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FANS, REAL VALUATIONS, AND
HEREDITARILY-PYΊΉAGOREN

FIELDS

BILL JACOB

In this paper we give an explicit description of valua-
tion rings compatible with certain infinite preprimes of a
field. These results are essentially constructive versions of
the results of L. Brocker and E. Becker relating fans and
valuations. We discuss a number of examples in detail,
including the higher orderings recently introduced by E.
Becker. One of several applications is a generalization of
the theorem of Brocker-Brown charactorizing superpytha-
gorean fields.

1* The main theorem* We begin by introducing the main
definitions and notation of this subject. Let K be any field.

DEFINITION 1. (Harrison [7].) If P £ K satisfies - l g P , P + P £
P, PPQP, then P called a preprime of K. In case l e P , P is
called an infinite preprime of K. The maximal preprimes of K are
called the Harrison primes of K.

Harrison primes were introduced as a possible generalization to
arbitrary fields of the notion of a "prime" that arises in algebraic
number fields. Throughout this paper we shall be concerned only
with infinite preprimes. Following E. Becker [1], [2], [3] we give:

DEFINITION 2. An infinite preprime P is called a preordering if
P' = P — {0} is a subgroup of K\ A preordering P is called a fan,
if whenever U £ K' is a subgroup with P' £ U and — 1 g U, U U {0}
is a preorder of K. Finally, a preorder P is said to be complete if
whenever a2eP it happens that α e P o r — aeP.

In [1], [2], [3] Becker shows that in many cases complete pre-
orderings give rise to valuation rings. Very often, these complete
preorderings are not Harrison primes. Thus it becomes interesting
to know precisely when a preprime induces a valuation on a field.
With this in mind we give:

DEFINITION 3. A preordering P is called a strong fan if when-
ever αg ± P it happens that 1 + α e P U α P. We shall call a strong
fan P a valuation fan if in addition, whenever a £ ± P but 1 + a e P,
then 1 - a e P.
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Finally, one more definition:

DEFINITION 4. A valuation ring O £ K, with maximal ideal /,
is said to be compatible with an infinite preprime P if 1 + I £ P.

We now give the main result of this section:

THEOREM 1. An infinite preprime P is a valuation fan only if
there is a valuation ring OQK compatible with P for which P# — P'/I
is the positive cone of a linear order of the residue field O/I — K.

Proof. First, let P be an infinite preprime, and assume such a
valuation ring 0 exists. Suppose a $ ± P . Then as P'/I is the positive
cone of a linear of O/I, we see that a cannot be a unit of 0. Thus
as either ael or or 1 e1, we have by compatibility that 1 + aeP
or 1 + a-16 P. From this we that 1 + α e P U aP. We also see that
in case 1 + α e P , we must have that aeI, so that as —aelwe have
1 — a G P. This shows that P is a valuation fan.

Conversely, we now assume that P is a valuation fan. For
x e K' we shall denote by [x] the coset of x in K'/P\ It follows that
whenever x,yeK' are such that [x] Φ —[y], it happens that
[x + y] = [x] or [x + y] = [y]. We also see that if [x] Φ ±[y], then
[x + y] = [x] if and only if [x — y] = [x].

Next we define O^K, P) = {xeK' . [x] Φ ±P' but [1 + x] = P'},
and 02(K, P) = {x e K'\ [x] = ±P' and x O^K, P) Q 0,(K, P)}. Our
task is to show that 0(K, P) = O^K, P) U 02(K, P) U {0} is the desired
valuation ring of K. We now check many facts:

(1) x e 0{K, P) if and only if -x e O(K, P).

Proof. As P is a valuation fan we clearly have that x e Oy(K, P)
if and only if —xeO^K^P). It now immediately follows by the
definition of O2(K, P), that xeO2(K, P) if and only if -xeO2(K, P).

(2) Ίi[x]Φ ±Pm, then xeO^K, P) if and only if x-'ίO^K, P).

