
PACIFIC JOURNAL OF MATHEMATICS
Vol. 94, No. 2, 1981

SMALL DOWKER SPACES

W. WEISS

We construct a normal, locally compact, first countable,
separable, real compact topological space which is not count-
abley paracompact. This construction is performed under
the (relatively consistent) set-theoretic hypotheses: Martin's
Axiom plus Oc(E).

Years ago, C. Dowker proved the now well-known theorem that
for any Hausdorff topological space X, topological product of X with
the closed unit interval is normal iff X is both normal and countably
paracompact [3]. Since then researchers have called Hausdorff spaces
which are normal but not countably paracompact Dowker spaces.

Dowker spaces seem to be extremely rare and difficult to con-
struct. In fact, in the literature there is only one which is con-
structed using just the usual ZFC axioms of set theory [8]. It was
discovered by M. E. Rudin who then asked [10] if there were any
"small" Dowker spaces, i.e., ones which are, for example, first count-
able, separable, realcompact, or of small cardinality.

Examples have been constructed, using extra set-theoretic axioms.
M. E. Rudin [9] used the existence of a Suslin line to obtain a Dowker
space which is hereditarily separable and first countable. In [5] I.
Juhasz, K. Kunen and M. E. Rudin construct, using CH, a first
countable, hereditarily separable, realcompact Dowker space and claim
that with the stronger assumption O they could construct one which
is locally compact as well.

It was unknown if Martin's axiom plus not CH allowed the con-
struction of small Dowker spaces since Martin's axiom plus not CH
often implies topological results contrary to CH or O I n this paper
we construct a Dowker space using axioms of set theory consistent
with Martin's axiom. This Dowker space is locally compact, first
countable, separable and realcompact. By the results of [11] we
cannot hope to prove that this Dowker space is hereditarily separable.

Recently, M. Bell has constructed a first countable realcompact
Dowker space, assuming Martin's axiom. In fact, only a weakened
form of Martin's axiom, called MA (σ-centered) is used. We use it
repeatedly in our construction.

MA {σ-centered). If P is a partial order such that P — \JneωPn

where each Pn is centered and tc < 2*° and {Da: a < K] is a collection
of dense subsets of P, then P contains a {Da: a < £}-generic subset.

Recall that a subset S of a partial order P is centered iff each
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finite subset of S has a lower bound. A subset D of P is called
dense iff for each peP there is some element of D less than or equal
to p. If {Da: a < Λ:} is a collection of dense of subset of P, a subset
G of P is called {Da: a < /r}-generic iff Da f] G Φ 0 for each a < K.

Another useful axiom is variation of <>> called ζ>ω2(E). We let
E — {ae ω2: cf (a) — ω}.

<yW2(E). There is a sequence {Xa:aeE} such that each XaQa
and for any X £ ω2 { α e £ I = l n α ) is stationary in ω2.

PROPOSITION 1. // ZFC is consistent, so is ZFC plus MA (σ-
centered) plus 2*° = fc$2 plus ζ}ω2(E).

Proof, This seems to be folklore. The model needed can be the
"usual" model of Martin's axiom plus 2*° = V$2 where the iterated
forcing is done over a ground model of V = L. A modification of
the proof of Theorem 7 of Chapter 18 in [2] shows that this model
is a model of O^(E). •

The role of y$2 in the collection of axioms in Proposition 1 might
be played, in this article, by any regular uncountable cardinal, but
for concreteness we choose to assume 2Ko = ^ 2 . These assumptions
are used by Hajnal and Juhasz for a topological theorem of a com-
pletely different nature in [4].

PROPOSITION 2. Oω2(E) implies there exists a sequence of ordered
pairs {(Sa, Ta): aeE} such that for all aeE Saζ= a and Ta £ a and
for any two subsets S and T of ω2, {a e E: both Sa — Sf]a and Ta —
T f) a} is stationary in ft)2.

Proof. This too is folklore. Briefly, let / : ω2 -> ω2 x ω2 be any
bisection. Let Sa = {first coordinates of elements of /"Xα} and Ta —
{second coordinates of elements of f"Xa}. Then for any two subsets
S and T of ω2{a eE:Xa = f-\S x T)f]a}f]{ae ω2: f"a = a x a} is
contained in {aeE:Sa x Ta = (S Π a) x (T Π a)} which must there-
fore be stationary. •

We denote the real numbers by R and the rationale by Q,
In [5], Lusin sets are used to construct a Dowker space. Here, we
use:

PROPOSITION 3. MA (σ-centered) plus 2Ko = y$2 implies there is
an L £ R such that

( i ) LΠQ= 0 ,
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(ii) for any open U £ R, \L f] U\ = y$2,
(iii) for any nowhere dense N Q R\L Γ) N\ < fc$2.

Proof. Folklore again. Note that the hypotheses imply that R
is not the union of ^ V$i nowhere dense sets and then make a simple
modification to the usal inductive construction of a Lusin set. •

We now do the promised construction. We will eventually define
a topology τ on a subset X of L\J Q, where L is as given in Propo-
sition 3. Fix ^ as a well ordering of L. Let {Aa: a e ω2\E} enume-
rate {A C L: \A\ < V$2} with each A being repeated fc$2 times. In
addition, let {Ba: a e o)2\E} enumerate all countable sequences of sub-
sets of Q. Finally, let {(Sa, Ta):aeE} be as in Proposition 2.

From now on we shall assume ZFC plus MA (σ-centered) plus
2*° = ^ 2 plus Oω2(E).

We shall define the topology τ on J £ i U Q by recursively
defining a sequence of points {xa: aeω2} Q L and topologies τβ on
Xβ = {xa: a e β} U Q, for all β e ω2. Simultaneously we define a collection
{Ca: a e ω2\E} of subsets of L\J Q and a function p:X—>ω recursively.

The inductive hypothesis is that for all a < β

(i i) τβ refines the Euclidean topology on Xβ,
(iii) Q is dense in (Xβ, τβ),
(iv) τβ is a locally compact, locally countable topology,
( v) each Ca is a clopen subset of (Xβ, τβ),
(vi) p(xa) = n implies there exists Ueτa+1 such that for all y e U

ρ(y) ^ n.
(vii) for all finite F £ β, Q\\JCCBFCCC is dense in the Euclidean

topology on R.
We shall make the construction so that each subset of L of car-

dinality < fc$2 is contained in some Ca.

We begin the construction by letting Xo = Q and r0 the discrete
topology on Q.

At limit ordinals λ, including λ = ω29 we let τλ be the topology
on Xλ = U {Xβ: βex} generated by \J{τβ: βex}. The inductive hy-
pothesis is easily seen to be satisfied. All the action takes place at
successor stages and there are two cases to consider: first, when
β = a + 1 for some aeE and second, when β = a + 1 for some

At stage a + 1 when aeE we consider (Sa, Ta} and an increasing
sequence {an: n e ώ) converging to α.

Case (a). There is xeL\Xa, there is a sequence {sn:nea)} Q Sa
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and a sequence {tn: neω) Q Ta such that:
( i ) each sn e Xa\Xan and each tn e Xa\Xan,
(ii) there exists I e ω such that {/o(βj: n e ώ) £ I and {p(tn):

neω} S=l,
(iii) in the Euclidean topology on R {Sn} —» a? and {£w} —• x.
In this case, let xa — x. We need a lemma.

LEMMA 1. There exist open Uvzτa containing sn such that for
all ξ < a{n e ω: Cζ Π Un Φ 0} is finite.

Proof. Since (Xa, τa) is first countable, let V(n, m) be the mth
basic open neighborhood of sn.

Let P be the set of all pairs </, g} such that
( i ) / is a finite partial function from a into ω,
(ii) g is a finite partial function from co into β), and
(iii) for all ξ e dom /, for all n e dom g, n> f(ζ) implies

sn e Cf or V(n, g{n)) Π Cf = 0 ,

with the partial ordering of function extension in both coordinates.
Let D\ — {</, g): wedom#}. Since each Cζ is closed in (Xa, rα>,

each D\ is dense in P.
Let /?! = {</, flr>: fedom/}. Clearly each D\ is dense in P.
Now, if </2, >̂ and </2, >̂ are elements of P and /i and f2 are

compatible as functions, then </i U /2, ̂ > is in F. Hence for each g,
{</, 9}'- 9 — Q) is isomorphic to the partial order of finite partial
functions from a into ω ordered by set containment, and so P is
σ-centered.

By MA (cr-centered), there is a G £ P generic for all D\ and D\.
Let F = U {/: for some #, </, #> e G} and G = U {̂ : for some /,
</, 0> 6 (?}.

Let C7% = F(w, G(n)). For each f e α there is some neω such that
Cξ £ Xβft f. If n > max {nξf F(ξ)}, then U% Π Cf = 0 . •

Returning to the construction, let {Os(w): w GO)} refine {Un: n eω]
of Lemma 1 such that

( i ) sne0s(n)Q Un, p"Os(n)Ql,
(ii) Oa(n) is countable, compact and open in (Xa, τα>,
(iii) the Euclidean diameter diam Os(n) < 1/n for each n.
Similarly obtain {Ot(n):neω} with each tne0t(n). Let Vm =

K l U U {0s(O: % ^ m } U U {OίW: n^m}. Let τα U {Fm: m 6 ω} gener-
ate τα+1. Let p(xa) = i. A routine check shows that the inductive
hypothesis is still satisfied.

Case (b). If the conditions for Case (a) are not satisfied, we
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waste time with the help of this lemma.

LEMMA 2. There is a Q* Q Q which is dense in the Euclidean
topology and for all ζ < a, (Q* ΓΊ Cζ) is finite.

Proof. Enumerate Q as {qn: neco}. Let P be the set of all
ordered pairs (M9 /> such that

( i ) M is a finite subset of Q,
(ii) / is a finite partial function from a into a),
(iii) if ξeάomf then Cζ Π MQ {qn:n < f(ξ)} with the partial

order given by extension of each coordinate.
Let Dζ = {<M, />: ξ edom/}. Clearly Dξ is dense in P for each

ξ< a.
Let, for each pair of rationale p, r with p < r, Z)^ = {<M, />:

^ Π (p, r) Φ 0}, where (p, r) is the open interval. Condition (vii) of
the inductive hypothesis ensures that each Dvr is dense.

For each M, {(M, />: M = M} is isomorphic to the partial order
of finite partial functions from a into a) ordered by set containment,
and hence P is σ-centered.

Hence by MA (σ-centered) there is a G £ P which is generic
with respect to the above-mentioned dense sets. Let Q* — U {M:
there is some / such that (M, /> e G}, and let F — \J {/: there is
some M such that (M, /> e 6?}. Then Q* is dense and for each
ζ < α, (Q* ΓΊ Cζ) S {qn: n < F(ξ)}. Π

We can now pick any x e L\Xa and find {pn: neω} £ Q* from
Lemma 2 such that {pn} —> Λ in the Euclidean topology. Let ίuα = a
and let Fw={xα} U {pn: n^m}. Let τα + 1 be generated by τaU {Fw: meω}
and let ^(»α) = 0 to satisfy the inductive hypothesis in this case.

We can now proceed to stage a + 1 where a$E. We must do
two things: define xa and τa+1 and define Ca.

Embarking on the first task, let's consider Ba = (B°a, Bl, Bl, •>.
Using Lemma 2 obtain Q* £ Q, dense, such that Cζ Π Q* is finite for
each ξ < a. There are now two cases to consider.

Case (a). Each xeL\Xa is in the Euclidean closure of only
finitely many of the sets ΰί Π Q*, iβα). In this case let xa be any
element of L\Xa. Pick {pn: neω} £ Q* such that {pn} —>α?α in the
Euclidean topology. Let τa U {{xa} U {̂ %: ^ 2 w}: m e ft)} generate rβ+1.
Let |θ(α?α) = 1 + max {j: xa is in the Euclidean closure of Bί Π Q*}.
Note that the inductive hypothesis is satisfied and that for all
j 2 p(xa), xa ί τα+1-closure of Bi.

(b). There is some xe L\Xβ such that x is in the Euclidean
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closure of infinitely many of the sets BlnQ*. In this case pick xa to
be some such x. Pick an infinite J £ ω such that for each j e J, xa

is in the Euclidean closure of Bi Π Q*. For each j e J pick {pi: neω}Q
BiΠQ* such that {pi} -> xa in the Euclidean topology. Let {rk:ke ώ]
be a subsequence of {pi: n e α), j e J} such that for each j e J each
tail of {rk} contains an infinite subset of {p3

n: n e ώ] and such that
{rj —> xα in the Euclidean topology. Let τα U {{#α} [j {rk: k ^ m}: m e ω}
generate τα + 1. Let p(ίcα) = 0. Note that the inductive hypothesis is
satisfied and that xa is in the τα+1-closure of infinitely many E{.

We now proceed to define Ca. Consider Aa. If Aa ίg Xa+19 let
Ca = 0 . If 4̂α £ -Σ«+i> t h e n C« is given by the following lemma.

LEMMA 3. Suppose Aa £ (Xa+1 Π ̂ ) ^^^ {Ĉ : f e a\E} is a collec-
tion of clopen subsets of Xa+ι such that for each finite F £ {oc\E)9

(Q\U ί^: f e -P7}) ^ s dense in the Euclidean topology. Then there exists
a clopen Ca £ Xa+1 such that Aa £ Ca and for each finite F £ ((α +
Ϊ)\E), (Q\\J {Cζ: ξ 6 F}) is dense in the Euclidean topology.

Proof. From Lemma 1 obtain Q* such that for each ξ e (a\E),
(Q* Π Cζ) finite, and Q* is dense in the Euclidean topology. It now
suffices to construct a clopen Ca such that Aa £ Cα £ Xα+1 and (Q*\Cα)
is dense.

To this end let P be the set of all triples (a, 6, c> such that:
( i ) a and b are clopen, compact subsets of Xa+1,
(ii) c is a finite subset of Q*,
(iii) (αU A)f]b = 0 ,
(iv) α Π c = 0

with the partial order of set containment in each coordinate.
{<α, 6, c>: # 6 α U 6} is dense for each # 6 Xα+i. For each interval

(V> O) with rational endpoints, <α, 6, c): (p, ?) Π c ^ 0} is dense.
For each finite union J of interval with rational endpoints and

each finite c £ Q*, {(a, b, c): a £ /, (6 Π J) = 0 and c = c} is centered;
hence P is ^-centered.

Let 6r £ P be generic with respect to the above dense sets. Let
C« — U {a: f° r some b and c, <α, 6, c) 6 (?}. It is straightforward to
show that Ca is clopen, Aa £ Cα and (Q*\Ca) is dense. •

This completes the construction. We let X = Xω2 and r = τω2.
Clearly r is a locally compact, Γ2, first countable, separable and
submetrizable topology on X. Since <X, τ> is first countable and
submetrizable, it is real-compact [5] also. It remains to show that
(X, τ) is a Dowker space.

We show that {X, τ) is not countably compact by showing that
the open cover {0/. j e ω} has no precise locally finite refinement,
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where Oά = {xeX: p(x) S j} Due to (vi) of the inductive hypothesis
{Of j e ω) is an open cover. In order to achieve a contradiction
assume {Wfjeω} is a locally finite precise refinement. For some
ae(ω2\E), ((Wo n Q), {W, Π Q), (W2 n Q), •> = 5, and we look at
what happened at stage a + 1. Under Case (b) #α witnesses that
{W -̂rjίeα)} is not locally finite. Under Case (a) xa witnesses that
{W3 : j GO)} is not a cover, since if j < p(xa) then xn$Oj and if j Ξ>
^(.τj then a j ^ ^ n Q a Wd.

In order to show that (X, r> is normal, we need a short lemma.

LEMMA 4. // if cmd K are closed disjoint subsets of X, one of
which has cardinality <#2, then there are disjoint open sets separating
H and K.

Proof. Assume \H\ < ^ 2 so that there is some clopen C £ X
such that \C\ < « 2 and HQC. Let K* = KΓ\C. By MA (σ-cen-
tered), since X is locally compact and submetrizable there exist
disjoint open U and V such that H Q U and K* S V [1, 6]. Then
HQ UΠC and KQ U \J (X\C) separating H and K. Π

Now let i ί and K be arbitrary closed disjoint subsets of X.
Without loss of generality we assume H I) K ξZ L and we find disjoint
open sets separating H and K. Let Hi — {xe H: p(x) ^ i} and Kt =
{# 6 iΓ: ^(x) ^ i}. Define U" to the compliment in R of the Euclidean
closure of \J{V\ V is Euclidean open and \V Π Ht\ < i^2}. Note that
for each nonempty Euclidean open F £ U"\V f\ Ht\ = ^ 2 Similarly
define C/f for each ieω.

LEMMA 5. With U{1 and Uf defined as above for each ieo) we
have U<e wEtf'nUe«tf/' = 0 .

Proof. Suppose U" Π Uf Φ 0. Then there is some interval
iQUfnUf. LetH = HtΠlsinάK = KJnL Let Yπ^{aeω2: for all
β<aHΠ[β, a) is dense in /} and Yκ = {aeω2: for all β<aKa[β, a)
is dense in /}. Yn and Y^ are both cub subsets of ω2. So there exists,
by Oω2(E), some aeEf] YH0 Yκ such that i / Π α ^ and J?Π^-Γ«.

Let's see what happened at stage a + 1. We had {an\ neω}
increasing up to a. Since a e Yπ Π Yκ we can find xeL\Xa and
sequences {sn: neω} and {tn: neω} such that the conditions for Case
(a) hold. Hence xa e Sa n Ta £ 5"Π J?" which is a contradiction. Π

Now, since L has the properties from Proposition 3, both
H\\Jieω U" and UL\Uίeω U* have cardinality less than ^ 2 . Hence by
Lemma 4 there are open Vn and Vκ such that:
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« Un ^VHQVHQ (X\K)
and

(X\U,β,u un ς:VκΩVκQ (X\H).
Hence

and

which separates i ϊ and if. The proof is complete.
We could do the above constructions and proofs with ^ 2 replaced

everywhere by V$i thus reducing the set theoretic assumptions to
ZFC plus O A Dowker space with properties similar to X was
claimed in [5] to follow from O The additional property of here-
ditary separability mentioned in [5] can be obtained by weaving in
the idea of constructing hereditarily separable spaces from O in [7]
to the above construction.

The space {X, τ> above is normal and each bounded or closed
unbounded (referring to the indices) subspace is also normal. How-
ever, there is no reason to believe that (X, τ) is hereditarily normal.
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