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PARTITION NUMBERS FOR TREES AND
ORDERED SETS

ROBERT E. JAMISON-WALDNER

In this paper some bounds on the Tveberg-type convexity
partition numbers of abstract spaces will be presented. The
main objective is to show that a conjecture of J. Eckhoff
relating the Tverberg numbers to the Radon number is valid
for a certain class of spaces which include ordered sets,
trees, pairwise products of trees and subspaces of these.
(Application of the Main Theorem to a certain class of
semilattices is given in an appendix.) For ordered sets the
results here improve those of P. W. Bean and are best
possible for general ordered sets.

1. Introduction. To establish terminology, recall that an align-
ment [7, 8] (“algebraic closure system” [2]) on a set X is a family
& of subsets of X—to be regarded as “convex” subsets—such that

(Al) @,XeZ

(A2) arbitrary intersections of sets in & are again in &7

(A3) unions of upward directed families of sets in & are again

in &~
The smallest convex set containing a set S is denoted <2(S) and is
called the hull of S.
A Radon m-partition of S is a partition of S into m subsets

S=A1U"'UA,,,
such that
LAYN - N LA #= D .

Any point in such an intersection will be called an m-partition point
of S. It is desirable to allow repeated points in S. This can be
formalized by letting S be a multiset: each point of S has an integral
multiplicity which determines the maximum number of A4,’s in which
it may be used. (The cardinality |S| of a multiset S is then the
sum of the multiplicities of its points.) Sometimes it will be more
convenient to think of S as indexed by some set of |S| distinet
indices and to associate partitions of the index set with partitions
of S.

The mth partition number p,(X) of an aligned space X is the
smallest integer (if such exists) such that any multiset of cardinality
0, of points from X admits a Radon m-partition. (The smallest
integer 7, such that any set of p, distinct points admits a Radon
m-partition will be called the 7restricted mth partition number.)
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Celebrated results of Radon [12] and Tverberg [16] show for the
alignment of ordinary convex sets on R? that

(Radon, 1921) (R =d + 2
(Tverberg, 1966) P RY=(m—1(d+1)+1.

In analogy with Tverberg’s result and on the basis of numerous
abstract examples, Eckhoff [5] suggested that the relation

PARTITION CONJECTURE Pu=(m—1)(p,—1)+1

might be true in any aligned space. Although it is still a long way
from establishing this conjecture in general, the main goal of this
paper is to show that the partition conjecture holds for a eclass of
spaces including ordered sets and trees. Some weaker bounds on p,
will be established in general, and it will be shown that the Parti-
tion Conjecture is true when p, equals 2 or 3.

Following Reay and Sierksma [14], we define the m-core of a
multiset S by

core,, (S) = N {L(S\F): |F| < m}.

The mth Helly number h,(X) is the smallest integer (if such exists)
such that any multiset S with |[S| > h,(X) has nonempty m-core.
(The restricted mth Helly number h, is defined analogously for sets
of distinct points.) It follows directly from the definitions that any
m-partition point of S lies in the (m — 1)-core of S. The converse
of this is not true in general, as seen by examining the 2-core of,
say, seven points on the unit circle in R*. However, as seen in the
proof of the Main Theorem, the converse is true for sufficiently large
sets of points in trees, and, as shown in the last section, the con-
verse is always true in ordered sets.

The (first) Helly number will be denoted simply by A(X). It is
well-known [11, 13] that k(X)) is the smallest integer h such that:

for any finite family % of convex sets, if each % or
fewer have nonvoid intersection, then all the sets in
Z have nonvoid intersection.

The following basic inequalities will be useful in the sequel. They
are all immediate consequences of the above definitions and obser-
vations:

(1) ﬁmépm; Eméhm
(2) s 1 =D0; by +1=Dn
(3) hn = mh, ; hlzi—h; D = Dy
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(4) (m —Dh, + 1= p, .

To obtain the first inequality in (3), one also needs to note that if
S is a set with empty 1-core, then the multiset obtained by taking
each point of S with multiplicity m has empty m-core. Inequality
(4) follows than from (2) and (8). The Main Theorem (below) states
that (4) is actually an equality for a certain class of spaces. The
case m = 2 of (2) is due to Levi [11].

In Euclidean space with the ordinary alignment, the restricted
partition and Helly numbers of all orders agree with their unre-
stricted analogues. This is due essentially to the continuity of the
hull operator and the density of Euclidean space. (Note Lemma 2
in [16].) In discrete situations, the inequalities (1) may be strict
for m > 2. This may happen for trivial reasons: if X is finite and
m > | X|, then trivially 9,, = h, = | X| + 1 whereas k, and p, always
approach « as m — . Sometimes, however, strict inequality occurs
in (1) for more interesting reasons: see Theorem 12 in the last section.

2. Examples. Aside from the ordinary convex sets in Euclidean
space, there are numerous other examples of alignments of interest.
Those of particular pertinence to this paper will be defined and in-
troduced ‘here.

Let G be a graph—for our purpose, a set of nodes with a sym-
metrie, nonreflexive adjacency relation. A set K of the nodes of G
will be called path convex provided for each « and v in K, all shortest
paths in G from 2 to y lie in K. The path convex sets form the
path alignment on G. A block graph [6] is a graph each of whose
blocks (maximal 2-connected subgraphs) is a complete subgraph. A
connected block graph will be called a split-tree. Obviously, in any
connected graph a path convex set is connected (as a set of nodes).
The converse holds precisely for the split-trees. The split-trees are
also characterized as those graphs whose path alignment is obtainable
by relativization (as described below) of the path alignment on a
tree. (These and other results will be presented in a separate study
of “tree-like” alignments [9].)

If (X, &) is an aligned space and Y & X, then the restriction
of & to Y given by

LY ={LNY:Le<)

is again an alignment on Y [8]. The process of forming such sub-
spaces (Y, &2|Y) is a frequent and natural means of deriving new
spaces from old ones.
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If (X, &) and (Y, .#) are aligned spaces, the product alignment
[8] & X A is defined on the cartesian product X X Y by

X A ={Lx M:Le and Me _#}.

