we can assume that the following condition holds:

VneN and V prime p, ixeN

such that x Ξ= n(moά M) and p\x .

6* Theory of closed factors* We assume from now on that
the containment MaN is the canonical embedding of a normal Z-
semimodule M in a free Z-semimodule N.

Let K be a closed factor of M with complementary factor R,
and let π — πκ denote the obvious projection of M on K.

PROPOSITION 1. π{km) = kπ(m)Vk eK,meM.

Proof, m = π(m)r, reR, so km = kπ{m)r.

PROPOSITION 2. If keK,meM and k \ m, then k \ π(m).
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Proof. π(m) — π{km/k) — kπ(m/k).

Next we show that K is itself a normal Z-semimodule. In fact
K is normally embedded in N:

PROPOSITION 3. (K} n N = K.

Proof. Let h, keK and suppose h/k = neN. Necessarily n e M

since h/k e (M) Π N = M. Then

h = π(h) — π{kn) —

implying that π(n) — n. Thus n e ίC.

PROPOSITION 4. i? =

Proof. It is clear that Rz^M/K. Conversely, suppose reR,
keK, and k\r. Then k\π(r) by Proposition 2. But ττ(r) = 1, so
fc = 1.

Thus we have M = K x (M/K) whenever K is a closed factor
of M.

Next we let F denote the set of GCD's from K:

We will show that F is freely generated by a set of pairwise
relatively prime members of N and that K — M Π F.

THEOREM 1. Let f eF, neN/M, and suppose f ~ n(moάM).
Then f = n(moάK).

Proof. Write / = GCD(kl9 , kt), kteK. For each ί we have

nki/f e <ikf) n JV = Λί, so for each i

kj7u(nkjf) = kticinkjf)

by Proposition 1. Thus

A* I Mnkjf) .

Writing nfcx// = fcr with keK, r eR, we have kλ\fk. It follows that
r I w. But reikf and neN/M, so r = 1. Thus nkx — fk, implying
n = f(moάK).

COROLLARY 1. K = M n F.

Proof. Trivally KaMΠF. Conversely if / e M n F then / =



128 DANIEL A. MARCUS

l(modikf), hence / = l(modϋΓ), hence f eK by Proposition 3.

COROLLARY 2. If feF and f\keK, then k/f eF.

Proof. By (*) of §5, there exist elements nteN such that

nt Ξ /(mod M) and GCD(w,) = 1 .

Moreover the % can be assumed to be in N/M since any nontrivial
divisors in M can be factored out without affecting the congruence
and GCD conditions. Then by Theorem 1 we have nt = /(mod K)
for all i, hence njc/f e (K) n N = K. Finally

k/f = GGD(ntk/f) e F .

(We should note that there may be infinitely many elements njc/f;
nevertheless their GCD is equal to the GCD of a finite subfamily of
them, hence the GCD is in F.)

THEOREM 2. F — \nt\ n e I], where {n^. nel} is a family of
pairwise relatively prime members of N.

Proof. It is sufficient to show that F is closed under
(1) multiplication;
(2) taking GCD's; and
( 3 ) division whenever possible.

(1) and (3) show that F is a normal Z-semimodule, normally embedded
in N, and hence F = [Fmin]; moreover the members of Fmin are
pairwise relatively prime by (2).

Let e, f eF and write

e = GCD(hlf • • - , * . )

/ = GCD(fclf •..,&,)

with all hi9 kt 6 K. Then

ef = GCD(all hjkj)

and

GCD(β, /) = GCD(hlf ,h.,kl9 ••-,&,).

Clearly F is closed under taking the GCD of any number of elements.
It remains to show that if e/f e N, then e/f e F. For each i, we

have f\hiy hence hjf eFby Corollary 2 to Theorem 1. Finally, then,

• ;hJf)eF



CLOSED FACTORS OF NORMAL Z-SEMIMODULES 129

by (2).
Combining results, we have

COROLLARY 1. K = M Π F where F is freely generated by a set
of pairwise relatively prime members of N, and the containment
KaF is the canonical embedding of the normal Z-semimodule K in
a free Z-semimodule.

The fact that K c F is the canonical embedding follows from the
fact that everything in F is a GCD from K (see §5). We should note
here that the divisibility relation in the free Z-semimodule F is the
same as that induced from N since F is normally embedded in N.

COROLLARY 2. If K — Kλx K2, where Kx and K2 are closed under
multiplication, then the members of Kx are relatively prime to the
members of K2.