Proof. Note that x e O^K, P) if and only if [1 + x] = P* if and
only if [1 + or1] = x~ιP if and only if x^ZO^K, P).

(2') If [x] = P\ then at least one of x, x^eO^K, P).

Proof. Suppose we have z, weO^K, P) such that xz, x~xw0
OX(K, P). Then [1 + xz] = [xz] and [1 + x~'w] = [x~xw] so that
[x + w] = [w]. Thus, [1 + xz + x + w] = [xz] or [w]. But note that
[(1 + w) + α(l + z)] = P* as both z, weO^K, P). This contradiction
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gives (2').

(3) Suppose that x, yeO^K, P), and that [xy] Φ ±P\ Then xye
, P).

Proof. We have that [1 + x] = [1 - y] = P\ Thus [(1 + x) -
a (l - #)] = p or -[&]. But as [y] Φ - P " , [α?/] ^ -[a?]. It follows
that [1 + xy] = P\

(4) Suppose that x9ye O^K, P) and that [xy] = P\ Then £# e
O2(K, P).

Proof. Let zeίΛCK, P). In view of (1), replacing z by — z if
necessary, we may assume that \[z] Φ — [x], — [y\ It then follows
that [x(l + y) + j/(l + z) + z(l + x)] = [x], [y], or [z]. But further, as
[(1 + x)(l + y)(l + z)] = [1 + xyz + x + y + z + xy + yz + xz] = P\
subtraction yields that [1 + xyz] = P\ —[x], —[y], or —[z]. As
[xyz] = [z] Φ —[x], —[y]9 —[%], we see that [1 + xyz] = P', which
proves (4).

(5 ) O(K, P) is closed under multiplication.

Proof, ( i ) If a?, 2/e OiCBΓ, P) then x-yeO(K,P) follows from
(3) and (4).

(ii) If xeO^K.P) and yeO2(K,P), then xyeO^K.P) follows
immediately from the definition of O2(iίL, P).

(iii) If a?, y e O2(ίf, P), then for any z e OX{K, P) we have that
yzeO^K, P), and hence that xyzeO^K, P). It follows that #?/e

, P).

(6) If M ^ ± P * , and either [2 + cc] = P' or [4 + x] - P', then
[1 + x] = P\

Proo/. First suppose that [2 + x] = P', but [1 + x] = [#]. Then
as [1 + (1 + #)] = P\ we have that [1 — (1 + x)] = P", clearly a con-
tradiction. Thus if [2 + x] = P\ it happens that [1 + x] = P\ Next
suppose that [4 + x] = P', but [2 + x] = [a?]. As above we have that
[2 + (2 + x)] = P\ so that [2 - (2 + x)] = P\ a contradiction which
proves (6).

(7) If x, yeOX{K, P) and [x + y] Φ ±P\ then x + yeO^K, P).

Proof. As [1 + x] = [1 + y] = P', we have that [1 + x + 1 + #] =
P\ so that [1 + (x + y)] = P' by (6).

(8) If x, y e O îf, P) and [x + y] = P#, then a: + y 6 O2(ίΓ, P).
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Proof. As [x] Φ ±P\[y]Φ ± P ' , but [x + y] = P', we must have
that [x] — [—y]. Let zeO^K, P). Replacing z by — z if necessary
we may assume that [z] Φ [—x]. Then we have P' = [(1 + x)(l + #) +
(1 — y)(l — z)] = [2 + (# + 2/)z + (x — i/)]. As [x — #] = [a], subtrac-
tion gives [2 + (x + #)z] = P" or — [&]. As [(a; + y)z] Φ —[x], we
conclude that [2 + (a? + #)s] = P\ so that by (6), [1 + (a? + y)s] = P\
proving (8).

(9) If x e O2(iΓ, P), » e O&K, P), then a? + y e O(K, P).