The determination of various combinatorial invariants of the product
from those of the factors is a standing area of interest in axiomatic
studies of convexity [4, 13, 15].

If X is a (partially) ordered set, then a subset K of X is called
order convex provided that whenever x <y <z and z and z are in
K, then y is in K. The order alignment on X consists of all order
convex subsets of X.

3. Some general results. In answer to the question of Eckhoff
whether the finiteness of p, implies the finiteness of all the partition
numbers, the author presented the proof of the following inequality
at the 1976 Oberwolfach Convexity Conference:

(5) Dmn = DuDn
It follows at once from (5) that
(6) w S (DR = pmioen

Thus for any aligned space, p, as a function of m grows at most
polynomially. Sierksma and Reay [14] recently found another rela-
tion on the p,’s which yields a better estimate than (5) in case
m = 3. The following is an improvement of both estimates. (The
Sierksma-Reay result is the case n =2, 1 = 1.)

THEOREM 1. For any aligned space, the partition numbers satisfy

p(m—i)n+e§(pm—i)p”+5
where 0 Zi<mand e=01if i=0and e=114f 1= 1.

Proof. Let S be a multiset with |S| = (p, — 9)p, + ¢. Suppose
first that ¢ > 0. Select and fix some point  in S. As b may oceur
with multiplicity 2 or more in S, we distinguish one copy of b—say,
think of it as being colored red. Now divide the remaining points
of S into p, submultisets S(j) each with |S(j)| =, —4. Let S(j) be
S(j) with i copies of red b adjoined. Then S(j) admits a Radon m-
partition with m-partition point ¢;. In the partition of S(j) there will
be at least m — 1 sets which do not contain any red b. List these as

S(j; 1); S(j, 2): ) S(jy m — i) .

Now the multiset 7' consisting of all the ¢,’s admits a Radon
n-partition
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T=TU---UT,

with n-partition point z. For each 8 from 1 to » and each v from
1 to m — 1, let

Ay = U{S(, 7):tie Ty} .

Then for each 8 and v, the convex hull of A, contains T, and hence
2. Let B consist of the unused points in S. Then B contains red
b and hence at least one set in the m-partition of S(j) for each j.
Thus 7T and hence z lies in the convex hull of B. The (m — ©)n
multisets A, together with extra set B form the desired partition
of S.

If 4 =0, the proof is easier since it is unnecessary to pick a
base point b and the sets A, (obtained analogously) form the desired
mm-partition. ]

As a illustration, the above theorem leads to the following
bounds:
=@ —-—p,+1=p—p, +1
D= D}
=@ —Lp.+1=pl—pi+1
psépzpsépg”‘p§+p2
2y Y A 4

If the alignment in question has a finite Carathéodory number,
then it is possible to improve the polynomial bound (6) to a linear
one. Recall that the Carathéodory number of an aligned space
(X, &) is the smallest positive integer ¢ (if such exists) such that
for any subset S of X and any point » in ¢2(S), there is a subset
F of S with |F'| £ ¢ and pe 2(F).

THEOREM 2. If an aligned space has finite Carathéodory number
¢ and Helly number h, then its partition numbers satisfy

m=(m —1)ch —c+2.

Proof. Given a multiset S with the above cardinality, select
and fix a base point b in S and let 7 = S\b. Define families of
multisets

F ={T\F:|F| = (m — 2)c}
and
& ={(T\G) U {b}: |G| = (m — 1)c} .

Any h sets in & have b in common. If we choose any h sets from
F U.%, not all in & their intersection can miss at most
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(h—1(m—De+(m—2)e¢+1=he(m —1)—c+1

points of S, so that there is still one point left in common. If 27#
is the family of convex hulls of multisets from % U .5, then any h
of them have a point in common. Since & is the Helly number, there
is a point z common to all the convex sets in 5~ Clearly z € <&(T),
so there is A, & T with |4,| < ¢ and ze€ ¥(4,). Now T ~ 4, is in
&, so there is A, & T\A, with |4, = ¢ and ze ¢¥(A4,). We may
proceed thus until m — 1 multisets A, of T are so chosen. Then

A, =8\(4 U ---UA,_)

is in .%” and hence contains z in its convex hull. Thus 4, ---, 4,
is the desired Radon m-partition. il

The above result is a generalization of the Kay and Womble
inequality [10] and was also presented by the author at the 1976
Oberwolfach Conference.

There is one other bound on the partition numbers which is
sometimes useful. A subset I of an aligned space (X, &) is inde-
pendent iff x ¢ &2(I\x) for each x in I. The rank of X is then defined
as the supremum of the cardinalities of independent sets. (Note that
for d = 2, the rank of R? with the alignment of ordinary convex
sets is infinite since the unit sphere is an independent set in this
alignment. However, the rank of R? with the alignment of all affine
flats is d + 1.)

The rank is an upper bound for both the Helly number and the
Carathéodory number. Indeed, if core, (S) = @, then S must be
independent. Furthermore, if p € &2(S), then by the finitary property
of alignments [2, 8], there is a finite subset F of S with pe (F).
If we choose this F' so as to minimize |F'|, then it is obvious that
F' must be independent.

ProposiTION 3. If X is an aligned space with finite rank r,
then the partition numbers satisfy

P < (m—1r +1.

Proof. If S is any finite set and F is a subset of S of minimal
cardinal such that <A(F) = £~(S), then evidently F' is independent.
Hence if X has rank », any finite set S in X contains a subset F
with |F| < » and &Z(F) = Z£(S).

Now let S be given with |S| =< (¢ — 1)» + 1. Choose F, S S so
that |F,| = r and <A(F,) = <(S). Now choose F, < S\F, so that
|Fy| < r and
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L(Fy) = L (8\F) & A(F)) .

Proceeding in this way, we can peel off m — 1 sets F';. There is at
least one point z of S that remains, so that we get

26 L(Fpy) S L (Fp,) S - & A(F) .
This yields the desired m-partition. O

Should it happen for a space X that
(7) p, =rank (X) + 1,

then the above result yields a trivial verification of the Partition
Conjecture in X. Of course, (7) is a very restrictive equation, but
it does hold for a number of interesting spaces. It certainly holds
for the order alignment on a totally ordered set (rank?2). It also
holds for the alignment of flats on any matroid as well as for certain
“p-adic convexities” on vector spaces over non-achimedean ordered
fields. It will also by shown in Proposition 14 of the last section that
(7) holds for the order alignment on the power set of a finite set.