Proof. This follows from Corollary 1 and uniqueness of the ca-
nonical embedding. If we let K1aF1 and K2aF2 denote the canonical
embeddings of Kx and K2 in free Z-semimodules, then the induced
mapping of K into the direct product F1 x F2 must be the canonical
embedding of K. The resulting isomorphism F -+ Fxx F2 shows that
any member of Kx and any member of K2 have no common factor
in F, hence no common factor in N.

Clearly this result generalizes to a decomposition of K into any
number of closed factors, even infinitely many. In particular we
obtain the following when all of the factors are cyclic:

COROLLARY 3. // K is free, then the members of Kmin are pair-
wise relatively prime.

In other words, the only free closed factors of M are the trivial
ones in Example 1 of §4. This result could also have been obtained
directly from Corollary 1: Necessarily K — F by uniqueness of the
canonical embedding.

We have established a one-to-one correspondence between the
closed factors K of M and certain families of pairwise relatively
prime members of N. As we have seen (Example 5 of §4), not all
families of this type correspond to closed factors. The next result
provides a characterization of those which do:

THEOREM 3. Let {n^. iel} be a family of pairwise relatively
prime members of N, and set F = [n^. i e I], K = M Π F. Then the
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following conditions are equivalent:
(1) MF is normally embedded in N;
(2) πF{M) c M (note that F is a factor of N);
(3) M/F=M/K;
(4) K is a factor of M and F is the set of GCD's from K.

Proof. (1) => (2). For meM, write m = fr with / e F and r e
N/F. Then reMF by (1). Then reM, implying / e l

(2)=>(3). M/FaM/K trivially. Conversely, if meM/K, then
πF(m) = 1. Then meMf] (N/F) = M/F.

(3)=* (2). First notice that M = K(M/K). For meM, write
m = kr with keK, reM/K. (We are not assuming that this re-
presentation is unique.) Then reM/FczN/F, so πF(m) = keM.

((2) and (3)) => (4). By (3), we have

M = ίΓ(Λί/JΓ) - ίΓCΛf/ί7) = JΓ x

with the last part justified by the fact that KaF and M/F cz N/F.
Thus K is a factor of If. Moreover it is clear that F contains all
GCD's from K since F is closed under taking GCD's. Finally, let
feF; we know that everything in N is a GCD from M (§5), hence
we can write

/ = GCD(mlf , mt\ mteM .

For each i we have f\mi9 hence f\πF(m^) by Proposition 2. Thus

The πF(m%) are in ikf by condition (2), hence they are in K.
(4)=>(1). We must show that if

m j x = m 2 f 2 x w i t h m l f m 2 e M ; flf f 2 e F , x e N

then xeMF. Write

x — mn with meM, neN/M .

We claim that neF. Clearly f2 divides some k e K; from

= m2kmn

we obtain w = /(mod Λf), where / = fjc/f2. Note that / e (F) ΓίN =
F. Then n = /(mod JBΓ) by Theorem 1, hence w e <F> Π N = JP.

The proof is now complete.

The most important part of Theorem 3 is the equivalence of
conditions (1) and (4). We know that every closed factor K of M
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occurs in a condition (4) situation, hence such factors correspond to
sets {Uiiie 1} for which MF is normally embedded in N. These
MF's are among the normal Z-semimodules M', MczM'cN, such
that Mf is normally embedded in N, and if we let G denote the
cogroup of M (G = (N)/(M)), then the semimodules M' are in one-to-
one correspondence with the subgroups of G. Specifically, if for each
subgroup HdG we let MH denote the kernel of the natural mapping

φH:N >G/H,

then the correspondence H <-+ MH is one-to-one and each Λf'(as above)
is of the form MH. In this correspondence H = (M')/(M).

Summarizing what we have said, there are one-to-one correspon-
dences

{closed factors K of M) < • {certain F's}

{normal MF9a} < > {certain subgroups HczG)

where F is used generically to represent a free semimodule of the
form [nt: ie I] where the w{ are pairwise relatively prime members
of N. The F's occurring in the first correspondence are the ones
for which MF is normal.

This raises two questions:
(1) To what extent is F determined by a normal MFΊ

and
(2) Which subgroups HaG occur in the correspondence?
Answers are provided by

THEOREM 4. Let H be a subgroup of G. Then MH = MF for
some F = [nt: iel] with pairwise relatively prime nt Φ 1, if and
only if the members of Mπin ~ M are pairwise relatively prime. In
that case the members of MH'ITI ~ M are among the nif and all other
nt are in M.

Proof. If MH = MF with F as above, then M£in c Mmin U Fmin,
hence

Λfj?ln ~ I c F m i n = {nt: iel} .

