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BAER RINGS AND QUASI-CONTINUOUS
RINGS HAVE A MDSN

G. F. BlRKENMEIER

The notion of a direct summand of a ring containing
the set of nilpotents in some "dense" way has been con-
sidered by Y. Utumi, L. Jeremy, C. Faith, and G. F,
Birkenmeier. Several types of rings including right self-
injective rings, commutative FPF rings, and rings which
are a direct sum of indecomposable right ideals have been
shown to have a MDSN (i.e., the minimal direct summand
containing the nilpotent elements). In this paper, the class
of rings which have a MDSN is enlarged to include quasi-
Baer rings and right quasi-continuous rings. Also, several
known results are generalized. Specifically, the following
results are proved: (Theorem 3) Let R be a ring in which
each right annihilator of a reduced (i.e., no nonzero nil-
potent elements) right ideal is essential in an idempotent
generated right ideal. Then R^A®B where B is the
MDSN and an essential extension of Nt (i.e., the ideal
generated by the nilpotent elements of index two), and A
is a reduced right ideal of R which is also an abelian Baer
ring. (Corollary 6) Let R be an ATF*-aIgebra. Then R =
A®B where A is a commutative AW*-algebra, and B is
the MDSN of R and B is an ATF*-algebra which is a
rational extension of Nt. Furthermore, A contains all re-
duced ideals of R. (Theorem 12) Let R be a ring such
that each reduced right ideal is essential in an idempotent
generated right ideal. Then R = A 0 B where B is the
densely nil MDSN, and A is both a reduced quasi-con-
tinuous right ideal of R and a right quasi-continuous abelian
Baer ring.

From [8 & 14], a ring R is (quasi-) Baer if it has unity and
the right annihilator of every (right ideal) nonempty subset of R
is generated by an idempotent. A Baer ring is abelian if all its
idempotents are central. The following examples will give some
indication of the wide application of these rings: (i) von Neumann
algebras, such as the algebra of all bounded operators on a Hubert
space, are Baer rings [2, pp. 21 & 24]; (ii) the commutative C*-
algebra C(T) of continuous complex valued functions on a Stonian
space is a Baer ring [2, p. 40]; (iii) the ring of all endomorphisms
of an abelian group G with G = j? φ E, where D Φ 0 is torsion-free
divisible and E is elementary, is a Baer ring [16]; (iv) any right
self-injective von Neumann regular ring is Baer [17, p. 253]; (v) any-
prime ring is quasi-Baer; (vi) since a n x n matrix ring over a

283



284 G. F. BIRKENMEIER

quasi-Baer ring is quasi-Baer [15], the n x n (n > 1) matrix ring
over a non-Prufer commutative domain is a prime quasi-Baer ring
which is not a Baer ring [14, p. 17]; (vii) since a n x n lower
triangular matrix ring over a quasi-Baer ring is a quasi-Baer ring
[15], the n x n (n > 1) lower triangular matrix ring over a domain,
which is not a division ring, is quasi-Baer but not Baer [14, p. 16];
(viii) semiprime right FPF rings are quasi-Baer [10, p. 168]. The
examples show that the class of Baer rings does not contain the
class of prime rings and is not closed under extensions to matrix
rings or triangular matrix rings. However the notion of a quasi-
Baer ring overcomes these shortfalls.

Throughout this paper, all rings are associative; R denotes a
ring with unity; N(X) is the set of nilpotent elements of X(iVwill
be used when X = R) and Nt is the ideal generated by the nilpotent
elements of index two. The word ideal will mean a two-sided ideal
unless it is preceded by the words left or right. A reduced ring
is one without nonzero nilpotent elements. Note that in a reduced
ring all idempotents are central. A right ideal X of R is densely
nil (DN) if either X — 0; or X Φ 0 and every nonzero right ideal
of R which is contained in X has nonzero intersection with N.
Equivalently, a right ideal X of R is densely nil if either X = 0;
or XΦQ and for every nonzero xeX there exists r eR such that xrφO
but (xrf = 0. From [3], the minimal direct summand (idempotent
generated right ideal) containing the nilpotent elements MDSN is a
semicompletely prime ideal (i.e., if xn eMDSN => x eMDSN) which
equals the intersection of all idempotent generated right ideals con-
taining the set of nilpotent elements of the ring. Also any nonzero
direct summand of the MDSN has a nonzero nilpotent element, and
the MDSN contains both the right singular ideal of R and the gener-
alized nil radical [1 & 3]. There are nonreduced rings which do not
have a MDSN [3, Example 2.6]. The complement of the MDSN is
both a maximal reduced idempotent generated right ideal which is
unique up to isomorphism and a reduced ring with unity.

