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THE SHEAF OF H?-FUNCTIONS IN PRODUCT DOMAINS

SERGIO E. ZARANTONELLO

Let W=W ;XW,X -+« xW, be a bounded polydomain in C»
such that the boundary of each W, consists of finitely many
disjoint Jordan curves. The correspondence that assigns to
every relatively open polydomain V in W (the closure of W)
the Hardy space 2#?(V NW), defines a sheaf 9?,;,’ over W. This
sheaf is locally determined in the sense that P(W, 9%,;) is
canonically isomorphic to 22?(W). In this paper we prove, for
any 0<p<co and all integers ¢g=>1, that the cohomology groups
H(W, 52¢) are trivial.

I. Introduction. The Hardy spaces S#°(U"), 0 < p < «, for
the unit polydise U®, consist of all functions F' which are holomorphic
in U and satisfy

sup Sm e Vt | F(re™, - - -, ref»)[?dO, - - - df, < + oo .
0<r<1 Jo 0

The observation ([9, Exercise 3.4.4(b), p. 52]) that Fe#?(U")
if and only if F' is holomorphic and | F'|* has an n-harmonic majorant
in U", leads to a definition of Hardy spaces for .arbitrary product
domains; the requirement now being that F be holomorphic and | F'|?
have an m-harmonic majorant in the polydomain in question.

The symbol 5#? can thus be regarded as a presheaf on the
polydomains in C*. In this paper we concern ourselves with the
sheaf induced by £#? on the closure of a polydomain, and prove,
under certain topological restrictions, that the corresponding
cohomology groups are trivial.

Specifically, let W= W, X W, X --- X W, be a bounded poly-
domain in C", and suppose each W, is bounded ‘by finitely many
disjoint Jordan curves. The correspondence that assigns to each
relatively open product domain V in W (the closure of W) the linear
space (VN W), defines a sheaf S#2 over W. This sheaf is
locally determined, i.e., I'(W, %%&’) is canonically isomorphic to
GZ*(W). Our goal is to prove, for any such W, for 0 < p < oo,
and for all integers ¢ = 1, that the cohomology groups HYW, P2
are trivial.

In [8] A. Nagel proved similar results for a wide class of sheaves
of holomorphic functions satisfying boundary conditions in poly-
domains. Although Nagel’s methods can be applied to the sheaves
S7? when 1< p< o, the cases 0< p <1 present difficulties.
Instead, as in the earlier papers [12], [13], we follow the approach
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of E. L. Stout in [11]. In this respect Theorem 3.3, which is central
to our study, is the analogue of Lemma 1.2 of [11].

The ecrux of our work is Theorem 3.3 (the Decomposition
Theorem); the proof, together with the necessary groundwork,
appears in §III which is essentially self-contained. The basic
definitions are listed in §II. In §IV we -consider the Cech
cohomology with coefficients in %%5’, and prove our main result,
Theorem 4.9.

We mention in closing that although most of our results are
proven for the case » > 1, they are also verified if n =1 (the
modifications in the proofs required for this case are always straight-
forward).

II. Preliminaries. A polydomain in C™ is a cartesian product
W, X Wy X +-- X W, of n open connected subsets (domains) of C.
If each W, is a bounded domain, bounded by finitely many disjoint
Jordan curves (a Jordan domain) we say that W is a Jordan poly-
domain.

Possessing an n-harmonic majorant in a Jordan polydomain is a
local property (see also [5]):

THEOREM 2.1. [12, Th. 2.10, p. 301]. Let W be a Jordan poly-
domain and let {U,} be a relatively open covering of W. If s is a
positive n-subharmonic function in W with “local” mn-harmonic
majorants u, in each intersection U, N W, then s has an n-harmonic
majorant in W.

DEFINITION 2.2. Let V be a polydomain, and let 0 < p < oo.
We define the Hardy space S#?(V) to be the linear space of all
functions F' which are holomorphic in V and for which |F'|” has an
n-harmonic majorant in V. We establish the convention S2°7(®) = {0}.