Moreover if nt e Fmin — M, then from

MH - [MSιn] = [MΓn - M]M

we conclude that nt is divisible by some neMnin — M; we know
n = nd for some 3 el, hence ns\nt. It follows that % = nt. Thus

Fmin - MaM£in - M
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implying that M contains all nt which are not in Mπin — M.
Finally, suppose the members of MH'XU ~ Mare pairwise relatively

prime. Then MH = MF, where F = [Mgin - M], and the proof is
complete.

It should be noted that when a subgroup H of G corresponds to
a normal MF and hence to a closed factor K of M, then H is the
cogroup of K. We prove this by showing that K is the kernel of
a strongly surjective mapping of N onto H. The surjective mapping
N-^G restricts to a sur jective mapping MH —> -ff; since MH — MF
and Λf is the kernel, the restriction F —> H is sur jective. Moreover
everything in F is a GCD from the kernel K. It follows by Lemma
1 of [8] that F->H is strongly sur jective.

Now we look back at the examples of §4 in the light of these
results.

In Example 1, F = K; MF = Λf; and H = {0}.
In Example 2, F = [p2, g2]; ΛfF = [p2, tf2, pg]; and H = {0, 2}.
In Example 3, F = [ps, qr]; MF = [pg, rs, pβ, gr]; and ί ί = Z/2Z.
In Example 4, F = [p2, g2, r3, s3]; ikίF = [pg, rs, p\ q\ τ\ s3]; and

H=6Z.
In each case MF7 = MH and £Γ is the cogroup of K.
As a further illustration of the theory we determine all closed

factors of M in Example 3. The subgroups of G = Z 0 (Z/2Z) are

nZ, n ^ 0

and the cyclic groups

When H = {0}, ikί^ = M. F can be taken to be [m] for any meM,
or [mj, m2] for any relatively prime elements ml9 m2 6 M. The closed
factor K is just i*7.

When H = Z, ilίπ = [p, g, r2, s2, re]. Λf contains rs, so JP7 =
[p, Q, ̂ , s2] intersects M in the closed factor

K = [pg, r2δ2, p2s2, gV] .

When ΪJΓ = 2Z9 MH = [p2, g2, r2, s2, pg, re]. Λί contains pq and re,
so F = [p2, q2, r2, s2] intersects M in the closed factor

K = [p2q\ rV, p2^2, gV] .

When H= nZ, n^3, Msin contains p% and pn~2r2, neither of which
are in M, The members of MH'1U — M are not pairwise relatively
prime, so H is not the cogroup of any closed factor of M.
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We have already seen that H = ZJ2Z is the cogroup of the closed
factor in Example 3.

When H = Z® (Z/2Z), MH == N; then F = N and K = Λf.
When JS" = %Z® (Z/2Z), w ^ 2, M£lin - M contains pn and p»-V,

so no closed factor results from H.
When H = <(1, 1)>, ikf̂  = [r, s, p2, q\ pq\. M contains pq, SOJP =

[r, s, p2, q2] intersects M in the closed factor

K = [pV, rs, pV, g2r2] .

Finally, when H = <O, 1)>, w ̂  2, Λf̂ in - M contains p2n and pn~ιr.
No closed factor results from H.

7. Splitting subcones of a convex cone* All of the theory
developed in §6 for Z-semimodules can be adapted to finite-dimen-
sional normal i?-semimodules, which are convex cones in real vector
spaces. By a convex cone we mean what is usually referred to as
a "pointed convex polyhedral cone", the nonnegative span of a finite
set of vectors such that the span contains no nonzero linear subspace.
Such a cone can be represented isomorphically as the set of non-
negative points in a subspace of Rn, where n is the number of facets
of M. We refer to this representation, which is unique up to
isomorphism, as the canonical embedding of M in the positive orthant
(JR+)\

A splitting subcone of a convex cone M is a convex subcone which
is a direct summand of M, the complementary summand being a
subset (not necessarily a subcone) of M. Theorems 1-4, adapted to
convex cones, provide a theory by which the splitting subcones of
a given M can be determined by considering subspaces of the cospace
of M, the latter being defined as the factor space Rn/(M), where M
is canonically embedded in (R+)n and <ikί> is the subspace generated
by M.

The results for convex cones can be stated in the same multipli-
cative number-theoretic language used in the paper if one agrees to
represent the additive group Rn with multiplicative notation, so that
the standard basis vectors are represented as "primes" p, q, r and
scalar multipliers become exponents. The natural partial ordering
on Rn becomes "divides", with GCD's and relative primeness inter-
preted accordingly. The only real change that must be made in
adapting this material to convex cones is the definition of minimal
elements of a cone. These should now be defined as the points
on 1-dimensional faces of M. Thus Theorem 4 must be reworded
slightly to allow for minimal elements which are powers of each
other.
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As an illustration of what this shows for convex cones, consider
the cone M generated over R+ by the five points in iϊ6

(1, 0, 0, 1, 0, 0)

(0, 1, 0, 0, 1, 0)

(0, 0, 1, 0, 0, 1)

(1, 0, 1, 0, 1, 0)

(0, 1, 0, 1, 0, 1) .