We conclude this section by establishing the Partition Conjecture
in case p, is either 2 or 3.

ProposITION 4. If p, = 2, then p, = m for all m.

Proof. One observes that p, = 2 if and only if every pair (and
hence every finite number) of nonvoid convex sets has nonempty
intersection. U

If the points of an aligned space X are convex, then p,(X) =3 is
equivalent to rank (X) = 2, and Proposition 3 can be applied. If points
are not convex, a variant of the argument in Proposition 3 must be
applied. It depends on the fact that there is only one type of
partition (namely, 8 =2 + 1) and hence the method does not extend
to p, > 3.

PROPOSITION 5. If p, =8, then p, < 2(m — 1) + 1 for all m.

Proof. Let us say that points 2 and y dominate a set S provided
there are points d, in &(x) and d, in <(y) such that
L, y) N L(s) = @

for all 2’ in <~(d,) and %" in <~(d,) and s in S.
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Claim 1. Given ae ¥ (x), be &£ (y), and ce (). If @ and b
dominate ¢, then = and y dominate z.

This is obvious since ~(c) S .&(2).

Claim 2. Given three points «, ¥, and 2z, some pair of them
dominates the third.

Suppose this fails. Since x and y don’t dominate 2z, there are x, in
Z(x) and ¥y, in ¥ (y) with

L, ¥) N L (2) = @ .

By Claim 1, no two of x,, ¥,, 2 dominate the third, so there are
¥, € L (¥,), and 2, € & (z) with

cg(ym z1) N g(“ﬁ) = .

Again by Claim 1, 2, and 2z, don’t dominate y,, so there are x, € & (x,)
and z,€ (z,) with

L@y %) N L (Y) = D
But then z,, %, 2, do not admit a 2-partition since

L@y Yo) N L(22) & L@, ¥) N L(2) = O
&z (xm %) N L (Y) = @
g(?/z, zz) n rg(xz) - g(?/z; zl) N g(a&) =Q.

This contradicts p, = 3 and establishes the claim.

Claim 8. Any finite set S with |S| = 3 is dominated by two of
its points.

When |S| = 8, this follows from Claim 2. Proceeding by induec-
tion, pick any z in S and select  and y in S\z which dominate S\z.
From the definition of domination select d, and d,. By Claim 2, two
of d,, d,, and z dominate the third.

If d, and d, dominate 2, then it is easy to see that d, and d,
dominate S. Whence it follows that 2 and y dominate S.

If d, and z dominate d,, pick points d, in <~(d,) S < (y) and d,
in #(z) as in the definition of domination. We shall show that y
and z dominate S. Consider ¥’ in <~(d,) and 2’ in <(d,) and s in
S. Note first that

FW,?)Nnxd,) * o,

since d, and z dominate d,; let 2’ be any point in the above inter-
section. Now consider
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D, =2, %)n () .

If s=2, then 2'eD,. If s =9, then y'eD,. If s=z, then 2’'eD,.
If s is not one of x, vy, 2, then D, contains

LW, ) N L(s)

which is nonvoid since  and y dominate S\z.
The case that d, and z dominate d, is analogous.

The proposition can now be proved by induction on m. Given
a multiset S with | S| = 2m — 1, select by Claim 3 two points x and
y of S which dominate it. Then for each s in S\{z, y}, there is a
point s’ in (=, y) N ~(s). Let S’ be the multiset of the 2m — 8
points so chosen. By induction, these possess an (m — 1)-partition
with partition point z. Clearly we can lift this partition to an
(m — 1)-partition of S\{x, y}. But since

e (S e L@, y),

{z, ¥y} may be added to the lifted partition to obtain the desired m-
partition. O

The above argument seems a bit tortuous for such a simple case
as p, = 3. In fact, if X is finite a very short argument is possible.
If we wish to partition a set S, choose for each « in S, some 2’ in
ZF(x), so that <~(«') is minimal. The restricted alignment on

S = {&": x € S}

is easily seen to have rank 2. Proposition 3 can be applied and the
desired partition lifted to S.

We conclude this section with an example which shows that
somewhat complicated alignments can have p, = 3 and that, in general,
a simple reduction to the finite case is not possible.

ExAmMPLE. Let X = NXN, where N is the set of positive inte-
gers. Call a subset K of X convexr provided

*) whenever ¢ <y < 2z and (x, ») and (2, n) are in K,
then (y, n + 1) is also in K.

Given three points (z;, %,), ¢+ = 1, 2, 3, with z, < 2, < x;, then clearly

(2 my, + ny + ny + 1) is a 2-partition point, so p,(X) = 3.

Suppose S is any set of four points of X with distinct first co-
ordinates. We claim that for any finite set F' containing S, p,(F') > 3.
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Indeed, let (», m) be a point of F' with maximal second coordinate.
There are then two points of S whose first coordinates lie either
both strictly above p or both strictly below ». Then (p, m) and
these two points do not have a Radon 2-partition in F' since any of
their 2-partition points has second coordinate m + 1 or more.
Furthermore, X has infinite rank since N x {1} is an independent
set. It is also clear that the lattice of convex sets contains no atoms.

4, The main result. If p is a point in an aligned space X,
then by a copoint at p we shall mean a maximal convex subset of
X\p. (The terminology is borrowed from matroid theory; the copoints
are just the complete irreducibles in the lattice of convex sets.)
We shall make use of some copoint intersection properties as defined
below:

CIP (m, k):. for each p in X, among any m distinet copoints at p,
there are k with empty intersection.

MAIN THEOREM. Suppose that an aligned space X satisfies
CIP (3, 2) and has finite Helly number h. Then the partition num-
bers of X satisfy

Pp=m—1h+1 if h=3.

