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ON THE SOLVABILITY OF BOUNDARY AND INITIAL-
BOUNDARY VALUE PROBLEMS FOR THE NAVIER-

STOKES SYSTEM IN DOMAINS WITH
NONCOMPACT BOUNDARIES

V. A. SOLONNIKOV

In the present paper the solvability of boundary value
problems for the Stokes and Navier-Stokes equations is
proved for noncompact domains with several "exits" to
infinity. In these problems the velocity satisfies usual
boundary conditions and has a bounded Dirichlet integral
and the pressure has prescribed limiting values at infinity
in some "exits".

1* Preface* It was shown by J. Heywood [1] that solutions of
the Navier-Stokes system (even linearized) are not uniquely deter-
mined by the usual boundary and initial conditions in some domains
with noncompact boundaries. It is connected with the possible non-
coincidence of some spaces of divergence free vector fields defined
in these domains. These spaces and linear sets of vector fields
generating them are introduced as follows.

Let Ω be a domain in Rn, n = 2, 3, <gT(ί2) — the set of all infinitely
diff erentiable functions with compact supports contained in i2,^^°°(β)—
the set of all divergence-free vector fields ue^ί°(Ω) (i.e., vector

o

fields satisfying the equation F-u = Σ?=i (dujdxt) = 0), and W}(Ω) and
o

£&(Ω)— the completions of <^™(Ω) in the norms HSH^a, = V(u, u)(1)

and ||31|^(0) = V[u, u] respectively, where (u, v)a) = \ (u-v + ux vx)dx,

ux vxdx, u v = Σ?=i utvif ux vx = Σ?,/=i (δuJdxjXdvJdxj). Let

^{Ω) and ΈL(Ω) be completions of ^o°°(Ω) in these norms and ^(Ω),

H(Ω) — the subspaces of all divegence-f ree vector fields in Wl(Ω) and

dr(Ω). Clearly, ^/(Ω) Z) ^(Ω) and H(Ω) ID H(Ω). In [1] it is shown

there are domains for which the quotient spaces ^ (Ω)/^(Ω),

H(Ω)/H(Ω) are finite-dimensional, i.e., nontrivial (for instance, the

domain Ω°=R*\S, S={x eR3: xB = 0, a?i + a?i^l} possesses this property).

A large class of such domains is found by 0. Ladyzhenskaya, K.

Piletskas and the author in [2, 3]. To describe the domains Ω con-

sidered in this paper, we define a standard domain G(zRn given by

the inequality
(1) \z'\<g(zn), s . ^ 0 ,

where | z'\ = \ zx \ for n = 2, | z'\ = Vz\ + z\ for n = 3 and the function
g(t) satisfies the conditions

443
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(2) g(t)^go>O, \g(t) - g(tλ)\ ^ M\t - t,\ , vί, tt > 0 .

We impose the following requirements on Ω:
(1) Ω is an open connected set; Ω = Ωo U (UΓ=i α><), <£?o is a bounded

domain, the a)* are unbounded and ωt f] ωό = 0 for i Φ j.
(2) G<cα)<cGf, where G* and G* are domains defined by

inequalities of the form (I) in a certain cartesian coordinate system
{z{i)}, more precisely, by inequalities

(3) I * ' ( Ί < Λ ( O , I^KflffiW,

with α > 1, and functions gt satisfying (2) and

S CO

gTn~\t)dt < °o for i = 1, , r , 1 ̂  r ^ m ,
0

f oo

gin~\t)dt = °o for i = r + 1, , m .Jo

To formulate further restrictions we introduce the following
notations: co^t) is the subdomain of ωt where 0 < z™ < t, ω'i(t) =
cύiXcύiit), Σ&) is the intersection of ωt with the plane (the straight line
for n = 2) z{j] = ί; and i2t = Ω\\J?=1 α)J(t). We assume:

( 3 ) £Γ(i24) = H(Ωt) for all ί ^ 0.
(4) Every function q(x)eL2(Bi(t)) satisfying in the domain

Bt(t) = (Oiit + gi(t))\a)i(t) the condition \ gώcc = 0 can be represented
o JBί

in the form q = F δ(cc) where δ 6 ̂ (JS/t)) (see [2], Lemma 2.5) and
H^IUc ί̂ί)) ^ o\\q\\L2{Bi{t))f the constant c being independent of q, i, t.

(5) The domain Ωto with some fixed t0 > 0 possesses the same
property.

Sometimes we shall replace (2) by
(2') GideonGi where Gif G? are domains defined by (3) and

(°°gτn-1+2a(t)dt < oo , i = r + 1, - -, m α e [ 0 , l ] .
Jo

The conditions (l)-(5) determine a somewhat more general class
of domains than considered in [3]. On the other hand, the condition
α>ίCG? is not satisfied for the domain Ω° mentioned above. This
condition is also not satisfied for domains considered in [2], for which
ωi may contain unbounded cones (i.e., for which m = r and g^t) =
\(t + W, λi, bi > 0). For such domains the conditions (2) should be
replaced by the restrictions formulated in §4 of the paper [2].

THEOREM 1. If (l)-(5) hold, then dimH(Ω)/H(Ω) = r - 1; if the
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conditions (1), (3)-(5) and (2') with a = 1 are fulfilled, then
dim cJ

ί(Ω)IJr{Ω) = r - 1. In H(Ω)/H(Ω) and in c/{Ω)l<^f{Ω) there
exist r — 1 linearly independent vector fields at(x) which are infinitely
differentiable in each cojf which vanish in a neighborhood of dΩ f]
d(ύjf for each ωj9 and for \x\ > 1, x e ωd, j = r + 1, , m, and which
satisfy the inequalities

( 4 )
9Γ1

<*)' dxk

x 6 ωό , j = 1,

This theorem can be proved in the same way as Theorem 4.2 [2] or
Theorem 4 [3].

If H(Ω) Φ H(Ω), the boundary value problem for stationary
Navier-Stokes system must contain, beyond the usual boundary con-
ditions at dΩ and at infinity, some additional conditions. One can
prescribe the flows of the velocity vector across sections of some ft)*.
Boundary value problems of this type are studied in the papers [1, 3, 4].
On the other hand, in [1] another form of additional condition is
found. It is shown that the assignment of the difference of limiting

values of the pressure for \x
? χeωi9 i = 1, 2 also determines

uniquely the solution of the boundary value problem for the Stokes
system in the domain Ω°.

2* Preliminaries* We begin with the construction of an auxiliary
divergence-free vector field in the domain (1) which is necessary for
subsequent considerations and which can be used also for the con-
struction of a basis in H(Ω)/H(Ω) and ^(Ω)/^(Ω). At first let
n = 3 and define the vector

( 5 ) a(z) = V x ζ(z)b(z') = Fζ(z) x 6(«') ,

where 6*= (2π)-\-z2\z'\-\ zί\z'\-\ 0), z* = (zίf z2), and ζ(z)e^co(G) is
a function which equals one in a neighbourhood of the surface
Γ:\z'\= g(z3) and vanishes for small \z'\. Consequently, α e ^ f G ) ,
a = 0 near Γ and for small |s' |, F α = 0 a n d

\ azdz' = \

(σ(t) is the intersection of G with the plane zz = t). In the case n =
2 the vector

( 6 ) 2(«) = - | ( -
dz,

ι)
where ζe<gf°°((x), ζ = 0 for small \z1\,ζ= ± 1 near Γ*: z1 = ±

possesses all these propert ies .
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It is convenient to choose the function ζ in a special way. For
n = 3 take

v « ) ±\z) -

where ρ9 ψ e ^""(R1), φ(t) = 0 for t < 0, ψ(t) = 1 for t > 1, p(ί) = t
f or t > d > 0, p(t) = p0 > 0 f or t < (d/2), p(t) ^ ί, ^(t) ^ 0, ft, d, e are
positive constants, and Δ{z) is a regularized distance from z to Γ
(see [5], Ch. VI). In the case n = 2, take ζ - ζ for ^ > 0, and ζ =
- ζ for z, < 0. It is easy to see that ζ(z) = 0 for |z' | ^ ^ ^ > 0,
provided p0 is sufficiently small.

LEMMA 1. For the vector a defined by (5) or (6) the inequalities

da(z)
( 8 ) ! - - _ , _ n u ,, Λ

Proof. To be definite consider the three-dimensional case. The
support of α is contained in the domain Δ{z) ^ /o(|«'|) ^ β1/εJ(a;). As
the function g satisfies the Lipshitz condition (2), the regularized
distance Δ is a quantity of the same order as the distance from z to
dσ(zs), i.e., C2Δ(z) ^ g(zB) — \z'\ ^ C84(2), C2, C3 > 0. Thus for z 6 suppδ
we have e1/εΔ(z) ^ ρ(\z' |) ^ (C8J(ί5) + |z'|)(C3 + I ) " 1 ^ (C3 + l)~Vfe). In
particular, |»' | = p(\z'\) ^ (̂ β + l)~Vfe) for \z'\^d. For |^ ' | ^ d,
z 6 supp S the inequalities g{zz) ^ (g(«8) — \z'\) + | 3 ' | ^ CsΔ(z) +
d ^ Cβ/od^l) + d ^ C3io(d) + d hold and consequently | s ' | ^ p^
piΰ(Zz)(Cψ(d) + d)"1. So for all 3 6supp α we have e1/εz/(2) ^
|θ(|^'|) ^ (C8 + l ) " 1 ^ ^ ) , | ^ Ί ^ C4g(zB). Differentiating ζ and taking
into account the fact that \&aΔ(z)\ ^ CJ-[0Cl+1(z), see [5], we obtain
\&%(z)\ ^ C^" | α r |(^3). The same inequality holds for the function ζ
in the case n = 2. The estimates (8) follow from these inequalities.
The lemma is proved.

Let Ω satisfy the conditions (I)-(5). Consider the operator which
o

assigns the function q = F-u to every vector ue^(Ω). Denote by
the range of this operator and define in ^£{Ω) the norm

v% & (Ω)

o /(v

here P is a projection on the space 3f(Ω)QH(Ω). Clearly,
L2(Ω). Let ^ # *(42) be the dual space to ^/£(Ω) with respect to the
bilinear form (p, q) = \ pqdx, so that

JΩ
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I pqdx
JΩ\\P\UHΩ) = inf

y(Ω)

We invest igate below t h e behavior of p(x)e^€*(Ω) for \x\-»°o

and show that in some sense p(x)—>0 when \χ\ -* ooj χeωi9 i =
1, . . . , r .

Let ω be one of the ωif i = 1, , m, 7 = dω\Σ(0) (7 is the
"lateral surface" of α>), and r̂°°(<0)—the set of all infinitely differen-
tiable functions vanishing near 7 and for \z\ ^ 0. Define £2fr(ω) as
the closure of ^r°°(Q) in the norm &(ω) and ^£{ω) as the closure of
^7°(i2) in the norm [||/|||ω corresponding to the scalar product

(9 ) </, fc>ω = ( f(z)h(z)dz + \~F(t)H(fi)g—\t)dt
Jω JO

where F(t) = \ f(z)dz provided \°°g-^i^dt < °o and F(t) =

S Jωtt) JO

f{z)dz in the opposite case. The formula (9) has a sense
for all f, he^{ω), F(t) being the primitive function for \ fdz'

JΣ{t)

vanishing at infinity (or, more exactly, having the finite integral

[F\t)g~n-\t)dt) in the case [°°g~*-\t)dt = <*>.
JTHEOREM 2. // SG^r(α)), then f = F ue^(ω) and

(10)

For α î/ function f 6 ̂ {ω) there exists a vector u e &r(ω) such that
f = F'U and

(11) NIU,)^

Tfee constants Cx α^d C2 do ^oί depend on u and f.

Proof. Let u e^"(α)), f = F-u. Clearly,

(12) 11/ιu.c i ^σ8||αιuc ) .

It follows from the relations

-( f(z)dz=\ undz\
Jω'(ί) JΣ{t)

\ f(z)dz = \ undz* - \ undz' ,
Jω(t) JΣU) JΣ(0)

that
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1(ί)F2(ί)dί^2(V»
Jo

+ c4

I (
I J

uΛz'

lit)

2

CM\\lM ,

which with (12) proves the estimate (10).
To prove the second part of the theorem, take an arbitrary-

function / 6 ̂ ^(w) and define the vector v)(z) = F(zn)a(z), where a(z)
is given by (5) or (6) for z e G, a = 0 for z e ω\G and F is the same
as in (9). In virtue of (8)

dw(z) Ce(\F(zn)\g-\zn) ^ fdz'\)

so that

\w\
\ Jω ^ I L , ^

isNow consider the function h = / — F w = / — αΛ(2)I /cί^'. It i

ΛcẐ ' = 0 and hence I hdz = 0 for all ί > 0

(we recall that B(t) = ω(t + g(t))\ω(t)). Split ω into layers JŜ  by
planes (straight lines) zn = ίy where ίy = ίy_! + g{tβ_^y t0 = 0. In virtue
of the property 4) of Ω, in every Bά one can represent ft in the form
h = F-Ψj) where v{j) eώifiϊ)and \\Ψj)\\<*{Bj)£Cg\\h\\L2{B)r Consequently
the vector v 6 &(ω) which equals vU)(z) for z e B3 satisfies the equation
V v = h and

) = Σ \\v^ , = Cl\\h\\l2{ω) ^

Clearly, the vector w + v — u is that which is sought. The theorem
is proved.

REMARK 1. For g(t) = λ(ί + 6), b > 0, we have

so that ^(ω) = L2(α>).

REMARK 2. If \ g~n~\t)dt < ©o, then we&(ω) and hence
o Jo

Now define the space ^{β) as the completion of <g*S°(Ω) in the
norm | | | / | |U which corresponds to the scalar product

(13) </, /*> = ί fhdx + Σ (V-w^w^ωd*,
JΩ i = l Jo
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where Ft(t) = \ fdx for i = 1, , r, and 2*\ is a primitive function

/<fo' vanishing at infinity if i = r + 1, , m.

THEOREM 3. If ue&W), then f = F ue^f(Ω) and

(14)

For every function f e ̂ (β) one can find a vector u e &{Ω) such
that f = F'U and

(15) l i a i k i w ^ C x I I I / I I U .

Proof The first statement is a consequence of the corresponding
statement of Theorem 2. We now prove the second part of the
theorem. If fe^(Ω)f then f\ω.e^t(ωt) and by Theorem 2 there

o ι

exist vectors u{i) e 3fri{ωt) in domains ωif i = r + 1, , m, such that
/ = p.ύ{i) and \\u{ί) |uJ. } ^ C 2 | | |/ | | |ω.. Let μ e C\Ω) be a function which
is equal to 1 in Ωo and to zero in Ω\ΩtQ (Ωto is just the same as in
condition (5), §1) and 0 ̂  μ <̂  1. The vectors v{i) = u{ί)(l — μ) belong
to &((ύi), satisfy the equation F-v{i) = /(I — μ) — u(ί)-Vμ and the
inequality | |3 ( ί ) |kκ> ^ Cz\\uw\U{(ΰi) ̂  CβC8 | | |/| | |β <. Further, let he
L2(ΩtQ) be a function which is equal to zero in Ωo, to u{i)-Fμ in α^,
i = r + lf , m and to Λ0^(l — Λ) in α ,̂ i = 1, , r, the constant
Λo being chosen in such a way that I h(x)dx — —I fμdx (since r >
1, ft0 is determined uniquelly).

It is clear that

By the condition (5) §1, there exists a vector we£&(ΩtQ) such that
V'W = fμ + h and ||w

Setting iδ = 0 in Ω\ΩtQf we obtain an element of
Finally we find in ωi9 i = 1, , r, vectors iί5(i) e ̂ (cOt) such that

F ^ = /(I - jei) ~ A and P ^ l k ^ ^ C.|| |/(l - μ) - fe||U ^
Their existence is a consequence of Theorem 2 and Remark

2. The vector ϊl = w + ve&(Ω), where v = v{ί) for x e ^ and v = 0
for x e i20, satisfies the equation F-u = / and the inequality (15). The
theorem is proved.

COROLLARY. ^ ( i 2 ) = ^£{Ω) and the norms \\f\\^{Ω) and \\\f\\\Ω

are equivalent.

THEOREM 4. Any function p(x) e ^*(Ω) can be represented in



450 V. A. SOLONNIKOV

the form

(16) p{x) = f(x) + ±Ux)\°°(i) Flt)-^- + Σ Ux)\*WF&)-£-
i=i )z£Uχ) gnι+\t) t=r+i Jo gni+\t)

where f e ^t(Ω) — ̂ J^{β) and Xt is the characteristic function of ω^
The inequality c^WflWo ^ \\p\l^*{Ω) ^ C2\\\f\\\Ω holds with constants
Cl9 C2 independent on p.

Proof. By the Riesz theorem, any linear functional oί he,
can be represented in the form (13) with fe^(Ω). If
then, changing the orders of integration in the right-hand side of
(13), we obtain the formula </, h)Ω = \ phdx where p is the function

JΩ

(16). Hence follows the statement of the theorem.

C O R O L L A R Y . Any function p(x)e^*(Ω) tends to zero as \x\—>

Indeed, for xeωi9 i ^ r,

p(x) = f(x) H f~ ^ ' ^ d t

where f{x) 6 L2{a)τ) and

τ^2 dt f°° dt
(i)

'» υi *n

THEOREM 5. Any linear functional l(φ) of φe 3f{β) vanishing
for φ e H(Ω) can be represented in a unique way in the form

— \ pF-φdx ,
}Ω

where pe^f*(Ω), and the norm of the functional is equivalent to

Proof By the Riesz theorem, there exists a vector w e 23f{Ω) e
H{Ω) such that l(φ) = [w, ψ\ = [ϊυ, Pφ]. The right-hand side is a linear
bounded functional of h = V-φ e^£{β) and from this fact follows
the statement of theorem.

An analoguous theory can be developed for weighted spaces.
We formulate here the corresponding definitions and results.

Let 3FJ&) and Ha(Ω) be completions of the sets of vectors C0°°(i2)
and^°°(42) in the norm | |S | | ^ α ( β ) which is generated by the scalar
product
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[u, v]a = \
J

ux-vxdx + Σ

Ha(Ω) is the subspace of divergence-free vectors from
o

is the set of functions q = F u, ue^a(Ω) with the norm
infΓ.7=g ||t5|Uα(χ?), ^a*(Ω) is the space dual to ^/ίa{β) with respect to
the bilinear form I pqdx. The following propositions are valid.

(a) If the domain Ω satisfies(l), (2'), (3)-(5), then dimHa(Ω)/H(Ω) =
r — 1 and there exists a basis {a, (x), , αί._1(cc)} in HJHaf the vectors
αs being linearly independent and satisfying the inequalities (4) for

(b) The space ^ta(Ω) consists of functions which can be approx-
imated by functions from ^T(ώ) in the norm

fdx
)

uΩ = ( \f\*dx +
JΩ j=l Jωj

Σ [
3=1 JO

Σ (V-1 + ί β(ί)ί«|( , fdx

and this norm is equivalent to the norm
(c) Any function from ^C*(i2) can be represented in the form

(is) PW=/(x) + Σ x^l^m-β^ +1+

where / and F3 are functions with finite norms

(d) Any linear functional of φ 6 2$a{Ω) vanishing for φ e jffα(i2)
can be represented in a unique way in the form (17) with
p e ^C*(£).

All these propositions can be proved in the same way as were
Theorems 1-5.

Let n = 3 and let Ω satisfy the conditions (1), (2'), (3)-(5) with
a = 1. Define the space N(Ω) as the range of the operator P-ύ,ue
Wi(Ω), and set \\q\\N{0) = infF-=g 11^11^).
Denote by N*(Ω) its dual space with the norm

I Pqdx
-Lk-

\\q\\N{Ω)
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THEOREM 6. dfjβ) a Wi(Ω), N{Ω) D^£[(Ω), and N*(Ω)

o

Proof. Let ue£%{(Ω). Since Gjczωjc:G% we have

rϊ^MiΛiii ))9 \\ux\\l2{ωj) ^ cλ \ux\
2g){z[j\x))dx and consequently

o J ω j o
ΛII2 . ί ^ sZXfCVir-TKTU\\u\\V2m^Cz\\u\\%ι{Ω), i.e., ^(Λ) c WJίΛ). Thus, ^£l{Ω)dN{Ω) and

^ * ( J 2 ) D 2^(42).

3* Stationary problems* Consider in a domain Ω satisfying
conditions (l)-(5) the boundary value problem

(19) —F2v + Fp=f, P-v = Q, v\dΩ = 0 , vli.i^oo = 0

with additional conditions

(20) Pi-Pr = βif < = l , " , r - l ,

where pi = lim|β|_oop(flc). The constant 39r can be considered as an

arbitrary constant in the definition of the function p(x).
Now we give a generalized formulation of the problem (19), (20).

If v, p is its classical solution, then for any φ 6 H(Ω) we have

(21) t f-φdx = [ vx φxdx + Σ(( \ pφ-ndS - [ —

where n is the unit normal vector to Σό(t), directed exterior to Ωt.
Suppose that for xeω3f \x\> 1, we have p(x) = q{x) + pd where qe
^f*(Ω). Then passing to the limit in (21) as t -> oo (at least along
a certain sequence), we obtain

I vx φxdx + Σ P i \ Φ-ndS = \ f-φdx .
JΩ j=l J ^ }Ω

Since Σ5=i ( φ-ndS = 0 (it follows from Theorem 3 of [3] that

\ φ-ndS = 05 for j = r + 1, , m, φ e H(Ω))9 the relation

holds. These arguments give us the motivation for the following
definition.

A weak solution of the problem (19), (20) is a vector v e H(Ω)
which satisfies for all φeH(Ω) the integral identity

(22) ( vx φxdx + Σ/3i( Φ-ndS - \ f-φdx = 0 .
]Ω 3=1 jΣj JΩ
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THEOREM 7. Let I f φxdx be a linear functional of φ

i.e., for all φe^(Ω), It f-φdx ^ Cf\\Φ\\&(Ω). Then the problem

(19), (20) has a unique weak solution. Moreover, there evists a

unique, modulo a constant summand, function p(x) e L2>loc(Ω) satis-
o

fying for all φ e £&(Ω')(Ω' c Ω, Ω' compact) the relation

(23) [ vx*φxdx = ί f-φdx + \ pV*φdx .
JΩ' JΩ> iΩ'

Proof. The first statement follows from the Riesz theorem on
the general form of a functional in a Hubert space (see [6], Ch. I,
§1). To prove the second statement note that for any φeH(Ωt) =
H(Ωj) (Ωt is a bounded subdomain of Ω with a Lipshitzean boundary)
the identity (22) takes the form\ vx φxdx = \ f-φdx. As is shown

o $ΩX jΩλ

in [2], for φe&ζΩi), we then have

S vx-φxdx — l f-φdx = \ pjr-φdx , for some p1e
ΩX )ΩX J ΩX

and the functions pλ and p2 corresponding to two intersecting domains
Ωt and Ω2 differ from each other by a constant. Therefore it is
possible to define in Ω a function peL2>loe(Ω) satisfying (23). •

Now let us show that as \x\-+ oo9χeωifi ^r, the function p(x)
tends to a constant and that (20) is satisfied. The expression

l(cp) = I vx φ9dx + ΣiβΛ φ ndS - \ f φdx
JΩ 3=1 JΣj JΩ

o ŷ

is a linear functional of ψ e £P(Ω) vanishing for φ 6 H(Ω), so by virtue
of Theorem 6

(24) ί vΛ-φ9dx + Σ f t ί Φ-ndS - ( f φdx = ( qV-φdx ,
JΩ j=l JΣj JΩ JΩ

o

where qe^t*(β) and φ is an arbitrary element of 2f{β). The
sections Σά of β)3- in (22) may be chosen arbitrarily but in (24) they
should be fixed; the function q depends on Σά. Let Σs = Σj(0) and
take in (24) φ e &{Ωf) where Ω' c ωh j < r, Ω' n Σs = 0 . Then in
virtue of (23) we have

(25) \ (vx-φx — f-φ)dx = \ pF φdx = 1 qp-φdx
JΩ' JΩ' JΩ'

and consequently in α),-, ^ = g + py, py = const. Analogous arguments
show that in Ωo U cor, p = q + pr.
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Now let Ω' dΩ be a bounded domain which is divided by the
surface Σά into two subdomains, Ωλ and Ω2 c a)ό. In this case we
have, instead of (25),

I pF φdx + βΛ Φ' ndS = \ qV φdx = I (p — pr)V

+ \ (ϊ> — pj)P'φdx = I pF-φdx + (py — p

Consequently, β,- = p, — pr and we have justified the above definition
of weak solution of the problem (19), (20).

Consider now the nonlinear problem

-V2v + (v F)v + Fp = f, F v = 0,
^ U = 0, v\lxl==oo = 0 , Pj - pr = βj , 3 = If ' , r - 1 ,

in a domain Ω(zRz satisfying the conditions (l)-(5). Let 3^{Ω) be
the linear set of vector fields φ = Σί=ί ^i^i + V(χ) where X3 eR1, f) e
^°{Ω) and the a.(x) are vectors forming a basis in H(Ω)/H(Ω) and
satisfying (4). This set is dense in H(Ω).

Denote by ^^{Ω^} the set of infinitely differentiate vectors
defined in the domain ΩR and vanishing near the surface SB =
dΩR\\Jϊ=ι Σ i OR), by ώR{ΩR) the completion of %f£(ΩR) in the norm of
&(ΩR), and by H\ΩR) the set of all divergence-free vectors belonging
to ^ ( i 2 ) .

Define a weak solution of (26) to be a vector 5 6 H{Ω) satisfying
for all φ e *fe{β) the integral identity

(27) ( vx φxdx - ί v (v-F)φdx = / ^ Σ

(the convergence of the integral \ v (v F)φdx with v e H{Ω), φ 6

Sίf{Ω) follows from the estimates (4)).

THEOREM 8. Suppose that the domain Ω aR3 satisfies the con-
ditions (l)-(5), gi(t)t-+oo—* °° for i = 1, , r, / satisfies the conditions
of Theorem 7, ami ίfcaί /or aϊi φeH'(ΩR),

II,
(C/ does tioί depend on R or φ). Then problem (26) has at least one
weak solution.

Proof. Consider in ΩR an auxiliary problem of finding a vector
vR e H\ΩR) which satisfies the integral identity
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( v? φxdx - \ vB (vBψ)φdx + i - Σ ( (vR-n)(v
JΩR JΩR 2 i = 1 J-Σ'j(-B)

= \ f-φdx - Σ f t \ φ ndS
JΩR 3=1 JΣj

(28)

for all φeH\ΩR) (we suppose that Σ5

Taking φ — vR in (28) it is easy to show that for any solution
of this problem the estimate

(29)
3=1

\βj\

holds. Therefore the existence of a solution may be derived from
the Leray-Schauder theorem in the same way as in [6], Ch. V, §1.

Moreover, it follows from (29) that there exists a sequence
Rk-^oo such that: (1) the sequence Vfk = dvRk/dx. for x e ΩB , V?k = 0

o

for x e Ω\ΩRk converges weakly in L2(Ωj to dv/dxi9 v e &(Ω), 2) the
sequence vRk converges in Lέ(Ω) to v for any fixed M. Now let
Rk —> oo and pass to the limit in (28). Clearly, for φ e^°°(42), this
passage leads us to (27). The same is true for φ = aj9 since

vRk\2dS

and, for Rk > If,

f f
\ vRk (vRk-P)ajdx — I v-(v-F)ajdx

(30) ^ I ( [vRk (^ f c F) - £ (v V)\aό - d

+ C 3 ( Σ ί I vΛ* |2flr78(«ίi}(»))^ + Σ ί \v
\ i = l Jωj(Rk)\ωj(M) 3=1 Jωj\ωj(M)

The second term in the right-hand side does not exceed

i = l t>M

consequently, it can be made less than any fixed e > 0 by an appro-
priate choice of the number M > 1. After that we can make the
first term less than ε by taking Rk large enough. This shows that

f vBk (vRk V) aΛx > [ V'(v V)aάdx .

Hence, v(x) satisfies (27) for any φ = fj + Σ i ^ Λ

The justification of the above definition of a weak solution can
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not be carried out in the same way as for the linear problem, since
the functional

(31)

with veH(Ω), may not be defined for all φe^(Ω) (clearly, it is
continuous if v eίl(Ω) Π L±(Ω)). We carry out the justification with
some additional restrictions on Ω.

S CO

gϊ\t)dt < oo for i = 1, , r. Then there
0 f

exists a unique function q e ^£X%Ω) such that l(φ) — I qV φdx for
o JΩ

all φ 6 {β
Proof. As S$f{Ω) is dense in Hm(Ω) under the conditions of the

theorem, it suffices to prove that l{φ) is a continuous functional in
o

£&Ί/2(Ω). This fact is evident for all terms on the right-hand side
of (31) except perhaps the integral

Jr\φ\ = I v-(v-F)φdx = \ v-(v F)φdx + Σ 1 v (v P)φdx .
JΩ Ji2θ i = l Jω^

We have

\ V'(v-F)φdx
I JΩ0

IS ? ^
I Jωj

where

S oo

o P

U U I I » C 4 U C H i / i y , 1*-̂  L/ J I == 5 II ^ \\^{Ω) \\ r W^-ι^p(Ω) «»iiu.