In multiplicative notation, we represent these generators as ps, qt,
ru, prt, qsu. Then M is the kernel of the mapping from the
free cone N = [p, q, r, s, t, u] to R2 in which the six generators go
to the vertices of a regular hexagon centered at the origin. (This
configuration in R2 is the Gale diagram of a triangular prism, which
is the dual of a cross section of M.) To determine the splitting
subcones of M, we consider subspaces H of R2. For each H, we look
at the minimal elements of the kernel MH of the mapping from N
to R2/H. If the members M^ in — M are pairwise relatively prime
modulo powers, then they generate a free cone F which intersects
I in a splitting subcone; and every splitting subcone of M is
obtainable this way, possibly augmenting F by including as generators
any pairwise relatively prime members of M which are relatively
prime to all members of M"#in — M.

When H = R2, M^in — M consists of the powers of p, q, r, s, t, u.
This gives the trivial splitting subcone M. When H is a line con-
taining two opposite vertices of the hexagon (say the images of p
and s), then Mπin — M consists of the powers of p, s, rt, and qu.
This gives the splitting subcone of M generated by ps, prt, qus, and
rtqu. No members of M are relatively prime to all of p, s, rt, and
qu, so no other splitting subcone results from this H. Two other
splitting subcones are obtained from the two other pairs of opposite
vertices of the hexagon. However if H is any other line through
0 in jβ2, then the members of Λf#in — M, modulo powers, are not
pairwise relatively prime, so H does not correspond to a splitting
subcone. Finally, when H = {0}, Λf̂ ln — M is empty and we obtain
the trivial splitting subcone {1} in M, corresponding to the vertex
of the cone. We also obtain all subcones of M having pairwise
relatively prime generators: These are the half lines [m], meM; the
2-dimensional free subcones [ps, qt], [ps, ru], [qt, ru], [prt, qsu], [ps,
qt{ru)a], [ps{qt)a, ru], and [ps(ru)a, qt] for all a 6 R+; and the 3-dimen-
sional free subcone [ps, qt, ru].

It is interesting to interpret Theorem 2 in terms of convex cones:
If if is a splitting subcone of a convex cone M and M is canonically
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embedded in (R+)n, then the GCD's (greatest lower bounds) from K
form a free cone with relatively prime generators. Call this the
GCD cone of K. In general, GCD cones are not free. For example,
the points

(1, 0, 1, 0, 1)

(1, 0, 0, 1, 1)

(0, 1, 1, 0, 1)

(0, 1, 0, 1, 1)

generate a normally embedded square cone K in (iί+)5 whose GCD
cone has nine minimal generators, hence the GCD cone is not free.
Thus, for example, K is not a splitting subcone of any canonically
embedded cone in (R+)δ.

8* Further results for Z-semimodul.es* Maximal common di-
visors. Let K be a closed factor of M and let kl9 - -, kte K. Set
/ = GCD(fclf " ,kt) and write / = mn, with m e Mand n eN/M. In
other words, m is a maximal common divisor of the kt in M.

COROLLARY 3 TO THEOREM 1. With notation as above, meK.

Proof, f Ξ n(mod M), hence / = n(moά K) by Theorem 1. Then
N= K.

Intersections. We will prove that an intersection of closed
factors is a closed factor.

THEOREM 5. Let {if*: i e /} be a family or closed factors of a
normal Z-semimodule M. Then K = Γ\i&1 Ki is a closed factor of
M. Moreover if Hi is the subgroup of G — (N)/(M) corresponding
to Ki then H= Γ\ieIHi is the subgroup corresponding to K.

Proof. Let Ft be the set of GCD's from K^ By Theorem 3,
all MFi are normally embedded in N and hence so is Πi MFt. We
claim that this intersection is just MF, where F — f\t Fim

Clearly C\tMFi contains MF. Conversely, fixing xeΓ\iMFif

write x = mn with meM and neN/M. Then neMFi for each i by
normality, hence

neiMFJ/McFt Vie/,

showing that x e MF.
From the above we conclude that MF is normally embedded in

N. Moreover F is generated by a family of pairwise relatively
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prime members of N because each Ft is. (Each Ft is closed under
multiplication, GCD's, and division whenever possible, hence so is
their intersection; it follows as in the proof of Theorem 2 that F
has relatively prime generators.) Applying Theorem 3, we conclude
that K = M Π F is a closed factor of M and that F is the set of
GCD's from K. Finally, the fact that MF = Γh MF< implies that
MF = MH, hence K corresponds to H.