It follows that the Partition Conjecture holds for spaces with
CIP (3, 2). (This is immediate except in the case that h =2 and
p, =< 3. But Propositions 4 and 5 confirm the Partition Conjecture
in this case.)

In the proof we shall need the fact that a space with CIP (3, 2)
has Carathéodory number < 2. This is a special case of a more
general result below. Indeed, if we note for each m < n and k < j
that CIP (m, k) trivially implies CIP (n, j), then the result below im-
plies that a space with CIP (n + 1, j), where n = j, has Carathéodory
number at most x.

PROPOSITION 6. An aligned space (X, &) satisfies CIP (n + 1, n)
if and only if

(1) the Carathéodory number of (X, &) is at most n, and

(2) (X, &) satisfies CIP (n + 1, » + 1).

Proof. Suppose CIP (n + 1, ») holds; then CIP (» + 1, n + 1) fol-
lows trivially. If pe . ¢2(S), there is a finite subset F of S with
pe L (F) since the hull operator is finitary [2, 8]. We may select
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F of smallest pos_sible cardinal. Then for each xz¢ F, the convex
set <~(F'/x) misses p and hence can be extended to a copoint C, at
p. If |[F|=n + 1, then some n of these copoints should have empty
intersection. But the intersection of any = copoints C, misses at
most n points of F and thus must contain a point of F'if |F| = »n + 1.
Thus |F'| = » + 1 is untenable, and we must have |F| < n as desired.

Conversely, to see that (1) and (2) imply CIP (n + 1, n), let » + 1
distinct copoints G, C,, ---, C, at a point p be given. If each n of
these have nonempty intersection, pick for each ¢=10,1, ---, 7%, a
point x; common to all the C’s except C;. As any n of the z,s lie
together in some C;, it follows from (1) that » is not in the convex
hull of x, %, -, ®,, which can thus be extended to a copoint D at
p. If D were C; for some 4, then z, would lie in all » + 1 of the
C’s, contrary to (2). Thus D, C,C, ---,C, are n + 1 distinct co-
points at p. But they have the point #, in common, contradicting
(2). This forces us to conclude that some n of the C,’s must have
had empty intersection as desired. ]

Proof of the main theorem. We shall actually prove a stronger
result. Namely, if S is a multiset of points in X with |S| = 2m and
p ecore,_, (S), then p is an m-partition point of S. The main result
follows from this and the observation made in the first section that
any multiset of cardinality greater than (m — 1)A has nonempty
(m — 1)-core.

It will be convenient here to think of S as being indexed by a
set I" of s = |S| distinet indices:

S={x:vel}.

Make I into a graph by defining indices v and w to be adjacent
provided p ¢ £ (x,, x,). We shall show that I contains m mutually
disjoint pairs of nonadjacent vertices. These can then be lifted to
S to obtain an m-partition of S with partition point .

First, let us observe that I" has the following properties:

(1) among any three distinct cliques (maximal complete sub-
graphs) of I, some two are vertex disjoint, and

(2) any clique of I' contains at most s — m vertices.

Assertion (1) certainly holds if one of the cliques is singleton. (One
must be a bit wary of the points z in S for which pe ¢7(z).) If a
clique K is not singleton, then there is a copoint Cy at p in X such that

(*) K={wel:x,eCy.

Indeed, since (X, .<”) has Carathéodory number =< 2, p does not
belong to the convex set
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L(x,:veK)

which can thus be extended to a copoint C, at p. If x,€Ck, then
for each » in K,

g(a"w; xv) ; CK

so that w is joined to v in I". Thus by maximality of K, w must lie in
K. Hence (*) holds, and assertion (1) follows from the CIP (3, 2) in X.

Assertion (2) follows from the fact that pecore,_, (S) and that
X has Carathéodory number < 2.

We shall now show by induction on m, that any graph I” with
s = 2m vertices satisfying (1) and (2) contains m mutually disjoint
pairs of nonadjacent vertices. The case m = 1 is obvious since by
(2), I' cannot be complete.

Suppose there are at most two cliques of I with s — m vertices.
Let A and B be distinct cliques for which |A| + |B| is maximal.
Choose a € A\B. Since B is a clique and a ¢ B, there is a b in B that
is not adjacent to a. Let I” be the graph obtained from I' by
deleting o and b (and adjacent edges) from I". Then

I =8—22=2m—1).

Since distinct cliques of I” are contained in distinet cliques of I,
condition (1) still holds in . Also since A and B are the only candi-
dates for cliques of size s —m in I', any clique of I"* can have at most

s—m—1=(5—-2)—(m —1)

vertices, so condition (2) holds in 7”. Thus induction can be applied.
Now suppose there are three or more cliques of size s — m in I'.
By (1), some two of these, say 4 and B, are disjoint. Thus

s=|I'z|A|+|Bj=2(s—m)=3s+ (s —2m) .

Since s = 2m, it follows that s = 2m and that A and B partition
the vertices of I'. If C is a third clique of s — m = m vertices,
then since C neither contains nor is contained in A or B, there is
some o in ANC and some b in B\C. Note that ¢ and b cannot be
joined by an edge, since there would then be three distinet cliques
meeting at a, contrary to condition (1).

Suppose D is yet another clique of s — m = m vertices. If D
and C meet in some vertex v, then v lies in either 4 or B and hence
in three cliques, contradicting (1). Thus D and C are disjoint.
Whence from cardinality considerations, D is the complement of C.
It follows that there can be no fifth clique of size s — m.

Now if D exists, it contains b (as it was chosen from the com-
plement of C). Thus by removing a and b, we reduce by 1 the size
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of A, B, C, and D (if it exists), so that induction can be applied as
before. H

In order to apply the Main Theorem to the actual evaluation of
partition numbers, it is necessary to be able to compute the Helly
number. A subset S of an aligned space is said to be free if it is
both convex and independent (that is, all subsets of S are convex).
A clique is a maximal free set. (Notice that in a connected graph
with the path alignment, the cliques in this sense coincide with the
cliques of the graph.) Evidently, every clique has empty 1-core, so
that the clique number—the supremum of the cardinalities of all
cliques—is a lower bound on the Helly number. Under conditions
described below, the two are equal. As cliques are often easy to
recognize, this provides a method of evaluating the Helly number.