LEMMA 1. Let R be reduced. Then R is a quasi-Baer ring if
and only if R is an abelian Baer ring. In particular, a commuta-
tive quasi-Baer ring is a reduced Baer ring.

Proof. In a reduced ring every right annihilator is an ideal.
Hence the right annihilator of any subset will equal the right an-
nihilator of the right ideal generated by the subset. Therefore R
is quasi-Baer if and only if R is Baer. Commutative quasi-Baer
rings are reduced because a quasi-Baer ring contains no nonzero
central nilpotent elements. This completes the proof.
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LEMMA 2. If X is an ideal of R such that I n Nt Φ 0, then X
contains a nonzero nilpotent element of index two.

Proof. From [1 & 9], we have that the generalized nil radical Ng

is hereditary and contains Nt. Thus, if XΓ\NtΦθ then XΓ\Ng(R) =
Ng(X) Φ 0 contains a nonzero nilpotent element of index two.

A right i?-module B is an essential extension of a submodule X
(equivalently, X is essential in B) in case for every submodule L
of B, I n i = 0 implies L = 0. The next theorem presents a de-
composition in terms of a reduced Baer ring and the MDSN, further-
more the MDSN is "essentially" generated by the nilpotents of
index two.

THEOREM 3. Let R be a ring in which each right annihilator
of a reduced right ideal is essential in an idempotent generated
right ideal. Then R = Aφ B where B is the MDSN and an es-
sential extension of Ntf and A is a reduced right ideal of R which
is also an abelian Baer ring.

Proof. Let X ~ 0 i e / ^ i 2 be maximal among reduced direct
sums of idempotent generated right ideals [3, p. 714]. Let Y be
the right annihilator of X. From [3, Prop. 1.2], XN = 0, so NQ Y.
Thus, if Y = 0 then R = A. If Y Φ 0 then there exists y = y2 such
that yR is an essential extension of Y. By [3, Prop. 1.2], yR is
an ideal. Then Y = yR because X{yR) £ l n yR — 0 since X is
reduced. To show that yR is the MDSN, let 0 Φ t = t2 e yR. Assume
tRpiN^O. By the maximality of X, (XφtR) Π N Φ 0. Hence
there exists xeX and cetR such that 0 Φ x + c and (x + c)2 = 0.
Thus (x + cf = x2 + xc + ex + c2 = £2 + ex + c2 = 0. Then cc2 =
(-ca? - c 2 ) 6 l f i F = 0 . Hence x = 0 and c = 0 because X and ίi?
are reduced. Contradiction! Therefore yR — B is the MDSN [3,
Thrm. 1.4] and (1 — y)R — A is a reduced ring with unity.

Let 0 Φ seB and assume sR Π Nt = 0. Hence (sR)Nt — 0. There-
fore JVt is contained in the right annihilator of si?. There exists
e — e2 such that eR is an essential extension of the right annihilator
of sR. Hence Nt £ eR. Thus 5 £ β#, since B is the MDSN [3,
Thrm. 1.4]. But this is a contradiction because sR, which is reduced,
cannot be contained in eR. Therefore Nt is essential in B.

Let ΰ b e a right ideal of A. By [3, Lem. 1.1], D is a right
ideal of R. Let U be the right annihilator of D in R. There exists
u = u2 such that ^i? is an essential extension of U. Now (1 — y)U
is the right annihilator of D in A, and (1 — y)uR is an essential
extension of (1 - y)U in A with ((1 - y)u)2 = (1 - 2/)w. