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ON THE ISOLATION OF ZEROES OF AN
ANALYTIC FUNCTION

DOUGLAS S. BRIDGES

The purpose of this paper is to describe extensions of
the work of Errett Bishop on the location of zeroes of
complex-valued analytic functions. The main result deals
with the number of zeroes of an analytic function / near
the boundary of a closed disc well contained in the domain
of /. A particular consequence of this result is the follow-
ing theorem.

Let / be analytic and not identically zero on a con-
nected open subset U of C, K a compact set well contained
in U, and ε>0. Then either inf {[f(z)\: z eK}>0 or there
exist finitely many points zlf — -,zn of U and an analytic
function g on U such that

/(«)=(«-«i) ••(«-«.)flr(«) (*e U),

inf {\g(z)\:zeK}>0 and d(zk, K)<ε for each k.
The paper is written entirely within the framework of

Bishop's constructive mathematics.

As Bishop has remarked [1, p. 112], the constructive develop-
ment of the elementary theory of analytic functions of one complex
variable presents comparatively few serious difficulties. One topic
in which difficulties do arise, however, is that of location of zeroes
of an analytic function. In this paper, we derive several results
which apply and strengthen those obtained by Bishop [1, Ch. 5, §5].
and which present different constructive facets of the classical
theorem that the zeroes of an analytic function are isolated.

For the reader who knows little about the spirit or aims of
modern constructive mathematics, we recommend Allan Calder's
recent article in Scientific American [4]. The necessary technical
background in constructive analysis is found in [1] and [2]; in
particular, we shall assume knowledge of Chapter 5 of [1]. How-
ever, it is expedient to recall here two definitions from that chapter.

A compact subset K of an open set U in C is well contained
in U if there exists r > 0 such that {zeC:d(z, K)^r}czU; in which
case we write KacU. If if is a compact subset of C, then a
border for K is a compact subset B of K such that B(z, d(z, B))a
K for each z in K. (We write B(z, r) for the closed disc, and
B(z, r) for the open disc, of center z and radius r.)

We should also note that a complex-valued function / is not
identically zero on a set A if there exists z in A with \f(z)\ > 0;
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and that / is nonvanishing, or does not vanish, on A if \f{z)\ > 0
for each z in A.

1* Bishop's main results on the location and isolation of zeroes
are contained in the Corollary on p. 135, and Theorem 7 on p. 138,
of [1], and are summarised as follows.

THEOREM 1. Let K be a compact subset of C, B a border for
K, and f a differentiable function on K with inf {|/(z)|: z e B) > 0.
Then either inf {|/(z)|: ZGK} > 0 or there exist finitely many points
z» •'•,%«, of K, a differentiable function g on K, and c > 0 such
that, for each z in K,

f(z) = (z - zO (z - zn)g(z)

and I g(z) | ^ c. •

Although this theorem is strong enough to yield the Funda-
mental Theorem of Algebra as a consequence [1, p. 140, Thm. 8], it
conveys no information unless the border B of K is strict, in the
sense that d(ζ, B) > 0 for some ζ in K (in which case we say that
K is strictly bordered). In particular, circles in the complex plane
are not strictly bordered, but we often want to know whether or not
/ is bounded away from zero on certain circles in its domain. (This
question is particularly relevant when we are trying to integrate
/'// round circles.) In fact, we might expect that, if / is analytic
and not identically zero on a connected open set U, then it is
bounded away from zero on all but finitely many circles in any
given disc well contained in U.

On the other hand, even if the compact set K has a strict
border B, it is easy to see that we cannot expect to decide whether
or not the modulus of a difFerentiable function f on K has positive
infimum on B: consider the example where K = B(0, 1), B = {z e C:
I z I = 1} and / is the function z —> z — ζ, ζ being a real number for
which the alternative "ζ > 1 or ζ ^ 1" is undecided.

This last example also illustrates why we cannot expect to
locate precisely the zeroes of an analytic function which lie in a
given compact set. However, it is reasonable to expect that, if /
is analytic and not identically zero on a connected open set U, and
K is a compact set well contained in U, then we can find all the
zeroes (if any) of / that lie within a distance ε of K for some
suitable ε > 0.

In what follows, we shall show that the above expectations are
fulfilled. As a bonus, we shall obtain a proof that, if / is analytic
on an open set U and nonvanishing on a compact set K well con-
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tained in U, then 1// is bounded away from 0 on K. This last
result is particularly satisfactory in view of our present inability to
compute a positive lower bound for a continuous mapping of a
compact interval into the positive reals [3].

2* The cornerstone of our paper is Theorem 2 below, which,
applied to a differentiable function / on JB(O, 1) with | /(0) | > 0,
enables us to estimate the number of zeroes of / inside, but near
to, a circle of center 0 and any given positive radius p < 1. More
precisely, it enables us to find circles, of center 0 and radius arbit-
rarily close to p, on which / is bounded away from zero.