A point p of a convex set K is an extremepoint of K provided
K\p is convex. An aligned space (X, &) is extremally detachable
(ED) if for any finite set F' in X, the polytope <(F') is the convex
hull of its extremepoints (which necessarily lie in F') [7].

THEOREM 7. If X is a finite ED space, then the Helly number
of X equals the clique number of X.

This is an immediate consequence of the following more general
result.

THEOREM 8. Suppose X is a finite ED space and S is a subset
of X with core,, (S) = @ for some m. Then there is a convex subset
S of A(S) with |S'| =|S| and core, (S") = @.

Proof. For any M < X and any pe (M), define
E.p, M)={AS M:|A|=<m and pe¢ F(M\A)}.

Then p € core,, (M) iff E,(p, M) = @. Pick p in (S)\S so that the
family E,(p, S) is minimal with respect to inclusion (minimal cardi-
nality will do this). Let Ae E,(p, S). Since by ED, p is in the
convex hull of the extremepoints of <~(S), there must be at least
one extremepoint z of <~(S) in A. Since any extremepoint of <~(S)
must lie in S, z€S.

Let T=(S\2)Up. Since <(S)\z is convex, it follows that
LA(T) € L(S)\z so | L(T)| < [Z(S)].

Now consider ge A(T). If Ae E,(q, S), let A’ = (A/z) U p. Then
|A"| =]A] = m. Also T\A’ = S\A4, so
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¢ L(S\A) = Z(T\A")

whence A'e KE,(q, T). Thus q ¢ core,, (T).

Now if A¢ E,(q, S), since E,(q, S) is not a proper subfamily of
E,(p, S), there is some set B in FE,(q, S) that is not in E,(p, S).
Let B'’=B\#2. Then B'’S T and |B’| < |B| < m. Note that p is
the only point of T\B’ that is not in S\B. But since B¢ E,(p, S),
we have pe ¢2(S\B). Thus <~(T\B') < & (S\B). Since ¢ is not in
#(S\B), it cannot be in <~(T\B') either, so B’'e E,(q, T) and

q ¢ core,, (T).

It follows that core, (T) = @. Since X is finite, this process
can be carried on until we reach a set S’ < <(S) with |S'| = |S]|
where Z(S"\S’ is empty—that is, S’ is convex. ]

As an illustration we give an alternate approach to Doignon’s
determination [3] of the Helly number of the lattice points in R®.

THEOREM [Doignon]. Let X consist of all points in R® with
integer coefficients. With the restriction of the ordinary alignment,
the Helly number of X is 2°.

Proof. Since it is easily seen that any subspace of an ED space
satisfies ED and since the convex hull in X of any finite set is finite,
it suffices by Theorem 7 to show that the clique number of X is 2¢.
We apply Valette’s argument [3]. If K contains 2% + 1 points, two
of them, say p and ¢, are coordinatewise congruent modulo 2. Thus
r=(p+¢q)/2 is again in X. If r¢ K, then K is not convex. If
re K, then K is not independent. Hence K is not free and the
clique number is at most 2¢.

As the 2% vertices of any fundamental cube in X do form a clique,
the proof is complete. O

5. Trees and split-trees. If G is a split-tree (connected block
graph), then it is easily seen that the path alignment on G is ED.
Hence by Theorem 7, the Helly number of the path alignment equals
the maximum number of points in a clique of G. For any node p
of G, the copoints at p are just the components of G\p. Hence the
path alignment on G satisfies CIP (2, 2) and thus CIP (3, 2). There-
fore the Main Theorem may be applied.

It is a simple matter to see that the bounds in the Main Theorem
are achieved among split-trees. For h = 2, consider 2m nodes all
joined to a central node p. No proper subset of these extreme nodes
admits a Radon m-partition. For h = 3, take a complete graph on
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h nodes and adjoin at each of its points a path of length = m.
Choosing m — 1 points from each of these paths yields a set of
(m — 1)k points with empty (m — 1)-core and hence with no m-par-
tition points. As these examples involve distinet points, no better
bound for 7, is possible for general split-trees than the bound ob-
tained from the Main Theorem.

To apply the main result to products requires the following
observation.

ProposITION 9. If (X, &) satisfies CIP (m, k) and (Y, .#') satis-
fies CIP (n, 7), then the product (X X Y, &¥ X _#) satisfies

CIP (m + n — 1, max (k, 7)) .

Proof. Any copoint at (p,q) in X X Y is either of the form
C, X Y, where C, is a copoint at p in X, or the form X X C, where
C, is a copoint at ¢ in Y. O

Thus the product of two split-trees satisfies CIP (8, 2), so the
Partition Conjecture is true for such spaces. It is also interesting
to note that the main result also applies to any subspace of a pro-
duct of two split-trees, as follows from the next observation.

ProposiTIiON 10. If (X, %) has CIP (m, k) and Y S X, then
(Y, |Y) also has CIP (m, k).

Proof. Let C be a copoint in Y at a point p of Y. Because C
is relatively convex, C = &£(C)NY, so p¢ < (C). Hence there is a
copoint C’ in X at p containing <~(C). Sinece C'NY is relatively
convex and contains C, it follows by maximality of C that C=C'NY.
Thus m distinet copoints in Y at p can be embedded in m necessarily
distinet copoints in X at p. As some %k of the larger copoints have
void intersection in X, so will the %k copoints in Y which they
contain. O

Of particular interest is the case of the product of two lines:
R* with the (Eckhoff) product alignment. The general bounds of
Thompson and Hare [15] for the partition numbers of a product in
terms of the factors yield estimates for p, (R X R) that an quadratic
in m. Since the Helly number of the product alignment on R X R
is 2, it follows from the Main Theorem that

(R X R) <2m .

That this bound is attained can be seen as follows.
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Let #n(2) be any permutation of 1, -- -, 2m — 1 such that z(m) = m.
Let

S={® n@):1=1,---,2m — 1} .