DEFINITION 2.3. Let W be a fixed polydomain in C*. We define
the sheaf 272 (the sheaf of germs of S#*-functions on W) as the
sheaf over W which is induced by the correspondence between the
relatively open polydomains ¥V < W and the linear spaces S22(V N W).

If W is a Jordan polydomain, it is a direct consequence of
Theorem 2.1 that the linear spaces I'(W, 278 and (W) are
canonically isomorphic.

If Wand V are Jordan polydomains in C*, with correspondingly
conformally equivalent coordinate domains, the sheaves 72 and
92’1}’ are isomorphic; consequently, the cohomology groups of V and
W with coefficients in 227 and ;{A’/,;?, respectively, are isomorphie.
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This follows from the invariance of the 577?-spaces under n-conformal
transformations, and the well known fact that a conformal equivalence
between Jordan domains extends to a homeomorphism between their
closures.

III. A decomposition theorem. In what follows, U will be the
open unit disc {#€C:|z| <1} and T its boundary, the unit circle.
The cartesian product of » copies of U will be denoted by U™.
Similarly, T" will be the cartesian product of » copies of 7. We
will denote the normalized Haar measure on T by m, (by m in the
particular case n = 1); the corresponding .&?-spaces will be indicated
by &?(T"), and the &?-norm by || |lo»zv. The extended complex
plane will be denoted by S=.

Let F be a holomorphic function in U™ and let 0 < » < 1. We
denote by F. the function defined on T by the equation

F.(w) = F(rw) ;
and define, for each 0 < p < oo,
U F || sp0m = lgrll | Follevim

An alternative characterization of the Hardy space S#*(U*) is
that it consists of all holomorphic F' for which

||F”W1"(U”L) < oo
Moreover, if H is the least n-harmonic majorant of [F'|” in U", then
”F”%P(U"U = H(0),

where we denote the n-tuple (0,0, ---, 0) by 0.
We define S2#7((S* — U) x U™") to be the class of all functions
F for which the function F'*, defined for (x, ¥)e U X U by
1
* — p—
F*x, y) = F<xy> ,
is in Z#2?(U™). If F and F* are related as above, we write
HF|I%'P(<S2—5)XU%—1) = ”F*”%P(U”) .

The space of test functions on T will be represented by & (T),
the space of distributions on T by <2(T), and the bilinear pairing
between he Z=(T) and fe 2(T) by

<R, f)) -
Let Z be the set of integers. For each je€ Z and w ¢ T, we define

e;(w) = w? .
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The Fourier coefficients of fe 2(T) are the numbers
F@) = <ei(), )

where j ranges over Z.

Given FezZ?(U), 0 < p < o, there exists a unique fe Z(T)
such that the Fourier coefficients f(j), with j = 0, are the Taylor
coefficients of F', and such that f(j) = 0 whenever j < 0. This can
be derived, for example, from [3, Th. 6.4, p. 98]. We refer to f
as the boundary distribution of F'.

Let we T and 2€S* — T. The Cauchy kernel C(z, w) is defined
by the equation

1

— Wz

C(z, w) = 1

If we fix 2z and allow w to vary, we obtain a test function which
we denote by C(z, -). If Fes#?(U) has the boundary distribution
f, then, for all ze U,

F(z) = {C(z, -), f(-)) .
On the other hand, if z¢ U,
0 = <C(z, -), f(-)) .

The first part of the next lemma states that the Toeplitz
operators induced by the functions in &*(T) extend or restrict to
bounded operators on S#?(U) for 0 < p < . This was proven in
an earlier paper ([14, Th. 3.2]). A straightforward modification of
the proof yields part (2).