The proof of this theorem is sufficiently complicated to warrant
a few remarks on its origin. Classically, a function / that is
differentiable and not identically zero on 2?(0, 1) has at most finitely
many zeroes in B(0, p) whenever 0 < p < 1. In order to obtain a
constructive analogue of this proposition, it is natural to look for
an explicit a priori bound on the number of zeroes in J5(0, p). As
it happens, if |/(0)| > 0 such a bound exists classically [7, 5.24, p.
171]; it was with that bound in mind that we were able to obtain
the numerical estimates that we need for Theorem 2.

The other thing we need is an inequality which provides lower
bounds for \f(z)\ as z ranges through J3(0, 1). That this need can
also be satisfied is the content of

LEMMA 1. Let f be differentiable on the closed disc 5(0, 1),
with sup {| f{z) I: | z | ^ 1} ̂  1. Then

for all z with \z\ < 1.

Proof. Let |ζ | < 1, suppose that

and choose a so that 0 < a < 1 and |/(OI > ( « 1/(0)I - |ζ|)/
(1 - α|/(0)| |ζ |). As |α/(0)| ^ a < 1 [1, p 134, Proposition 5], we
can apply to af the argument on pages 60-61 of [6], to obtain

a contradiction. Hence, in fact, |/(ζ) |^( |/(O) |)- |ζ | )/( l- |/(O| |ζ|). •

In the following theorem, we adopt the convention that

(1 + (p-1 - l)p-1/0)-1 = 0 .
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THEOREM 2. Let v be a natural number, 0 < p < J, and
r0, *, ru distinct real numbers with

(l + (p-i - vp-^y1 ^nsp

for each k. Let f be differentiate on 5(0, 1), with |/(0)| > 2pu+1/
(1 - pf and sup {\f(z)\: \z\ ^ 1} ̂  1. Tftβw

max inf {\f(z)\: \z\ = r J > 0 .
fc=0,. ,v

Proof. If v = 0 then, by Lemma 1,

- 1/(0)1 |s|) > 0 (|s| ̂  ^ .

Now let n be a positive integer, suppose we have proved Theorem 2
for v = n — 1, and consider the case v = n. Either 2pn/(l — pY'1 <
|/(0)|, in which case we are through; or, as we now suppose,

2 p 7 ( l - ^ . Let

if=2/Π(i-n)f
fco
Π(
fc=o

= max Π ((1 + r,)l\r, - rk\) ,

and

for

and

define

2

that

1,

F(z,

ake c,

•IJ

Λll

>

•••,2.-*

= /(*) ~

1 2 * 1 = ί*fc

M - l

(ft:

( i -

2(1 + (p-1 -

0

( i -

W - l

k j=o,jΦk

= 0, ••

•n)

l )ίθ- 1 / B )

- (1 + (

)ί> ' )

1/(0)1 Π ( l - n ) - 2 Πr»
fc=0 fe=0

^ 1/(0)1(1-p) -2 /9 +1

> 0 .

It follows from these inequalities and a simple argument using
uniform continuity that there exist positive numbers d, m such
that



ON THE ISOLATION OF ZEROES OP AN ANALYTIC FUNCTION 17

\F(0, zo, , z.-u α0, , α.-JI ff(l - r») - 2 Π r4

2 Π r» - r J F ( 0 , «„,-••, zm_u α0, , α._,) | Π (1 - r»)

whenever | zk\ = rk, \ak\ ^ δ (k = 0, , % — 1).
Let α) be a modulus of uniform continuity for \F\ on the com-

pact subset

) | | | | rfc, |α f c | ^ δ

of C2*"1, where the latter is taken with the norm |flc| = max*==1,...f2»_i|flc4|.
Either

0 < max inf {\f(z)\:\z\ = rfc}
fc=0, ..,«-l

or, as we now assume,

max inf {\f(z)\: \z\ = rk}
k=0,-~,n-i

< min (δ, 1/na, ω(2~' Mmfί | n - rj)) .
fc=0

Choosing «0, , «„_! so t h a t , for each k, \zk\ — rk and

define

Then flr is diίFerentiable on JB(O, 1) and g(zk) = 0 for & = 0, , n— 1.
By [1, p 132, Cor. 4], there exists a differentiate function fe on
5(0, 1) such that

= (z - z0) - (z - ^ .