Multiplicity ^ 2. We establish a sufficient condition for M to
have no closed factors other than M itself and the trivial factors of
Example 1, §3.

Call M irreducible iff M has no direct product decomposition
JKΊ x K2, where the Kt are closed factors Φ {1}.

Define the multiplicity of M to be the smallest nonzero number
of primes in any nontrivial congruence class mod M. Thus M has
multiplicity ^ 2 iff for each prime peN — M, there is a prime q Φ p
such tnat q = p(mod M).

THEOREM 6. If M is irreducible and has multiplicity ^ 2, then
all closed factors of M, other than M itself', are of the form [m*: iel]
where the mi are pairwise relatively prime members of M.

Proof. Let K be a closed factor of M and let F and H be as
in §6. By Theorem 4, the members of Mj?in — M are pairwise
relatively prime. Fixing any n e Mϊ i n — M, let p be a prime divisor
of n such that p$M and let q Φ p be a prime such that q = p(mod Af).
Then gw/p 6 Mχin — Af, hence gw/p is relatively prime to n, implying
n — p. Thus Fo = [M^ in — ilf] is generated by a set of primes.
Moreover Fo c ί7 by Theorem 4. Also note that MF0 = Λf*, which
is normally embedded in JV. Thus by Theorem 3, Ko = M (] Fo is a
closed factor of M and the complementary factor M/Ko is equal to
M/FQ. Moreover it is clear that M/Fo is closed under multiplication.
Since M is irreducible, we conclude that either Ko = M, implying
K = M, or else Ko = {1}. In the latter case, we have Fo = {1} since
Fo is the set of GCD's from Ko by Theorem 3. Then Fα M, implying
K=F.

In the next section we will see how this result leads to the
determination of all closed factors of any M having multiplicity Ξ> 2.

9* Closed factors of a direct product* By a direct product of
Z-semimodules Mi9 we will always mean restricted direct product:
The direct product X^jMi consists of families (mi)ieI of elements
miGMi such that mt = 1 for all but finitely many iel. Thus we
can speak of direct product decompositions of a given normal Z-
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semimodule M into closed factors, possibly infinitely many. We will
see that all such decompositions can be obtained from a single one
by grouping factors together.

Let M— XieIMi be a direct product decomposition of M into
closed factors Mt. It is clear that Afmin c \JieI Mί9 and that
[ikfmin η j ^ j c ^ Since M is generated by the members of Mmin,
we must in fact have for each i,

AT, = [Mm i n Π ΛfJ .

Thus the decomposition of M corresponds to a partition of Mmm.
Moreover the partitions Mmin = \Jί&IXi which correspond to decomposi-
tions are characterized by the condition

GCD(xέ, Xj) = 1 if Xi e X*, x, e l j , i Φ j .

(See Corollary 2, Theorem 2. GCD refers to the divisibility relation
in N, where MaN is the canonical embedding of M.)

Call a partition of Λfmin admissible if it has the above property.
It is easy to see that there is a unique finest admissible partition
of ikfmin. In view of the equivalence between admissible partitions
and decompositions, we obtain the following result:

THEOREM 7. A normal Z-semimodule M has a unique finest direct
product decomposition into closed factors. All other decompositions
of M into closed factors Φ {1} can be obtained from this one by
grouping factors together.

The factors in the finest decomposition of M are called the
irreducible components of M.

COROLLARY. A normal Z-semimodule is uniquely representable
as a direct product of irreducible Z-semimodules Φ {1}.

Next we show how all closed factors of a direct product XiMt

can be obtained from the closed factors of the Mt.

THEOREM 8. Let M = XiMt be a decomposition of a normal Z-
semimodule M into closed factors Mu and let K be a closed factor
of M. For each i, set Kt = K Π Mit. Then

K= (XtKi) x F

where F is free, generated by a set of pairwise relatively prime
members of M which are relatively prime to all members of all Kit



138 DANIEL A. MARCUS

Proof. It is clear that each ϋΓ{ is a closed factor of Mu hence

L=XtKt

is a closed factor of M. Since LaK, L is a closed factor of K. It
remains to prove that the complementary factor K/L is free; all
relative primeness statements will then follow by Corollaries 2 and
3 to Theorem 2.