LEmMMA 3.2. [14, Th. 8.2]. Let he&z™(T), let Fez#*(U),
0<p< oo, and let f be the boundary distribution of F. Define

TF(z) = (h(-)C(z, -), 1(-)) -

There are constants B = B(p, h) and B* = B*(p, h), independent
of F, such that

(1) | T3 |lavan = Bl Fllsrw) »
and
(2) | TWE || vz = B*|| F|| pwy -

For the next theorem, let L, and L, be disjoint closed ares on
the unit circle T, and define Vi, for j =1, 2, to be the union of the
unit dise U, its exterior S* — U, and the interior (relative to T) of
L;.
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THEOREM 3.3. (Decomposition Theorem). Let n > 1, and let Y
be a Jordan polydomain im C**. If Fe H(UXY), 0<p<oo, there
extist holomorphic functions F, in V,XY and F, in V,X Y such that

(1) F(z)=F,(z)+ Fy2) if 26 U X Y,

(2) 0=Fyz)+ Fyz) if 2€(8*— U) x Y,
and, for 3 =1,2,

(83) Fezr?(UXY),

(4) Fes7*(S*—U)xY),

(5) F;ez7"(D; X Y) for some open set D; C C that contains L;.

Proof. Choose functions h; € &>(T) such that h; is identically
zero on a neighborhood of L; in T, and such that A,(¢) + k(&) =1
for all e T. If (x,y)e U XY we write F¥(z) = F(z, y). For each
y € Y, the function F'? is in Z#?(U); denote its boundary distribution
by f* and define

Fi(x, y) = 43, F"(@) = (hy(-)C(w, -), F(+)) .

We observe that F'; is separately holomorphic in # and y, and
hence holomorphic, at all z = (z, ¥) such that y€ Y and z is not in
the closed support of k;. In particular, F'; is holomorphic in V; X Y.

Since %, + h, =1, we have

F\(z, y) + Fy(x, y) = {C(x, -), f*(-)) .

Fix ye Y. The right-hand term above, the Cauchy representation
formula for F, is 0 if e S* — U and F¥(x) = F(x, y) if tc U. This
establishes (1) and (2).

To prove the remainder of the theorem, we assume first that Y
18 the cartesian product of n — 1 simply connected domains.

Without loss of generality set Y = U*'. Let H be the least
n-harmonic majorant of |F|*? in U", and write H¥(x) = H(x, y) for
(x, y)e U x U'. The relations

Fi@, y) = 7,F" (),
|70 F " laeran < BIIF ||y
(part (1) of Lemma 3.2), and
NE||sepr = H*(0)
imply
|, |Fre, 1) Pdm(e) < BH(Q, 17)

forall 0 <r <1 and w= (g n)eT x T**'. Integrating the above
with respect to 7, we get
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|,. [ Fitrw)dm,(w) < BPHO) = B?|[Fs,

Hence F;e 22*(U").
By part (2) of Lemma 3.2 we have

Hj;bijHWp(S2—i) = B*HF”H%P(W .

A similar argument to the one used above then establishes F';e
7S — U) x U,

Finally, for the case Y = U*", we prove part (5) of the
theorem.

Fix j =1,2. The function k; will be identically zero on some
open connected subset O; of T which contains the are L;. Let Hj
and Hg_g be n-harmonic majorants of | F;|? in U* and (S* — U) x U
respectively. Considered as functions of the single complex variable
x, Hy(x,0) and Hg_p(x, 0) (where 0 is the zero element in C"?),
are positive harmonic functions (in U, and in S* — U). As is well
known, they must have nontangential boundary values at almost all
points of 7. Choose in each of the two connected components of
O; — L; a point where both H,(x, 0) and Hg_z(x, 0) simultaneously
have a nontangential boundary value. Call these points ¢’ and {”,
and let C be a circle that intersects T precisely at {’ and ¢”. Let
a be the center and p the radius of C, we write C = a + pT and
let D; be the disc bounded by @ + pT. The function F; is holomorphic
in a neighborhood of D; X U*'; we proceed to show that F;e¢
#*(D; x U™, or equivalently, that the function G, defined by
Gz, y) = Fi(a + pz, ¥), is in 227°(U™).