For |«| = 1, we have

\h{z)\ ̂
fc=o

Σ^ (1/(2)1 + αΣI/WI)/ff(i - n)
kQ I kQ

ff(
k=Q

« Σ (Una)) I Π (1 - n) = M .
k=0 / / fc=0

By the maximum principle [1, p. 134, Proposition 5], \h(z)\ ^ M for
each z with \z\ ^ 1. Given z with |«| = rn, we now apply Lemma
1 to M^h, to obtain
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- M\z\)/(M-\z\-\h(0)\)

|flf(0)|ff(l-n)-2Πr*

2 ΐϊr»-r.I ff(O) I ff(l-n)
k=0 /e=0

IF(0, z0, ••-, z.^ /(«„), , /(«._,)) I Π (1 - n ) - 2 Π n
fc=O fe=0

2f fn - r.|2f(0, *„,-•-, «._lf /(«.), , / ( U ) I Π (l - n)
k0 fc0

ff
k=0

Hence

Mm π i
k=0

and so

1/(2)1 = 1^(2,2., •• ,2._1, 0, . . . , 0 ) |

^ |F(2, 2W , 2..,, /(«,), , /(2._1))| - 2-1 Mm"Π In - r . |

ff

Thus

inf {|/O0|: |^| = r j ^ 2-1Mmff|n - n | > 0 ,
fc=0

and our induction is complete. •

3. We now use Theorem 2 to obtain a rich supply of circles
on which a given analytic function, not identically zero, is bounded
away from 0. In turn, this will enable us to factor out the zeroes
of such a function which lie in or near a compact set well contained
in a connected open subset of its domain.

LEMMA 2. Let f be differentiable and not identically zero on
β(0, 1), and let 0 < ε < p < J. Then there exists r such that
p - ε <r < p and inf {|/(s)|: \z\ = r) > 0.

Proof. Let ΣϊU>αΛsΛ b e the Taylor expansion of f(z) about 0,
the series being uniformly convergent in 5(0, p). Then there exists
n such that \an\ > 0. We proceed by induction on n.

Clearly, we lose no generality by taking | f(z) | <£ 1 for all z
with \z\ ̂  1. If n = 0, we choose a natural number v such that
I /(0) I = I α01 > 2^+1/(l - p)* and (1 + (p-1 - l)^-1'")-1 > ̂  - ε, and then
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apply Theorem 2 to /. On the other hand, if we have proved the
lemma for any / with maxJb=0,...,»_i|αJfe| > 0, and we consider the case
I an I > 0, then, by the foregoing, there exists r with p — ε < r < p
and

0 < m = inf {\Σakz
k-n\:\z\ = r} .

Either 0 < maxJfc=0,...fΛ_i|αil.| or, as we may assume, maxA.=0,...,w_1|αi.| <
rnm/2n. For \z\ = r, we now have

^> γ* m — 2 I Λjfe I

> rnmj2 ,

whence inf {| f(z)\: \z | = r} ^ r%m/2 > 0. Π

LEMMA 3. Let ζ e C, r > 0, ami ϊeί / be differentiable on 2?(ζ, r),
wi t t inf {|/(«)|: |« —ζ| = r}>0. Tfee^ either inί {\f(z)\: \z — ζ\<^r}>0,
or there exist finitely many points zl9 - , zn of B(ζ9 r) and an
operation δ: R+ —> R+ such that f(zk) = 0 /or eac/^ &, and | /(«) | ^
δ(a) whenever a > 0, |^ — ζ | ^ r a^d |« — 3fc| ^ a /or eac/t Λ.

Proof By Theorem 1, for each k either inf {\f(z)\: | £ - ζ | ^
0 or there exist finitely many points zlf , zn of B(ζ, r) and a
differentiable function g on 5(ζ, r) such that

f{z) = (« - 20 (« - Oflr(«) (« e S(ζ, r))

and 0 < c = inf {|flf(2)|: |^ — ζ | ^ r}. In the latter case, we need only
set δ(a) = α%c for each a > 0. •

Let P(cc) be a statement about the object x, and let A be a
subset of R. We say that P(x) holds for all but finitely many x
in A if there exist finitely many elements xlf , xn of i? such that
P(α;) is true whenever α? belongs to A and is distinct from each of
the xk.

PROPOSITION 1. Let f be differentiable and not identically zero
on B(0, 1), and let 0 < p < 1. Then inf {|/(s)|: \z\ = r) > 0 for all
but finitely many r with 0 < r < p.

Proof Choose s so that p < s < 1 and inf {|/(z)|: \z\ = s} > 0.
In view of Lemma 3, we can assume that there exist finitely many
points zl9 ••-,zn of JB(O, S) and an operation δ: R+ —> R+ such that
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l/0s)l ^ δ(a) whenever a > 0, \z\ < s and \z — zk\ ^ a for each
It is then clear that

| : | s | = r) ^ δ( min
fc=l, »W

whenever 0 < r < p and \r ~ \zk\\ > 0 for each k. Q

Let Ϊ7 be an open subset of C. A pαίft m ί7 is a uniformly
continuous mapping 7 of [0, 1] into U with γ([0, 1])- c c £7. We
say that U is connected if, to each pair of distinct points z, zf in
Z7, there corresponds a path 7 in U with 7(0) = z, 7(1) = 2'.