Proof. We may assume that [#] = P\ First suppose that
[a? + y] = [α?]. Let z 6 O^X, P). Then P' = [1 + a>y] = [1 + xz] =
[(1 + »)(1 + *)] implies that P' = [1 + xy + 1 + xz + (1 + y)(X + z)] =
[3 + (α? + y)2 + 2 + y + &#]. We may assume that [z]Φ[—y]. Then
subtraction shows that [3 + (x + 2/)z] = P#, [ — 2] or [—y]. But as
[(a? + y)z] Φ[-z] or [-7/], we have [3 + (x + y)«] = P", so by (6)
x + yeOt(K,P).

Secondly, suppose that [x + y] = [#]. As [1 + 2/] = P\ we have
that [1 + y + x] = P\ so that aj + y e Oλ{K, P).

(10) If x, y 6 O2(JSΓ, P), then a? + y e O(ίΓ, P).

Proo/. Suppose that [a? + y] = ± P * Then for ίjeOiίZ, P) we
have [1 + xz] = [1 + ys] - P", so by (6), a; + y e O2(K, P).

Next suppose that [a? + y] Φ ± P \ If x + y$Ox(Ky P), then by
(2), (a? + 2/)"1 e OiCK, P). But now as #2, xy, y2 e 02{K, P) we have that
[1 + x\x + y)-1] = [1 + ^(αj + y)-1] = [1 + ^/2(^ + 2/)-1] = P\ Thus
[4 + (x2 + 2̂ 2/ + y2)(x + i/)"1] = P", from which it follows by (6) that
[1 + (a? + ?/)] = P\ This proves (10).

We have now shown that O(K, P) is a valuation subring of K.
It is clear by (2) that if x is a unit of O(JK, P) then a e P U - P .
Further, let x,yeP* be units of O(UL, P). Then for any zeO^K, P)
we have that [as + s] = [y + 3] = P\ Thus we have [(a? + 2/) + 2z] =
P", from which it follows that [(a? + y) + z] = P\ In particular
x + y is a unit of O(K, P)._ We thus have: Pf] - P = { 0 } , K =
PU - P , P+ PQP, and P PQP. Hence P' is the positive cone
of a linear order of Z\

Finally we must see that O(K, P) is compatible with P. If
xeO^K, P), then 1 + a?eP", by the definition of O^K, P). Assume
that xeO2(K, P) is not a unit. If [x] = P', then clearly 1 + # e P ' .
If [x] = - P ' , then let 2/ e Oxί-K, P) be such that [-x + y] = [y]. Then
as [(1 + a?) + (—x + y)] = P#, we conclude that [1 + x] = P' or [—2/].
As 1 + x is a unit of O(iC, P) we have that [1 + x] = P\ This proves
Theorem 1. •
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The following is an immediate consequence of Theorem 1.

COROLLARY 1. A field K is formally real if and only if K has
a valuation fan. •

REMARK 1. It is clear that every strong fan is a fan. E. Becker
has also recently proved that the converse is also true. However,
as this result depends upon the nonconstructive results of his paper
[3], we omit a discussion of this result here.

2* Examples* Let PQK be a strong fan. We define R(P, K) =
{x e K': 3 p 6 P' with [1 + px] = P* and [1 - px] Φ P'}. We have:

LEMMA 1. If x, yeR(P, K), then either xe±P\ ye±P\ or
xy e ± P \

Proof. Assume to the contrary. Then for some x, y e K', plf p2 e
P*, we have that [1 + pxx] = [1 + p2y] = P\ [1 — pxx] = [—x],
[1 - PtV] = [-Vl with [x], [y], [xy] Φ ±P\ But then as [1 - (p.x)2] =
[—x], [(piX)2 — {Pi^PίϋY] — [—x2y] we conclude that [1 — {p^f + {p&f —
l = [1 + ί>iί>2^][l - PiPi%y] = [~x] or [-x2y]. But as [1 +

= J°* or [ίĉ /], and [1 — PiP2%y] — P' or [—α;?/] we have a con-
tradiction which proves the lemma. •

We next see that whenever one has strong fan, one can easily
find a valuation fan.