Since the circle a + pT intersects T nontangentially at {’ and (",
there is a constant K such that

Hy(z, 0) = K
for ze(a + pT)N U, and
He (2, 0) = K
for xe(a + pT)N (S* — U). Hence, for all 0 < r < 1, we have

@30 | IFa+pg rmPdm, < | Hoa + pg, rm)m. ()

= HU(G' ‘I‘PE; 0) é K

whenever £€ T is such that a + £e€ U, and

@32 | 1P+ o5 ropam ) 5| | Hooa+ o, rmam, )
— Hog(a + 050 < K
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whenever £¢ T is such that a + pceS* — U.
The inequalities (8.3.1) and (3.3.2) yield, for all 0 < » < 1,

STST'M—I | Fy(a + 0§, r7)|*dm,_,(n)dm(E) < K .

Recalling the definition G(x, y) = Fy(a + pz, y), and writing w = (¢, 7),
we obtain

|, I60wpam,w) = | | (Fia+ ore, ro)pam@dm. o)

=, 1@ + g, mypam@dm, ) < K.

It follows that G € 2#*(U™), or equivalently that F;e #7(D; x U*™).

We mext assume that Y=Y, X Y, X --- XY, 18 an arbitrary
Jordan polydomain in C*.

Decompose each Y, as a finite union Y, = U, U{¥, where the
sets U® are simply connected domains in C, and where every
boundary point of Y, has a neighborhood that intersects inside
some U{®. Let % be the class of all cartesian products U x
Uk X «oo X Ulknv,

The members of Z are cartesian products of simply connected
domains in C; accordingly, as was proven earlier, for each Qe %
we have F;€ 272 (U%Q), F; € 527°((S*— U)X Q), and F; e 5£°(D§ X Q),
where Df is a disc, depending on @, which contains L;. From our
construction of % it follows that {U X Q}¢. . is a covering of U X Y
that satisfies the requirements of Theorem 2.1; the same is the case
for the coverings {(S*—U) X Q)gc» of (S°—U)x Y, and {D; X Q}gcx
of D; X Y, where D; is the intersection of the (finitely many) dises
D¢. If we apply Theorem 2.1 to the wm-subharmonic function |F;|?,
we conclude that F;e £7(U X Y), F;€ 57°(S* — U) x Y), and F; ¢
S#*(D; X Y). This completes the proof of the theorem.

IV. The Cech cohomology with coefficients in 577, Through-
out this section 0 < p < o will be fixed. We assume # >1. Our
goal is to prove, for any Jordan polydomain W in C* and all integers
g = 1, that H(W, =) = 0.

It simplifies matters if we take our coefficients in the presheaf
S#* rather than in its completion, the sheaf S7*. We specify below
what we mean by the Cech cohomology theory with coefficients in
SP.

Let W be a polydomain in C*». We define a class 2, of open
coverings of W as follows.

An open covering ZZ of W belongs to 2y if and only if:
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(1) FEach member of Z is a polydomain.

(2) For every point b on the boundary of W there exists a
netghborhood N(b) and a set Ue Z such that Nb) N WcU.
Equivalently, % € 2,, if and only if % is the restriction to W of a
family of polydomains that covers W.

Let 7 € 25. A g-simplex o of 7 is a ¢ + 1-tuple (U,, U,, ---, U,)
of members of %Z; its support |o| is the set U, NU, N --- NU,. We
denote by S, (%) the collection of all g¢-simplices of %, and by
C(z, 5#*) the group of all functions v (g-cochains) that assign to
each o€ 8SY(%’) an element v(d) of S#7(|a)).