THEOREM 3. Let f be analytic and not identically zero on the
connected open set U, ζeU, r>0 and B(ζ9 r)cκzU. Then inf {\f(z)\:
\z — ζ| = p} > 0 for all but finitely many p with 0 < p < r.

Proof. In view of Proposition 1, it will suffice to prove that
/ is not identically zero on JB(ζ, r). To this end, choose z0 in U
with I f(z0) I > 0, and construct a path 7 in U with 7(0) = z0 and
7(1) = ζ. Compute in turn δ so that 0 < δ < r and {zed d(z, 7([0, 1]))^
δ}a U, and numbers 0 = t0 < tx < < ίn = 1 such that 17(̂ +1) —
7(£fc)|<2<5 for each k. Then B(j(tk+ί), δ) intersects B(y(tj), δ); so
that, by Proposition 1, if / is not identically zero on B(y(tk), <5),
then it is not identically zero on B(y(tk+ι)f δ). As |/(z o)l>O, it
follows that / is not identically zero on 2?(ζ, d)cB(ζ, r). •

THEOREM 4. Let f be analytic and not identically zero on the
connected open set U. Let K be a compact set well contained in U,
and ε > 0. Then either inf {\f(z)\: zeK} > 0 or there exist finitely
many points zL, , zn of U and an analytic function g on U such
that

f(z) = (z-zι) -(z- zn)g{z) (zeU),

inf {|g(z)\: z e K} > 0, and d(zk, K) < ε for each k.

Proof. With δ chosen so that 0 < 23 < e and {z e C: d(z, K) <:
2<?}c U, let {ζlf -- , ζ j be a <5-net of K. It will suffice to prove
that there exist analytic functions fo=f9fu , /„ on U such that,
for each fee {1, , v},

( i ) int{\fk(z)\:ze\JUB(ζifδ)}>0
and

(ii) either /* = / or there exist finitely many points zl9 , zn{k)

of U such that

f(z) = (2 - zO -(z - zn{k))fk(z)
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for each z in U.
Suppose that 0^k<v and that we have found fk. By Theorem 3,

there exists r such that 3 < r < 2δ and inf {\f(z)\: \z-ζk+1\ = r}>0.
By Theorem 1, either inf {\f(z)\: \z — ζfc+1| ^ r} > 0, in which case
we set fk+1 = fk; or, as we may now assume, there exist finitely
many points xl9 , xm of B(ζk+1, r) and a differentiable function g
on B(ζk+J, r) such that

fk(z) = (z - xx).. (z - α:Jflf(«) (2 6 S(ζt+1, r))

and inf {|#(z)|: |s - ζ&+1| ^ r} > 0. It follows from [1, p. 132, Cor.
4] that there exists an analytic function fk+1 on U such that

fk(z) = (z - Xl) - (z - xjfk+1(z) (z e U)

and g is the restriction of fk+1 to B(ζk+1, r). Our inductive assump-
tions about fk now ensure that fk+1 also satisfies (i) and (ii). This
completes our induction. Π

Another path to Theorem 4 has been taken by Orevkov [5],
who uses [1, p. 136, Lemma 8] to estimate the number of zeroes of
/ in the region of interest. It is worth noting, and not difficult
to show, that the estimates given by Theorem 2 above are much
more efficient than those embodied in [1, p. 136, Lemma 8].

Note that the only application of the connectivity of U in the
above proof of Theorem 4 is in the construction of r such that
inf {\f(z)\: \z - ζk+1\ = r} > 0. It follows from Proposition 1 that
the conclusion of Theorem 4 will hold even if U is not connected,
provided that / does not vanish on some dense subset of K. With
this remark in mind, we can now derive our final results.

THEOREM 5. Let f be analytic on the open set U, and let K
be a compact set well contained in U on which f does not vanish.
Then mί{\f(z)\:zeK] > 0, and 1/f is diff erentiable on K.

Proof. Either inf {\f(z)\: z eK} > 0 or there exist finitely many
points zlf , zn of U and an analytic function g on U such that

f(z) = (z-z1)...(z-zn)g(z) (zeU)

and 0 < m = inf {\g(z)\: z eK). In the latter case, for each z in K
and each j , we have \z — zό\ > 0; whence [2, p. 29, 2.2]

0 < d = min d(zs, K) .
ί = l , . ,»

Thus I f(z) I > dnm for each z in K. Then desired conclusions follow
immediately. •
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COROLLARY. Let f be analytic and nonvanishίng on the open
set U. Then 1/f is analytic on U. •
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