Suppose (p, q) is an m-partition point of S. Then (p, ¢) is in core,_, (S).
If »p < m, then the set H = {(x, ¥): * = m} is product convex, contains
all but m — 1 points of S, but misses (p, ), contrary to (p, q)€
core,_; (S). Thus p = m. By similar arguments, one is led to » =
m = ¢q. Since (m, m) ¢S, each set of the associated m-partition of
S must contain at least 2 points, for a total of 2m > |S| points.
Hence S has no Radon m-partition.

Since the points in the above example are distinet, it follows
that

DR X R) =2m .

Regrettably the Main Theorem does not apply, for n > 2, to
n-fold products of lines (or trees), since in general these satisfy
CIP (n + 1, 2) but no stronger CIP. Although nothing better than
the Thompson and Hare bounds are known for the higher order
partition numbers of large products of general split-trees, it is at
least possible to extend Eckhoff’s determination [4] of the Radon
number p, of a product of lines to a product of trees. For nota-
tional convenience, we shall denote the middle binomial coefficient
coefficient by mbe (7).

THEOREM 11. For n =2, let X be a product of split-trees
T, -+, T, where the Helly number of each T; is at most 8. If X
18 endowed with the product of the path alignments, then

2,(X) < min {r: mbe (+) > 2n} .

It is a bit suprising that the estimate is the same for products
of trees as for products of lines. After all, in trees there is much
more freedom and usually more than just two “ends”. Basically, the
idea is to replace the notion of the “ends” of a line by the notion
of a hemispace—a convex set whose complement is convex. The
following separation axiom will be used in the proof:

S,: if A and B are disjoint convex sets, then there is a hemispace
H which contains A but is disjoint from B.

This is easily established for the path alignment on split-trees [9].
The feature of hemispaces that is critical for the proof of Theorem
11 is contained in the following lemma.

LeMMA. If T is a split-tree with Helly number at most 3, then
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any two hemispaces tn T are either comparable, disjoint, or cover T.

Proof. Suppose A and B are hemispaces for which the lemma
fails. Then, denoting by A’ and B’ the convex complements of A
and B, we see that each of the four intersections

ANB, ANB, A NB, A'NnB
is nonempty. Thus each of the four unions
AUB, AU B, AU B, AU B’

is a union of two intersected connected sets and hence is connected
and thus convex. The intersection of any three of these unions is
nonvoid since it contains the intersection of the A-term appearing
twice with the B-term appearing twice. For example,

AANBS(AUB)NA'UB)N(A"UB").

Since A(T) < 3, the intersection of all four unions should be nonvoid.
But direct computation shows that it is empty. This contradiction
establishes the lemma. O

Proof of Theorem 11. Let S be a multisubset of X with |S| = »
where mbe () > 2n. Let S be indexed by a set I' of » distinet in-
dices. Let us say that a subset 4 of indices is killed in coordinate
1 provided

Lmi(si0ed) N F(ni(s:0€4d) = QD .

(Here &7, is the path alignment on T, and 7z, is the ith coordinate
projection.) It follows from S, that if 4 is killed in coordinate 1,
then there is a hemispace H in T, such that

(*) d=1{oel:w(s;)e H}.

Our goal is to show that at most two sets of [»/2] indices can
be killed in each coordinate. Let us suppose this is not the case for
the ith coordinate, and let us introduce the following weight func-
tion on subsets P of T,:

w(P) = |{yeI:xn(s;)eP}|.

If three distinet sets of [7/2] indices are killed in T;, then by (*)
there are three distinet hemispaces A4, B, C in T, of weight [7/2]
which kill these sets of indices. If, say, A and B were comparable,
since they have the same weight, it would follow from (*) that they
kill the same set of indices. But we are assuming this is not the
case. Hence A, B, C are pairwise incomparable.
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By the lemma, either AUB=X or ANB= @. Suppose
AUB=X. If AnC were empty, we would then get C < B, which
is not the case. Thus by the lemma, AU C = X and likewise BU
C = X. Therefore if some pair of A, B, C cover X, then any pair
does. Dually, if some pair of A, B, C are disjoint, then they are
mutually disjoint.

But if A, B, C are mutually disjoint, then

r = w(T;) = w(A) + w(B) + w(C) = 3[r/2] > »,

a contradiction. (For the last inequality, we need » > 8 which follows
from »n = 2.)
If A, B, C pairwise cover T,, note that

r = w(T,) < wlA) + w(B) = 2[r/2] .

Thus » must be even. Consequently the complements A’, B’, C’ all
have weight 7/2 and are pairwise disjoint. Thus we can derive a
contradiction as above.

It follows that if mbec () > 2n, then some set of [7/2] indices is
not killed in any coordinate and hence, by the definition of the pro-
duct alignment induces a Radon 2-partition of S. O

Eckhoff’s construction in [4] shows that the above bound is best
possible for lines with sufficiently many points and hence for trees
of large diameter. For trees of small diameter, improvements are
possible.

The behavior of the higher order partition numbers is more
complicated and remains to be explored for » = 3. The same is true
for products of trees whose Helly numbers are more than 3. (One
sees eagsily that the conclusions of both the lemma and Theorem 11
fail in this case.)

6. Ordered sets. If X is a (partially) ordered set, we define
lp={reX:z = p}

for each p in X. If S is a multisubset of X, then |SN |p| will
denote the sum of the multiplicities of the points of S that lie below
p. Analogous definitions apply to 1p.

Note that a point p in X is an extremepoint of X w.r.t. the
order alignment iff p is either maximal in X or minimal in X. Ob-
viously, at any extremepoint there is only one copoint—namely, its
complement. If p is not extreme, then there are two copoints at
», namely

X\|p and X\Tp.
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Thus at each point in an ordered set there are at most two copoints,
so the order alignment satisfies CIP (8, 2) for trivial reasons. Hence
the Main Theorem applies and we get

(8) Pu(X) = (m — DA(X) + 1.

(Note that if #(X) = 2, then X must be a chain.) This is an improve-
ment of the result of Bean [1] and in light of (4) is best possible.