The graded group CY%, 5#*), together with the obvious co-
boundary operator §: C(%, 5£7) — C**'(%, 5#°7), constitutes a cochain
complex with cocycles ZY(Z/, 57*), coboundaries BY(Z, 5#*), and
cohomology group HYZ/, 57*). The relation of refinement induces
a partial ordering on £2,. The corresponding direet limit groups

H«(W, 5#°) = lim H{(Z, 5#°7)
€ Ry

are the cohomology groups of W with coefficients in the presheaf
7.
As can be easily verified ([10, Cor. 18, p. 329]):

LEMMA 4.1. The groups HY(W, 522 and HYW, 577 are
isomorphic for all integers q = 0.

If VW are polydomains, and if Z € 2,, we denote by Z (V)
the restriction of % to V (in particular % = ' (W)). We then
have restriction homomorphisms Cz (W), S£7) — C (z (V), S£°7),
which as can be easily verified, commute with the coboundary
operators. If veCY(z (W), 5#*) we denote its restriction to Z (V)
by the same symbol 7.

LeMMA 4.2. Let W be a polydomain in C", and let W =
{W®, W2} be a covering in 2.

If 7 € 2y, satisfies the conditions:

(1) For every simplex o€ S(Z), the support |o| is either a
Jordan polydomain or the empty set.

(2) For every o¢eS(%), the homomorphism

(o] N WD) P S£7(o| N W) _¢__, (o) N WO N W),

defined by (g™, ¢g®) = g® + g, is onto.
Then there is an exact sequence of groups and homomorphisms
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00— .ﬁHQ(%(W), y/p)_ﬁ_,ﬂq(%(w(l)), %9)@1{4(%( W(z))’ g/ﬁ)
2 B (W A W), 52 L5 Bz (W), 267) 2 -

(Such a sequence will be called a Mayer-Vietoris sequence.)

Proof. For each o€ S(Z) define

227(0)) o 2270 | N WD) D 27| 0 W)

by the equation ¢(g) = (9, —g), with suitable restrictions.

By hypothesis |[¢| is a Jordan polydomain (or the empty set).
We can then invoke Theorem 2.1, and conclude that the image of ¢
and the kernel of + are the same. Since also ¢ is one-one, we have,
for each o€ 8S%(%’), a short exact sequence

0 — 2250 ]) —2 2270 | 0 W) @ 2270 | N W)
~, Z*(lo|l N WO NWH)— 0,
which in turn induces a short exact sequence of graded groups

0— CH(@ (W), 527) 2 Oz (W), 527 @ Co( (W), 52°7)

L Cz (W W), 2£7) — 0 ;

(4.2.1)

for if V is a polydomain in W, then

C(zm(V), s£7) = Iz2"(lo| N V)
oeS(%) .

Since the homomorphisms ¢ and 4 of (4.2.1) commute with the
coboundary operators, the sequence (4.2.1) is a short exact sequence
of cochain complexes. As is well known ([4, Th. 3.7, p. 128]) there
is then an associated exact cohomology sequence. This completes
the proof.

Our next lemma is a direct consequence of Theorem 2.1.

LEMMA 4.3. If W is a Jordan polydomain, and if Z €,
then HY 7z, 27°7) and S£°(W) are canonically isomorphic.

Henceforth, unless otherwise indicated, W= W, X W, X --- X W,
will be a Jordan polydomain.

Towards our goal of establishing HY(W, 5#*) = 0 we consider
two cases.
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1. The Simply Conmnected Case. We follow the argument of
[13]. The proofs are identical (replacing the symbol P by S#?, and
using Theorem 3.3 instead of [13, Lemma 3.1, p. 269]). We outline
the procedure. Without loss of generality we take W to be a poly-
rectangle; this will allow a systematic partitioning into smaller
polyrectangles.

Let I, I,, and I, be the open intervals (—1, 1), (—1, 3), and (—1%, 1),
respectively. Consider the rectangles R=I+ 4, R, = I, + I, R, =
I, + i¢I. For Lemmas 4.4 and 4.5 we write W= R*", W% = R, X R,
W&=R,x R**; and let Z be a finite open covering of W consisting of
polyrectangles with edges parallel to the real and imaginary axes of C.