First we show that K* = K/L is closed under multiplication.
Clearly K* is the intersection of the K/Ki9 so it is enough to show
that each K/Kt is closed. Fixing i, let h, k e K/Kt and suppose hk is
divisible by Z^ei^. Since the members of Mt are relatively prime
to everything in M/Mi9 kt divides

hπM.(k) .

Then by Propositions 2 and 3 of §6, we have

kiI πκ(hπM.(k)) = hπκπM.(k) = h ,

with the last equality following from the fact that πκπM.(k) is a
divisor of k in Kt. Finally, we conclude that kt = 1. That completes
the proof that K* is closed.

The proof that if* is free is accomplished in several steps. First
assume that there are only two factors: M = Mx x M2. Then the
projection mappings πMl and πMz are one-to-one on if*: If K* contains
tw and uw with w6Mx and v, weM2, then u, v and w are all in
M/K. Then the equation

(uv)w = (uw)v

implies that v = w by unique representation in if x (M/K). Thus
jΓĵ  is one-to-one on K*. Similarly, so is πM%. Thus the πMi map K*
isomorphically onto the πMi(K*). Moreover K* is easily seen to be
a closed factor of

πMl(K*) x πMι(K*) .

LEMMA. Let M be a normal Z-semimodule and suppose that the
diagonal

D = {(m, m): m e M}

is a factor of the direct product M X M. Then M is free.

Proof. As usual, let MaN be the canonical embedding of M.
Then everything in N is a GCD from M. It follows that the set of
GCD's from D is
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DN = {(n, n):neN} .

Assuming that D is a factor of M x M, we have by Theorem 3

πF(M x M)cMx M

where F = Z)v. Moreover for m1? m2eM we have

πF(mlf m2) = (w, w)

where w = GCD(ml7 m2). We conclude that If is closed under taking
GCD's, hence M = N.

Applying the lemma in an obvious way, we conclude that K* is
free when M = M1 x M2.

Next we prove by induction that if* is free when M—Mtx
• x Mn. Fixing n I> 3 and assuming the result for fewer than w
factors, we have

K = Kf x K3x x Knx F

where F is free and Kr = ίΓ Π (Λfi x Λf2). Since J5Γ' is a closed factor
of Mι x M2, we have

Kr = K,x K2x F'

where Ff is free. Then

K* = Fx Ff .

Finally we prove that K* is free when M is decomposed into
arbitrarily many factors Mt. It is sufficient to prove that any two
minimal elements of K* are relatively prime. Fixing ft, fc e (UL *) m i n ,
we have h, k e Mh x x Min for some finite set of indices il9 , in.
If we set

K** = ίΓ*n(Λf<1x ••- x ΛfJ,

then if** is a closed factor of Λf̂  x x Mί% intersecting each Mt.
trivially. From the inductive argument above we find that if** is
free, hence its minimal elements are pairwise relatively prime. In
particular, h and k are among these minimal elements.

The proof of Theorem 8 is now complete.

COROLLARY. If M has multiplicity ^ 2, then for each closed
factor K of M there is a direct product decomposition

M= M,x M2

with M1 and M2 both closed, such that
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K= M,x F

where F is a free closed factor of M2.

Proof. Each irreducible component of M has multiplicity ^ 2,
and K intersects each component in a closed factor. Let Mt be the
product of all components which are contained in K and apply
Theorems 6 and 8.

A closed factor of M can have more irreducible components than
M has, even if cyclic components (free semimodules of rank 1) are
excluded. We give an example in which M is irreducible and K has
n ^ 2 noncyclic irreducible components. Let M be the kernel of the
mapping

[pt, qt: i = 1, , n] > G = (Z/nZ) Θ (Z/2nZ)*

defined by

p,ι >ui

qt i > u0 — Ui

where u0 denotes 1 e Z/nZ and the uit 1 ^ i <; n, are the canonical
unit vectors in (Z/2nZ)n. The product

m = M l * ' PnQn

is in Λfmin, implying that M is irreducible: m is in one irreducible
component of M, hence all elements in all other irreducible components
are relatively prime to m. But m is divisible by all primes in N.

We claim that

K = XU [P?Q?, (PiQiT]

is a closed factor of M. We have K = M Π F where

F = [p?, <??: 1 ^ ΐ ^ w] ,

hence by Theorem 3 it is enough to show that MF is normally
embedded in N. It is not difficult to see that MF = MH, where
^ = nG. In fact the generators of MH are the pΓ, the g?, and all
products of the form

with 0 ^ αέ < % for all % and J ^ = n. These products are all in M.

10* The cyclic cogroup case* It is possible to describe explicitly
all closed factors of M when the cogroup of M is cyclic. In view
of Theorem 8, it is sufficient to consider the case in which M is
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irreducible. Moreover since all free closed factors of M are known,
we consider only nonfree ones.