LEMMA 2. If P ξZ K is a strong fan, then either P is a valua-
tion fan, or for any xeR(P, K) — ± P ' , P U x-P is a valuation fan.

Proof. In case R(P, K) £ ± P ' , than as 1 6 P, we see immediately
that P is a valuation fan. Now let xeR{P, K) — ± P \ It is easy
to see that PUx P is a strong fan. Now suppose that y£ ±PU ±x-P.
Then by Lemma 1, y£R(P, K). Thus if [1 + y] = P, we must have
that [1 — y] — P. Also, as P is a strong fan, we note that [1 + y] =
# P is impossible. This shows that PUx P is a valuation fan. •

In [1], [2], [3] the valuations compatible with complete fans are
studied. Along these lines we give:

LEMMA 3. Let P Q K be a complete strong fan. Then P is a
valuation fan.

Proof. Suppose that x$±P. Then as P is complete, # 2 £P.
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Thus if [1 + x] = P\ we must also have that [1 — x] = P', for other-
wise [1 — x2] — [1 + x][l — x] — [—x], a contradiction. •

Complete strong fans are nice for many reasons. One such rea-
son is:

LEMMA 4. Let K be any field with a valuation subring 0, whose
residue class field can be ordered. Then there is a complete strong
fan P £ K for which 0 — O(K, P), and such that P is any given
order of the residue field.

Proof. Take P" to be the positive units of 0 £ K. The result
is then an easy application of valuation theory. •

This lemma shows that the complete strong fans (respectively
the complete fans in view of Remark 1 of the last section) of a
field K, give all the order and valuation theoretic information of the
field K. This fact has led E. Becker and the author to suggest that
the notion of "complete fans" be the appropriate generalization of
the "real infinite primes" of number theory.

Let P Q K be a complete preprime, and suppose that K'/P' is a
torsion group. Then the results of [3] show that P is a strong fan.
This appears to be an extremely deep result, and does not (yet) have
an elementary proof. Of special interest is the case where K'/P' =
Z/nZ, with n even which are called orders of level n. (See [1] and
[2] for more details.) In some cases it is possible to give an ele-
mentary proof that these higher orders are strong fans. Along
these lines we give:

LEMMA 5. If P is an order of level 2, 4, 6, or 8, then P is a
strong fan.

Proof. If P has level 2, the result is trivial. If P has level 4,
then we may express K' = ± P ' U ±x-P' for some xeK. For such
x, suppose that 1 + x = —p or — px for some peP. In either case
we find that — xeP, a contradiction. Thus P is a strong fan.

Next suppose P has level 6. Then K' = P' U xP' U x2P' U xzP' U
x*P' U xδP' for some xeK. As P is complete, — P' = x3P\ Now
suppose that for plf p2 e P, we have 1 + xpx = x2p2. Then x*p2 —
x + x2pλ = x + PiPlKl + BPi). But then we see that for some p5e P,
1 + xp5e — P, a contradiction. Thus, P + xP does not represent any
elements of x2P.

It is clear that P + xP does not represent any elements of xz P
or x*P. Next assume that l + xpx = x*p2 for plf p2eP. Then as xpx+
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x2pl e P, we have that 1/4 + xpλ + x2p\ e P. Since P is complete,
1/2 + xp±e±P, from which it follows that 1/2 + ^ e P . Thus
1/2 + 1/2 + xpx e P, a contradiction. Thus P+ xPQPUxP, for all
x such that xP' generates K'/P\

We now see in addition, that P + x2P does not represent x3P, x4P,
or #5P. So assume that 1 + x2px = a?p2 for some px, p2 e P. It then must
happen that for p3 e P, 1 — α;2^ = p3 or x5p3, as (1 + x2Pi)(l — £2Pi) 6
P\3xP. If 1 - αfyi = pzy then (1 + x2p±)3 - (1 - α?2^)8 e - P , i.e.,
6#2p + 2x6p3 6 — P, a contradiction. If 1 — cc2^ = xδp3, then (1 + x2pλf +
(1 — aήpj^e — P, i.e., 2 + 6#4p2e — P, a contradiction. This shows
that if P has level 6, then P is a strong fan.

Finally we suppose that P has level 8. We identify K'/P' with
{P, xP, x2P, , x7P}> where #4P = - P . We first claim that P + x2P =
P U #2P. For assume that £>! + αήp2 = #3p3. Then as pi — cc4^ =
(Px + tf2p2)(Pi — cc2p2) 6 P we must have that px — x2p2 6 #5P. But now
since (pt + ίc2p2)

2 — (px — α?2p2)
2 = ^ViV*, it follows that ίc6P — x2P

represents an element of #2P, clearly a contradiction. A similar
contradiction results if we assume that P + x2P represents x7P.

Next we assume that P + x2P represents x6P. As xP = — x5P,
it cannot happen that P + x2P also pepresents #P, as then it would
represent 0. Thus P + x2P represents only P, x2P, and x5P. As in
the above paragraph we find that P — x2P represents only P, — x2P,
and x3P. But now, as P + x2P represents x5P, we have that P — x5P
represents — x2P. Thus as P — x2P represents x3P we conclude that
P — x5P represents x*P, i.e., P + xP represents xsP.

Suppose that pΊ + xp2exzP. Then as p2 — x2p\eP, —x2P, or o?3P,
we conclude that px ~ xp2 e P, xzP or x5P. Clearly px — α?p2 g x3P, for
otherwise (^ + aφ2) + (px — xp2) e x3P. If px — xp2 e x*P, then both
(ϊ>i + ^ 2 ) 4 , (2>i - ^ 2 ) 4 e - P , while (pi - x2#;) e P. Thus: (p1 + ^p2)

4 +
(Pi ~ xPzY - 2(pl - x2ptY = 16x 2p^e - P , a contradiction. Finally, if
p, - xp2 6 P, then (px + xp2y - (pt - xp2)

4 = 8(α;2)?p2 + a?8Piί>i) e - P ,
which says that P + xP represents —x3P. This contradicts the fact
that P + xP already represents x3P.

Thus P + #2P cannot represent x5P. A similar argument shows
that P + #2P cannot represent xP. Thus P + x2P = P U aj2P, and also
P - #2P = PU -ίc2P. It is now clear that P is a strong fan, for if
P + xP represents xjP for some j Φ 0, 1, subtraction in one way or
another will contradict what we know about P ± x2P. This proves
the lemma. •

REMARK 2. An elementary proof of the analogue of Lemma 5
for all higher orders would be very nice, for then it should enable
us to give an effective procedure for finding expressions for the
"Hubert identities", which Becker proves in [1] and [2]. Unifortu-
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nately, we have not been able to find such proofs.

3* Higher Pythagorean fields* Recall that a formally real field
is called Pythagorean in case K'2 + K'2 = K'2. If K'2 is a (strong)
fan, then K is called Superpythagorean in [6] or strictly-Pythagorean
in [1], Generalizing these definitions we give:

DEFINITION 5. K is called m-Pythagorean if K'2m + K'2m = K'2m,
and K is called strictly m-Pythagorean in case K'2m is a strong fan.

LEMMA 6. If K is strictly m-Pythagorean and if K is 2-Pythago-
rean, then K'2m is a valuation fan.

Proof. We denote by [x]n the class of x in K'/K'n. Fix x $ ±K'2m,
and suppose that [1 + x]2m = K'2m, while [1 — x]2m — [—x]2m. In case
[x]2 Φ ±K'2, then we have that [1 — x2]4 = [ — xy\, for some yeK'.
But as K'4 + K'4 = K'\ we conclude that K'4 - ^2iΓ'4 represents a
multiplicative subgroup of K\ This implies K'4 — x2K'4 represents
x2, a contradiction.