LEMMA 4.4. If 0eSY%) and geSZ*(o|N WL NWY), there
exist gV e Z*(lo| N WE), 9® e 227°(lo|N W), such that g = g + g®.

LEMMA 4.5. For all integers q =1, the cohomology groups
HY7z, 2£*) are trivial.

THEOREM 4.6. If W is a simply connected Jordan polydomain in
C, then HY(W, 5#*) = 0 for all integers q = 1.

2. The Multiply Connected Case. We first observe that Theorem
3.8 remains valid if we substitute the unit disc by a suitable doubly
connected domain.

Let 0 <7, <7y, and 7, — /2 < p < 7, + 7,/2. Write

A={zeCr < lzl<7’2}’

Ql={zeC: z—ﬁi—“

<o},

Q, = {zeC: ?z+%

<o},

and define B(r,, 75 0) = AU 2, U 2,. The set B = B(r, r,; p) is the
union of the annulus A with the symmetric dises 2, and 2,. Any
such region will be called a buldged annulus.

We write

Ctr={zeC:Imz > 0},
and set AV =ANC*, A® = AN(—-C*), BY = A" JQ, UL, and
B® = AP U 2, U 2,.

LEMMA 4.7. Let Y be a Jordan polydomain im C*'. If ge
FFP((2,UR,)X YY), there exist g € S£°(BY X Y) and g® € S7*(B? X Y)
such that g(z) = g (z) + g®(z) whenever ze(2,U 2,) X Y.



THE SHEAF OF H?-FUNCTIONS IN PRODUCT DOMAINS 489

Proof. Let C, and C, be the boundaries of 2, and 2, respective-
ly. Consider the disjoint closed ares L{» = C,n AY, for 4,7 =1, 2.

It is clear that Theorem 3.3 remains valid if we replace the unit
disc U by the disc £2,. We apply Theorem 3.3 to 2, X Y, the
restriction of g to 2, X Y, and the closed ares L{", L{, to obtain
holomorphic functions ¢ and ¢, which by Theorem 2.1 are in
FFP(A" X Y) and in 2£?(A® X Y) respectively, such that

9(2) = 9i"(2) + 9:"(2) ,
if ze2, XY, and
0 = g'(2) + 9{"(2) ,

if z¢2, X Y.

Similarly, by applying Theorem 3.3 to 2, X Y, the restriction
of g to 2, XY, and the closed arecs L, L{®, we obtain g€
FFP(A® X Y) and gP2F?(A® X Y), such that

9(2) = 9:"(2) + 9:°(2) ,
if ze2, x Y, and
0 = g(2) + 9:°(2) ,
if 2¢02,x Y.
If we define g = g + ¢, for j =1, 2, the lemma is verified.

We next prove that the set of buldged annulli is a canonical
class for the doubly connected domains in C.

LEMMA 4.8. Let A be a doubly connected domain in C. There
exists a buldged annulus which is conformally equivalent to A. If
A is bounded by two Jorden curves, the conformal equivalence extends
to a homeomorphism between the closures.

Proof. Without loss of generality let A be an annulus centered
at the origin. To prove the lemma it suffices to show that there
exists a buldged annulus with the same modulus as A.

The modulus M(D) of a doubly connected domain D, we recall,
is a conformal invariant which in the special case of an annulus of
radii @ < b reduces to 1/27 log b/a. Moreover, two doubly connected
regions with the same modulus are necessarily equivalent ([6, Th.
2, p. 208)).

Let B = B(ry, 75; ) be a buldged annulus contained in A. Since
B separates the boundaries of A, we must have ([6, Th. 3, p. 209)])

(4.8.1) M(B) < M(A) .
For each 0 < ¢ < oo define B, = B(ry, 7, + t; p + t/2). Given any



490 SERGIO E. ZARANTONELLO

A > 0 there exists ¢ > 0 such that
(4.8.2) M(B) =\

for we can always find an annulus of inner radius 7, and modulus
A contained in B, if we choose ¢ sufficiently large.

A direct calculation (using the extremal length characterization
of the modulus M(B,)) shows that M(B, varies continuously with
t. The function f(t) = M(B,) is therefore continuous on [0, ). By
(4.9.1) and (4.8.2), we have f(0) < M(A) and lim,... f(t) = + o,
respectively. Consequently, for some ¢, we must have M(B,) =
f(t,) = M(A). This proves the first assertion of the lemma.

As is well known ([6, Th. 1, p. 208]), if two conformally
equivalent doubly connected domains are bounded by Jordan curves,
any conformal equivalence between them extends to a homeomorphism
between their closures.

THEOREM 4.9. If W is a Jordan polydomain in C*, then
HY(W, 2#7) = 0 for all integers q = 1.

Proof. Denote by Z the set of all n-tuples of positive integers.
If ¢ and y are in Z7, and if g, <y, for all 1 <7 < n, we write
t=<v. We say that a polydomain W= W, X W, X --- X W, is p-
connected (for some g€ Z}) if each W, has connectively g,.

For each ve Z? let P(v) be the proposition:

P(). For all pt-connected polydomains W, p <y, and all integers
q = 1, the cohomology groups HYW, 2£*) are trivial.

Since a Jordan polydomain is necessarily finitely connected, the
theorem will be proven if we verify P(v) for all ve Z7.

Suppose P(v) is true for some ve€ Z*. Fix 1 <k < n, and denote
by ' the n-tuple define by v;=v,, if ¢#Fk, and v, =y, +1. We
claim that P(Y') is true. Without loss of generality take k = 1.

We first consider the case v, =1. Let W be an arbitrary »'-
connected Jordan polydomain, and write W = B X Y, where B is a
doubly connected Jordan domain in C and where Y cC"*'. By
Lemma 4.8 there is no loss of generality if we let B a buldged
annulus. As in Lemma 4.7, decompose B = B® U B®, with BY"NB® =
2,.U2,. Define W =B" XY, and W? = B® X Y.

We consider the coverings in £, that satisfy the following
condition: the support |o| of any simplex ¢ is a Jordan polydomain
(or the empty set) contained in either W® or W®. Such coverings
satisfy the hypotheses of Lemma 4.2; and the collection of them
constitutes a cofinal subeclass of 2,,. By taking the direct limit of
the corresponding Mayer-Vietoris sequences, we obtain the exact
sequence
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00— 572 (W) _ﬁ_) (WD) P s (WD) l—» SE(WE NWe)
I I W, 22 s HOWO, 227) @ HY(W, 527)
30* N Hq( W(l) n W(2), y/ﬂ) _1*) _H¢1+1( W, %1’) —_— e e

By Lemma 4.7, the first row above is a short exact sequence;
we disregard it, and retain the exact sequence

0 — H(W, 527 -2 H (W™, 5777) @ H(W®, 577)
(4.9.1) A H(W®D N W2, 577) N H (WO 0 W, 577)
T 5w, 227 2 H(W©, 527) @ HO(W, 227 s |

Since W™ and W are Jordan polydomains of connectivity < v,
and since W' N W® is the disjoint union of two Jordan polydomains
of connectivity < v, the inductive hypothesis implies H(W®", 5#7) =0,
H(W® H)=0, and H(W™" N W®, 5#£7)=0. The exactness of (4.9.1)
then establishes HY(W, 5#7) = 0 for all ¢ = 1.

We mext consider the case v, >1. As before, let W be an
arbitrary v’-connected polydomain. Write W= X X Y, where YCC*,
and where X is a domain in C of connectivity & = v, + 1 which is
bounded by an outer contour C, and & inner contours C, C,, ---, C,_,.