Throughout this section M is the kernel of a strongly surjective
mapping

φ:N >G = Z/nZ

where n is a nonnegative integer. M is assumed to be irreducible.
When n = 0, this assumption is equivalent to the condition that p 0 M
for all primes p e N. For each p, let ap be an integer representing
the congruence class φ{p) in G.

Call two primes p and p' paired if ppf e M and pq, p'q £ M for all
other primes q. Equivalently,

ap + ap> Ξ 0(mod n)

and

aq ^ ±αp(mod n) Vg Φ p, p' .

THEOREM 9. Let {dp} be a family of positive integers satisfying
the conditions

(1) dp — 1 if p is not paired with any other prime;
( 2) if p and pr are paired, then dp = dpf and dp \ (aq, n) for all

q Φ p, pf. Then K = M Π F is a closed factor of M, where

F = [all pd?] .

Conversely, every nonfree closed factor of M is equal to such an
intersection, where the dp satisfy conditions (1) and (2).

Proof, Assuming first that the dp satisfy conditions (1) and (2),
we prove that K is a closed factor of M. By Theorem 3, it is
sufficient to show that πF(M) c M. For any meM, write m = fr
with f eF and r 6 N/F. We claim that r e M, which will imply
/ e l Write

m = Π PXp

al l p

then

r = Π pVp

a l l 2>

where xp reduces to yv mod dp, 0 ^ yp < dp. Thus ^ = 0 if p is not
paired. For paired p, pf, we have

ap(xp — xpt) + Σ ^g ?̂

 Ξ 0(mod n) ,
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hence

ap(xp — xp,) = O(mod dp) .

Moreover the fact that φ is surjective implies that ap is relatively
prime to dp. (Otherwise ap, ap,, and all aq would be in a proper
subgroup of G.) Thus xp = xp,(moάdp), implying that

r = Π (pp')Vp e M .
paired

P Pr

Now suppose that K is a nonfree closed factor of M and let F
be the set of GCD's from K. Thus iΓ = Mf) F and MF = MH for
some subgroup HczG. Since 1£ is nonfree and H is the cogroup
of K, H is nonzero. Thus H = dG for some positive divisor d of
w, d Φ n.

For each p, set

^P } Γ 9 Up .

(aP, n) (ap, d)

When n > 0, np is the additive order of α^modw. In all cases dp is
the additive order of apmodd. For all p we have

p**eM, pdp eMH'1U .

Call p good iff pd? ί M. When ^ = 0, it is clear that all primes
are good. (Recall that M contains no primes since it is irreducible,
hence all ap are nonzero.) In all cases, p is good iff np Φ dp.

LEMMA 1. Let p and q be two primes, at least one of which is
good. Suppose moreover that

(dp, dq) = e > 1 .

Then

AiLap + A.α g = O(mod^) .
e e

Proof. Set a = ap, b = aq, a — dp, β = dq and without loss of
generality assume that p is good. Then M^ in contains both pa and
qβ, and pa g M. Moreover the members of ikf#in — M are pairwise
relatively prime by Theorem 4. It follows that whenever MH contains
an element of the form

p*qv , Q£x < a, 0 £y < β

then M also contains this element. (If not, then some divisor of this
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element would be in M%'in — M; this divisor could not be a power of
q, since Mgin contains qβ, so Mπin — M would contain two multiples
of p.) Equivalently, every solution of the congruence

ax + by = 0(mod d)

with 0 ίg x < a and 0 <Z y < b, is also a solution of

ax + by = 0(mod w) .

Let <α> and <δ) denote the subgroups of Z/dZ generated (addi-
tively) by a and 6. The intersection <α> Π <ί>) is the unique subgroup
of Z/dZ having order e. This subgroup is generated by (a/e)a and
contains —(β/e)b, hence we can write

_£fc = k—a(moάd)
e e

for some k, 0 ^ k < e. Moreover fc ^ 0 since e > 1. By our observa-
tion above, the congruence

k^-a + £b Ξ= 0

holds modw, and it remains to show that ft = 1.
The open interval (e, 2e) has length > ft, so it contains a multiple

ftft of ft. If ft ^ 2, then h < e. Then the congruence

— - a)a + hi-b = 0 ,
e / e

which holds modd, also holds mod^. This implies
But then paeM, contrary to assumption.

LEMMA 2. For all p,

Proo/.

d(np, -^ j = ( d ^ , n) = np(d, (αw n)) = np(d, ap) .

We will use Lemmas 1 and 2 to show that no bad primes can
exist.

