ON THE WEIERSTRASS POINTS ON OPEN RIEMANN SURFACES

YUKIO HIRASHITA

The number of Weierstrass points on a compact Riemann surface of finite genus g is at most (g-1)g(g+1) and at least 2(g+1). After the Riemann-Roch's theorem for the class of canonical semi-exact differentials, Watanabe considered the number of Weierstrass points on an open Riemann surface of class O_{KD} . In this paper it will be shown that Watanabe's estimate can be proved without any conception of principal operators.

Using the notation and terminology of [1], the following theorem [6, Theorem 2] will be proved without use of the results of Mori [3], Rodin [4] and Royden [5]. Note that a meromorphic function on an open Riemann surface is said to be rational if $\operatorname{Re} df$ is distinguished.

THEOREM. Suppose that R is a Riemann surface of finite genus g on which $\Gamma_{he} \cap \Gamma_{hse}^* \subset \Gamma_{he}^*$ holds. Then the number of Weierstrass points on R is at most (g-1)g(g+1).

Let S be a compact continuation of R such that the genus of S is g. Suppose P is a Weierstrass points on R and f is a rational function on R which has the only singularity of order at most g at P. Let D be a closed disk with $P \in \mathring{D} \subset D \subset R$. Then the Dirichlet integral of f over R - D is finite. Since $\int_{\partial D} d \operatorname{Re} f^* = 0$, there exist harmonic functions u on S - D and v on R such that $u - v = \operatorname{Re} f$ on R - D. Thus we have $dv \in \Gamma_{he} \cap \Gamma_{h}^*$.

We wish to show that dv^* is semi-exact on R. If c is a dividing cycle on R - D, then c is homologous to zero on S - D. This gives that

$$\int_{\mathfrak{c}} dv^* = \int_{\mathfrak{c}} du^* - \int_{\mathfrak{c}} d\operatorname{Im} f = 0 \; .$$

Since $dv \in \Gamma_{he} \cap \Gamma_{hse}^*$, it follows from the assumption that $dv^* \in \Gamma_{he}$. We define

$$\lambda = egin{cases} du & ext{on } S-D \ dv+d \operatorname{Re} f & ext{on } R \ . \end{cases}$$

Then λ and λ^* have no periods along any cycle b on S, where $b \not\ni P$. Therefore $\int \lambda + i\lambda^*$ is a meromorphic function on S. It is easy to see that $\int \lambda + i\lambda^*$ has as its only singularity a pole of order at most g at P. This shows that P is a Weierstrass point on S. Due to the classical result on the Weierstrass points on compact Riemann surfaces our assertion is obtained.

References

1. L. V. Ahlfors and L. Sario, Riemann Surfaces, Princeton, 1960.

2. A. Mori, A remark on the prolongation of Riemann surface of finite genus, J. Math. Soc. Japan, 4 (1952), 27-30.

3. M. Mori, Contributions to the theory of differentials on open Riemann surfaces, J. Math. Kyoto Univ., 4 (1964), 77-97.

4. B. Rodin, On a paper of M. Watanabe, J. Math. Kyoto Univ., 6 (1967), 393-395.

5. H. L.Royden, On a class of null-bounded Riemann surfaces, Comm. Math. Helv., 34 (1960), 37-51.

6. M. Watanabe, A remark on the Weierstrass points on open Riemann surfaces, J. Math. Kyoto Univ., 5 (1966), 185-192.

Received October 26, 1979 and in revised form March 6, 1980.

Chukyo University 101 Yagotohonmachi Showa-ku, Nagoya 466 Japan