When the Helly number is even, say h = 2n, (8) also gives the
best (general) bound for the restricted partition numbers. Indeed,
let X be a disjoint union of # infinite chains with points on different
chains noncomparable. Picking 2(m — 1) points from each chain yields
a set (m — 1)h distinet points which admit no Radon m-partition.

When the Helly number is odd, it turns out (Theorem 12 below)
that a much better bound than (8) holds for »,. In fact the worst
possible behavior in this case is illustrated by adding 2 distinct
minimal points to the bottom of the first chain in the preceding
example. The resulting ordered set has Helly number 2 = 2n + 1.
By choosing m — 2 points from the first chain plus the two new
minima plus m — 1 points from éach of the remaining chains, one
can obtain a set of (b — 1)(m — 1) + 1 points which admits no Radon
m-partition.

THEOREM 12. Let X be an ordered set with odd Helly number
h. Then

PaX)=(m—-Dh -1 +2.

The proof will use a simple proposition which, in conjunction
with (8) of the Introduction, provides a direct proof of (8) without
use of the Main Theorem.

PROPOSITION 13. Let p be a point in an ordered space X, and
let S be a multisubset of X. Then the following are equivalent:

(1) pecore,_,(S),

(2) [lpnNS|zm and |TpNS| = m,

(3) p is an m-partition point of S.

Proof. (1)— (2) If |p contained m — 1 or fewer points of S,
then by definition of the core, p should be in the convex hull of
S\|p. But S\|p its contained in X\|p which is order convex and
misses ». Thus |p must contain at least m points of S; likewise
for Tp.

(2) — (3) Suppose p itself occurs with multiplicity # =0 in S.
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Then |p contains at least m — k points of S other than p; likewise
for 7p. Pairing these together in any way yields m — k pairs each
having » in its order convex hull. Adjoining {p} taken %k times yields
the desired Radom m-partition.

(8) - (1) As observed in the Introduction, this is true in any
aligned space.

COROLLARY. For an ordered space X with the order alignment,

Pu(X) = hu(X) + 1.

Proof of Theorem 12. In light of the above corollary, it suffices
to show that any subset S of X with core,_, (S) = @ can contain at
most (m — 1)(h — 1) + 1 points. Since the order alignment is obvi-
ously extremally detachable, it suffices, by Theorem 8, to show this
in case S is order convex. If S is convex, then its Helly number
in the order alignment can be no more than that of X. If, in fact,
h(S) < h — 1, then we are done by (8). Thus A(S) = h without loss
of generality, so we may in fact assume S = X.

For each s in S, let

v(s) = |ls| —[Ts],
and set
P={seS:v(s) =0},
N = {seS:y(s) < 0},
Z ={seS:v(s) = 0} .

Note that v is strictly monotone: s < t implies v(s) < v(t).

Let A be the set of minimal elements of P that are not in Z,
and let B be the set of maximal elements of N that are not in Z.
Then AU Z and B U Z are antichains and their union AU BU Z is
therefore independent in the order alignment. This union is also
convex. For if a > > b, then v(a) > v(x) > v(b), so that a cannot
be minimal in P if y(x) = 0 whereas b cannot be maximal in N if
v(z) £ 0. Thus AU BU Z is free, so that

h=|AUBUZ|=|A| +|B| +1Z].

Now let A’ be the set of minimal elements of P\(A U Z) and let
B’ be the maximals of N\(BU Z). Then A’ and B’ are antichains,
and the two unions A’ U AU Z and B’ U BU Z are both free. Whence

h= A"+ |A| + | Z]
and
h =z |B'| + |B| + | Z] .
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Note that for any p» in P, |Tp| < m — 1 since otherwise ||»| =
[Tp| = m, which would put p in core,_, (S) by Proposition 13. Now
any q in A’ is strictly larger than some p in AU Z. (Here we need
the points of S to be distinct.) Hence |1¢| < |[{p| < m — 1. That
is |Tg| £m — 2 for each ¢ in A’. Analogous remarks hold for N
and B'.

It is now time to distinguish four cases, depending on whether
each of AU Z and BU Z contain more or less than 4/2 elements.
Because h is odd, a set either contains at most (A — 1)/2 elements
or at least (h + 1)/2 elements.

Case 1.
|[A| +|Z]| = (h — 1)/2
|B| +1Z] = (h — D)2

By choice of the various sets involved,
S=14AU1ZU |BU |Z

where 1A denotes the set of points which equal or lie above points
in A4, ete. Thus

|S| = [TAl + 11Z] + ||B| + [1Z]
= [Alm —1) + [Z|(m — 1) + |B|(m — 1) + | Z|(m — 1)
=Gt —1Dim—1)

as desired.

Case II.
|A| + [Z] =z (b + 1)/2
|B| +|Z] =z (b + 1)/2.

Then |A’| < (b — 1)/2 and |B’| < (b — 1)/2, so that

[S|= (14" + [IB'| + |A| + | B| + | Z|
=|A'l(m —2)+ |B'|(m —2) +h
Sh—1Dm—2 +h—1+1

<th-—-—1m-—-1)+1

as desired.

Case III.
[A| +|Z]| =z (b + 1)/2
|B| + |Z] = (b — D)2

Then |A'| = (b — 1)/2, so that
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|S| = 14" + |A| + ||B| + |lZ]
= |A'(m —2) + |A] + |Bl(m — 1) + | Z|(m — 1)
= (A + |Bl +1Z))m — 2) + |A| + |B| + | Z|
Sth—1Dm—2) +h
=0 —)m—1)+1

as desired.
The fourth case is dual to Case III, thus completing the proof. []

It is worth observing that the Helly number and rank of a par-
tially ordered set X are closely connected by means of the width
w(X) of X—the supremum of the cardinalities, of antichains in X.
Indeed, any antichain together with a point not in it form a set
with empty l-core. Thus

wlX) +1=mX),

(unless X itself is an antichain in which case w(X) = h(X)). On the
other hand, every independent set is easily seen to be the union of
two antichains, whence

rank (X) =< 2w(X) .
Putting these inequalities together, we obtain
wX) + 1= wX) < rank (X) < 2w(X) .

It is not difficult to construct examples illustrating the full range
of possibilities in the above inequality.