Now suppose that [x]2 — ±K'2. If x — y2, we have that
[1 - V%m = [-^/2]2m, so that [1 + 2/]2w = [y]2m, and [1 - y]2m = [-^/]2w.
But then [(1 + i/)2 + 2(1 - y)]2m - [τ/2]2w or [-y]2m. However, [3 + y%m =
[2 + (1 + 2/2)]2m = iί# 2 w, a contradiction. If as = — y2, we have a similar
contradiction. This proves Lemma 6. Π

Let S be a set of primes, where for convenience we always
include leS.

DEFINITION 6. We shall say that K is strictly S-Pythagorean if
for all distinct p, qeS, K is strictly p g-Pythagorean.

THEOREM 2. A field K is strictly S-Pythagorean if and only if
Kcarries a valuation with residue field K, such that whenever neN
with the primes dividing n in S, K'/K'2n has at most four elements,
and HenseVs Lemma holds for all equations of the form X2n — a
with aeK. Further, if K is 2-Pythagorean, we can require that K
be Euclidean.

Proof. We first assume that for some peS, K'2p is not a valua-
tion fan. Then by Lemma 2, for some x& ±K'2p we have [1 + x]2p —
K'2p, [1 - x]2p = [~x]2p and K'2p\Jx-K'ίp is a valuation fan. We also
note that as [1 — x2]2p Φ K'2p or [ — x%p, it must happen that x2e K'2p.
Thus, as x<£K'2p, x$±K'2, which shows that for all qeS that
[1 + x]2q = K'2q and [1 — x]2q = [—x]2q. In particular, for all distinct
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p, qeS we have that Ppq - K'2pq U x-K'2pq is a valuation fan.
We next note that O(K, Ppq) C O(K, Pp) Π O(K, Pq). First, it is

immediate from the definitions that O^K, Pp) Q O^K, Ppq), and thus
that O2(K, Ppq) £ O2(K, Pp). But also, if a e O^K, PJ - 0&Kf Pp), we
claim that aeO2(K, Pp). For we cannot have a^eO^K, Pp), as then
we would have a~le0x{K, Ppq), a contradiction. Thus ae±Pp. Let
6 6 O^K, Pp). As αδ ί ± P P , and asα δe O^Z", PM), we must have that
a-beO^K, Pp). Thus aeO2(K, Pp), showing what we wanted.

Now consider the ring O(K, S, x) = ΠPeS0(K, Pp). We see that
O(K, S, x) is a valuation subring of K. For if a g O(_fiΓ, Pp) and
a-1 $ O(K, Pq) for p,qeS, we would have a, α"1 g O(JBΓ, P J £ O(ϋΓ, Pp) Π
O(iΓ, Pff), a contradiction.

Next, we observe that if α e O(EΓ, S, x) is a unit, then it must
happen that ae ±K'2p U ±x-K'2p for all peS. As a; is a pth power
for all 39 6 S, a must also be a p2th power which shows that
ae ±K'2p2 [j ±x-K'2p2 by applying the preceding to the unit %/ΊΓ.
We thus see that whenever neN with all primes dividing n in S9

that α e ± i Γ 2 % U ± £ iPTO. It is now clear that K'/K'2n has at most
four elements.

Now suppose that α, b e O(K, S, x) are units, and that aίK'2n.
As b2eK'2n, we have that a - b2e ±K'2n U ±x-K'2n. For peS, let
eeOxGK, Pp). Then as [a + o/2]2p = [α]2p, and [62 - c/2]2p = iί'2p, we
conclude that [(α + c/2) - (b2 ~ c/2)]2p = [(a - b2) + c]2p = [a]2p or -iί'22>.
Thus [(α — b2) + c]2ί, = [a — 62]2ί? which shows a — b2 is a unit of
O(K, PP), and hence is a unit of O(EΓ, S, %). It now follows that for
such α, ά ί ^' 2 w, which shows that HenseΓs Lemma holds for the
equation X2n ~ a.