First, suppose all primes are bad. Then np — dp\d for all p,
implying
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2L
d

n— = (ap, n)\ap .

But then all ap are in a proper subgroup of Z/nZ, a contradiction
since φ is surjective.

Now suppose p is bad and q is good. Then % — dp and we have

apdp = 0 , αffdff E£ 0(mod n) .

Lemma 1 shows that (dp, dg) = 1. Moreover by Lemma 2,

i
P

Combining results, we obtain (np, nq) = 1 whenever p is bad and q
is good. Thus, assuming that both good and bad primes exist, Z/nZ
has a subgroup decomposition A x B such that A contains all ap, p
good, and B contains all ap, p bad. (Note that n > 0 and consider
the Sylow subgroup decomposition of Z/nZ. Recall that np is the
order of ap in Z/nZ.) Then M = MA x MB where

ikf̂ . = M Pι[p: p good]

ΛfB = M Π [p: p bad] .

Both MA and M^ are nontrivial since p% e M for all p. But M was
assumed to be irreducible.

We conclude that all primes are good. Thus all pdp are inMπ i n —
M and then necessarily F = [all pd*]. It remains to show that the
άp satisfy conditions (1) and (2).

We claim first that for each p there is at most one q Φ p such
that (dp, dq) > 1. Assuming that p, q and r are distinct primes such
that

(dp, dq) = e > 1 , (dPf dr) = f > l

a n d s e t t i n g a = dp, β — dq, y = dr, a = ap, b = aq, c = α r , w e h a v e b y
Lemma 1

^ . α + -£& = O(mod^)
β e

°-a + ^ 0 s 0(mod w) .

Moreover aa = 0 mod d but not mod ^ since p is good. Fixing integers
h and & such that
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we have

(h— + k—)α + (h^-)b + (k—)c == O(mod^) ,
V e // \ e/ \ fl

hence the congruence

£L + k^- - a)a + (&£)& + (klλc = 0
β / / V eI V / /

holds mod d but not mod n. Denoting the coefficients of α, 6, c by
x, y, z respectively, we have

0 £x<a, 0 ^ y < β , 0 ^ ^ < τ

and the element

is in ikίff but not in M. As in the proof of Lemma 1, this leads to
a contradiction.

Now suppose some dp is relatively prime to all dq, qφ p. For
each qφ p, we have dp \ d \ dqaq, hence dp\aq. Thus all aq, q Φ p, are
in the subgroup of Z/nZ generated by dp. The fact that φ is strongly
surjective implies that this is not a proper subgroup, so (dPf n) = 1.
Since dp\d\n, we conclude that dp = 1.

We have shown that for each p with dp > 1, there is a unique
pr Φ p such that (dp, dp>) > 1. We show now that in fact p and pf

are paired. For each q Φ p, pf we have dp | αg since d̂  | <21 ώQαg and
(ίZp, dq) = 1. It follows that dp must be relatively prime to ap> since
otherwise all aq, q Φ p, would be in a proper subgroup of G, con-
tradicting strong sur jectivity. Thus from dp\d\ dp>apr we obtain dp \ dp>.
By symmetry, dp = dp>. Applying Lemma 1, we obtain the fact that

ap + ap, = 0(mod n) .

Moreover for q Φ p, pf

aq & ±ap(moάn)

since dq Φ dp. We conclude that p and pf are paired. Also note that
we have shown that dp \ aq for all qφ p, p1'.

It follows easily from the above that the dp satisfy conditions
(1) and (2). That completes the proof of Theorem 9.

As an application of this result, consider Example 4 of §4. The
primes p and q are paired, and so are r and s. Theorem 9 shows
that all nonfree closed factors of M have the form

MΓ)[pa, q\r\ sh]
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where α|2 and 6|3, and that every such intersection is a closed
factor. The closed factor in Example 4 was the case a = 2, 6 = 3.

11* Conjecture on arbitrary factorizations* Let {K^. iel} be
a nested, well-ordered family of closed factors of a normal Z-semi-
module M such that Ko = M and Π Kt = {1}. (J is a well-ordered
index set whose initial element is 0.) Then there is a factorization

M= XieI{KtIKi+1)

where i + 1 denotes the successor of i. Every partition of I into
subsets Ij leads to a factorization

Λf = Xi-A,,

where for each j"

Conjecture: Every factorization of If comes from a nested family
of closed factors Kt by the above construction.

This was proved in [6] for all free Z-semimodules and in [7] for
all normal Z-semimodules of multiplicity ^ 3. Moreover it was shown
that if N is countable, then the index set / can be taken to be the
nonnegative integers.
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