When the rank and Helly number happen to be equal, then of
course (8) is a consequence of the simple Proposition 3. We shall
conclude by showing that this is the case for Pow (n)—the set of
subsets of an » element set ordered by inclusion.

ProrosiTION 14. In Pow (n), the rank and the Helly number
are both equal to mbe (n + 1).

Proof. In Pow (n) the middle two layers (the sets of size [n/2]]
and [#/2] + 1) form a clique in the order alignment of cardinality
mbe (» + 1). Thus A(Pow (n)) = mbe (n + 1). To conclude the proof
we need only show that rank (Pow (%)) < mbe (n + 1).

Let _# be any order independent family. Let .o~ be the antichain
of maximal sets in .#’ and <& the antichains of minimal sets in .~
Since p is independent, 7 = .o U<Z. Now let p be a new point not
in X, and define '
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B ={BUp: BeF}.

Then .o U £#"' is an antichain in Pow (» + 1) and hence has at most
mbe (n + 1) members by Sperner’s theorem. N
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Appendix
Bivalent semilattices

A (meet) semilattice is a partially ordered set in which any pair
of elements has an infimum. It is customary to write xy for the
infimum of x# and y. (This is a reminder of the fact that a semi-
lattice may also be defined as a commutative idempotent semigroup.
The two definitions are related by the observation that z <y is
equivalent to # = xy.) The family & of all subsemilattices of a
semilattice S forms the semilattice alignment on S.

Although the determination (given below) of the Helly number
of a semilattice alignment is quite easy, the evaluation of the par-
tition numbers seems, in general, to be rather difficult. One nice
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result of this kind which confirms the Partition Conjecture for the
join semilattice Pow, (n) of nonempty subsets of an n element set is
contained in the results of Lindstrom [A1] and Tverberg [A2]:

Pu(Pow, (n)) = (m — )n + 1.

The Main Theorem can be applied to establish the Partition
Conjecture for another (unfortunately rather limited) class of semi-
lattices.

By the walence of a point p in an aligned space X, we shall
mean the number of copoints at p. (In trees this coincides with the
graph notion of valence.) The valence val (X) of X is taken to be
the supremum of the valences of the points of X. Notice that
val (X) < n can be expressed by saying that X satisfies CIP (n + 1, 1).
(Thus any space of valence n has Carathéodory number at most n
by Proposition 6.) In particular, if X is bivalent (val(X) < 2), then
X has CIP (8, 2) and the Main Theorem applies. In the last section,
we observed that an ordered set with the order alignment is always
bivalent.

A point 2 of an ordered set X is said to cover z in X provided
2 > z and there is no ¥ in X with x >y > 2. If pis a nonmaximal
point in finite meet semilattice S, one can easily check that each
copoint at p (w.r.t. the semilattice alignment on S) has the form

Te U (S\1p) ,

where ¢ covers p. Furthermore, for each cover ¢ of p, the above
set is a copoint at p. Thus the valence of p is just the number of
covers of » in S. (Any maximal element of S is an extreme point
and hence has a unique copoint—namely, its complement.) Thus a
finite semilattice S is bivalent iff each point of S is covered by at
most two points of S. The diagrams below illustrate bivalent semi-
lattices.

To evaluate the partition numbers of bivalent semilattices, it
remains only to determine their Helly numbers. This could be done by
applying Theorem 7: it is easily seen that the semilattice alignment



PARTITION NUMBERS FOR TREES AND ORDERED SETS 139

is ED and that the cliques are just the maximal chains. However,
it is possible to sharpen the estimates of the restricted Helly numbers
and hence obtain better estimates for 7,. Recall that the length
I(X) of an ordered set X is customarily defined to be one less than
the supremum of the cardinalities of the chains in X.

PROPOSITION 15. Let S be a semilattice of finite length I(S).
The restricted Helly mumbers for the semilattice alignment & on
S satisfy

hu(S) < ml(S) + 1.

Proof. Let A be a subset of S with |A|> mi(S) + 1. We shall
show by induction on I(S) that core, (4) + @.

For I(S) = 1, note that any two points of A generate the unique
minimum of S. (Here the distinctness of the points of A is used.)
Since |A| = m + 2, it follows that inf (S) lies in core, (4).

Proceeding induectively, consider any BC A with |B| < m. If
inf (A\B) = inf (A), then inf (A\B) > inf (A) so that

W (A\B)) < U&7 (4)) = US) .

Since |A\B| = m((l(S) — 1) + 2, it follows by induction that core,, (A\B)
—and hence the larger set core, (4)—is not empty. If however,
inf (A\B) = inf (4) for all BCc A with |B| < m, then inf (A) lies in
core,, (A). O

That this result is the best possible in general is seen in the
example pictured below. The Im + 1 maximal elements have empty
m-~core.

m
%o m

X

Xz,

X1

Applying the strong version of the Main Theorem quoted in the
beginning of its proof, we obtain the following result.

THEOREM 15. Let S be a bivalent semilattice of finite length 2
or more. Then the partition numbers of the semilattice alignment
on S satisfy
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Pu(S) = (m — DUS) + 1) + 1,
Pa(S) = (m — DIUS) + 2.

Thus we have another instance in which the restricted partition
numbers are strictly less than their unrestricted analogues.

A more thorough discussion of partition numbers in semilattices
will appear separately. It seems worthwhile, however, to mention
here one weak but generally valid bound. ’

ProrosITION 16. If S is any semilattice of finite length, then

Pa(S) = (m — DAS) + 1) — I(S) + 1.

Proof. One checks that the Carathéodory number of the semi-
lattice alignment (commonly called the “breadth” of the semilattice)
is bounded by the length plus one. The result then follows from
Theorem 2.

Note added in proof. Doignon’s theorem was also discovered
independently by H. E. Scarf (Proc. Natl. Acad. Sci. USA 74 (1977),
3637-3641) in the context of integer programming. Seeking an
abstract basis for Scarf’s result, A. J. Hoffman (Annals of NY
Acad. Sci. 319 (1979), 284-288) was led to an independent discovery
of Theorem 7 above.
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