Next we note that in case K'2p is a valuation fan for all p e S,
then so is K'2pq for all p, qe S. In this case we may replace 0{K, S, x)
by the ring O(K, S) = ΓipeS0(Kf K'2p), and the above argument
applies. By Lemma 6, this is precisely what happens when K is
2-Pythagorean.

Conversely, we now assume a field K carries a valuation as
described above. We must see that for all distinct p, qeS, that
K'2pq is a strong fan. Clearly K'2pq is a strong fan of K as K'/K'2pq

has at most four elements. Now suppose that α ί — K'2pq, and assume
that a is integral under our valuation. Clearly a£ ~K'2pq by our
Henselian property, so that 1 + a is a unit. As 1 + a e K'2pq or
a*K'2pq, it follows again by the Henselian property that 1 + aeK'2pq

or 1 + aea-K'2pq. In particular, we now have shown that for all
αg -K'2pq, one of 1 + α, 1 + α"1 lies in K'2pq. This proves Theorem
2. D

COROLLARY 2. If K is strictly S-Pythagorean, then K is strictly
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n-Pythagorean, for all n with the primes dividing n in S.

Proof. The Henselian properties of our valuation give the result,
exactly as proven at the end of the proof of Theorem 2. •

REMARK 3. In case S = {1}, Theorem 2 reduces to the well known
result of Brocker and Brown characterizing Superpythagorean fields.
See [4] and [5] for details. Also, in case K is 2-Pythagorean, we
see by the Euclidean residue fields that K must be strictly 2-
Pythagorean, so our Corollary 2 reduces to Corollary 2 of Theorem
27 of [1], p. 68.

A field K is called Hereditarily-Pythagorean if every formally
real algebraic extension is Pythagorean. These fields, which have
been studied closely in [1], [4], and elsewhere, have many remark-
able properties. To mention a few, we give the following:

THEOREM 3. (E. Becker, [1].) The following are equivalent for a
real field K:

( i ) K is Hereditarily-Pythagorean.
(ii) The absolute Galios group Gal (K/K[i]) is abelian.
(iii) Every algebraic extension of K is of the form

K[Va~u

 tWa%9 , V α J for some tl9 --,tneN , al9 , aneK .

Suppose that K is an ^-Pythagorean field. Then we shall say
that K is Hereditarily n-Pythagorean if every formally real alge-
braic extension of K is -^-Pythagorean. It follows from Theorem 9
p. 109 of [1] that if K is a Hereditarily-Pythagorean field which is
2*-Pythagorean, then K is Hereditarily 2VPythagorean. Our last
result is a generalization of this fact.

THEOREM 4. Let K be a Hereditarily-Pythagorean field. If K'2n

is a strong fan, then K is Hereditarily n-Pythagorean.

Proof. Let 0 £ K be the valuation ring given by Theorem 2,
and let K be its residue field. We have that K/'K'2n has at most
four elements, and according to Theorems 17 and 18 of [1], Chapter
3, we see that L'/L'2n has at most four elements for any real alge-
braic extension L of K. It is now clear that in any such L, L'2n is
a strong fan.

Now let L = K[Ψ a ] be a real extension where p is a prime, and
let 0' Q L extend the valuation ring O £ K. We show that HenseΓs
Lemma holds for equations of the form Xq — b in this valuation of
L, whenever q is a prime dividing 2n. Note that as M = L[V b ] is
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a radical extension of K, we have that M = K[%~a, Λ/ΊΓ] or M = K[pV~c~]
for ceK. By the Henselian property of 0, we see that in any
extension of 0 to 0" ζZ K[%/c], that either the value group or the
residue field must extend by a power of q. In particular, as the
same now must be true in the extension 0' of 0 to M, we see that
HenseΓs Lemma must hold for Xq — b over L.

We now see that HenseΓs Lemma holds for equations of the form
X2n — b in this valuation of L. Together with the fact that L'2n is
a strong fan of L, this shows that L'2n is strong fan of L. As every
real algebraic extension of K is obtained by successive extensions as
the above, it is now clear that K is Hereditarily ^-Pythagorean. •
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