" D

It follows from this theorem that the pressure p{x) corresponding
to the weak solution v{x) of (26) differs from q{x) in every "exit" (ύά

by a constant pd and pό — pr = βά. It is seen from (18) that any
function q 6 ̂ fx*2(Ω) in a certain sense tends to zero when | x \ —> oo 9

so that pd = limia îoo p(x).
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4* Non-stationary problems* If the domain Ω satisfies the
conditions (1), (2'), (3)-(5) with a = 1, it is possible to prove the
solvability of initial-boundary value problems for the non-stationary
Navier-Stokes system with additional conditions of the form (20). We
restrict overselves to consideration of the linear problem

vt - F2v + Fp = f(x, t) , F v = 0 (xeΩ,te (0, T)) ,

(32) v\t=o = vo(x), v\dΩ = 0, v|,eI-oo = 0 ,

Pi(t) - p«(ί) = βi(t) , i = 1, , r - 1

where p,(t) = lim,.,^o,.ββίp(&, t). Denote by ^\QT\ Qτ = Ωx(0, Γ),
the space of divergence-free vectors with a finite norm

I (Ψ + vt + vl)dxdt\

belonging to ^{β) for almost all te(0, Γ). Define a weak solution
of (32) as a vector v e ^\QT) satisfying the initial condition v\t=0 =
vo(x) and the integral identity

(33) Π (vt-τ) + vx-Ύ)x)dxdt = Γ( f-ηdxdt - S^β^dt \ η ndS
JOJΩ Jo JΩ j=i JO J l ̂

for all yeL2(0, T; ίϊ(Ω)).

THEOREM 10. Let the domain ΩczR3 satisfy (1), (2'), (3)-(5) with
a = l. Then for any f e L2(QΓ), βd(t) e Wi(0, T\ v0 e H{Ω) the problem
(32) has a unique weak solution.

This theorem may be proved by Galerkin's method (see [6], Ch.
VI, §6). The proof is based on two estimates for Galerkin approxima-
tions. The first estimate is the energy inequality

s u p I I v ( x , r ) \2dx + \\\vx \2dxdt
re (0,T) JΩ Jo JΩ

\vo(x)\2dx + Π ff(x, t)\*dxdt
JOJΩ ί=ljθ

which can be easily obtained from (33) after the substitution η(x, t) =
v(x, t) for 0 ^ t ^ τ, η = 0 for τ <t ^ T. Taking in (33) η = vt

and making the transformation

vt ndS= -
Jo

we obtain an estimate for I I v\dxdt in terms of the data. As the
J o J β



458 V. A. SOLONNIKOV

Galerkin approximations satisfy an equality of the form (33), both
estimates are valid for them. The proof of the existence of a weak
solution is quite standard and may be omitted. Now, taking in (33)
τ)(x, t) = ξ(t)φ(x), φ 6 H{Ω\ we see that for almost all t e (0, T),

KΦ) = ί (vt Φ + va φa - f-φ)dx + Σ f t W ( Φ-ndS = 0 ,

hence, for φeW}(Ω),l(φ) = \q(x,t)F φdx and qeN*(Ω) αM?(Ω).
JΩ

From the estimate

I k l l W ) ^ c(\\vt\\l2(Ω) + | | ^ ! l l 2 ( ^ + \\f\\ϊ2iΩ) + E l / 3 y ( t

we deduce that q(x, t) e L2(0, Γ; -ΛΓ*(fl)) c L2(0, T; Λfί(Λ)) and therefore
in a certain sense q —> 0, as | a? | —> oo. Repeating the arguments of
§3, it is easy to prove that in ωjf j = 1, , r — 1,

p(α, t) = ?(a?, ί) + py(ί) , pj(t) - pr(ί) = βj(t) .

Thus, we see that the presence in the integral identity (33) of

an additional term Σ/=ϊ \ β](t)dt\ η ndS does not lead to any essential
JO JΣj

change in the well-known proof of the solvability of the linear non-
stationary problem. The same is true for the non-linear problem
with additional conditions of the type (20). As in [6], it is possible
to prove that the non-linear problem with these additional conditions
is solvable locally with respect to t.
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