Let B be the doubly connected domain bounded by C, and C,,
and let A and A® be simply connected Jordan domains such that

(1) A(l) U A(Z) — B,

(2) A" N A® is the disjoint union of two simply connected
domains,

(8) each contour C, C,, ---, C,_, is entirely contained in either
A(l) — A(Z) or A(2) — A(l)'

We define X = AY N X, X® = A® N X; and consider the Jordan
polydomain V® = AV XY, V® = A®XY, V=BXY, W" = XX,
and W® = X® X Y.

As in the previous case of the theorem, by taking suitable
coverings, applying Lemma 4.2, and taking the direct limit of the
Mayer-Vietoris sequences that correspond to such coverings, we
obtain the exact sequences

0 — 227(V) 2o 22 (VO) @ 227(V) L S22 (VO (V)
ﬁHI(V, SEP) —> -
and
0— S22 (W) Lo 27 (W ) @ S22 (W) S (W 1 Wo)

T* T* o*
(4.9.2) —— .. = H(W, 5£7")— H(W®, 22*)QH (W, S£7)



492 SERGIO E. ZARANTONELLO

L B(WO AW, 227) — H (W, 267) — -

The polydomain V has connectivity #, with g, =2, and g, =y,
for ©=2,8,---,n. Consequently, as was established earlier,
HYV, 57*) = 0. In particular

0 — S73(V) _®, (VYD 227 (V) AN (VO V@) — 0

is exact. Since WO NWP =VONV® and since WLcCcV®,
W cvV®, it follows that

00— %ﬂ( W) _¢_) %?(W(l)) @ %?(W(Z)) __L %?(W(l) N W(2)) —0

is also exact. We can then disregard the first row of (4.9.2) and
retain exactness in

0— HY(W, 527) 2 H(W®, 527) @ H(W®, 527)
(4.9.3) —’E‘—) HWYNW®R, 7)) —s - oo — HW (WO N WP, S£7)
T HOW, 527) -2 HU(W®, 227 @ H(W, 5£7) — -

The inductive hypothesis, together with the exactness of (4.9.3),
implies HY(W, 5#7?) =0 for all ¢ = 1; for W™ and W are Jordan
polydomains of connectivity < v, and W® N W® is the disjoint union
of two Jordan polydomains of connectivity < v.

We have thus established P(»') in all cases. Since, as was proven
in Theorem 4.6, P(v) is true for v = (1,1, ---,1), by the principal
of mathematical induction P(v) must also be true for all veZZ.
This concludes the proof.

V. Remarks.

1. The Gleason Problem for 2£*(W). Let FezoF»(W), let
ac W, and suppose F(a) =0. The problem asks if there exist
F, .-, F,es57Z?(W) such that F(z) = (2, — a)F,(z) + - - - + (2, — @) F.(2)
for all ze W. The method of [7], together with the vanishing of
the cohomology of 5#°?, gives an affirmative answer when W is a
Jordan polydomain. A non cohomological treatment of the Gleason
problem for various other functions spaces is given in [1].

2. The extension of S#°-functions from hypersurfaces in W.
Let S be the zero set of a bounded holomorphic function in U™.
In [2] Andreotti and Stoll defined a strictly SZ°~-function to be a
function f: S — C for which there exists a covering {U,} of U", and
functions f,e 2#Z*(U, N U") and g, € 2#~(U, N Us N U™) such that

(i) f=faon SNU,
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(i) fo—fa=hg, on U, NU, NU™
and proved, as a direct consequence of the vanishing of HY(U", 5#=),
that any such function has an extension in SZ~(U").

If W is a Jordan polydomain, S is the zero set of an S#>-
function in W, and f: S— C is a strictly S#°7-function (defined as
above, but requiring now that f, and g., be in the corresponding
S#?-gpaces), the vanishing of the cohomology of 577 establishes the
existence of an extension F e 2?(W) of f.
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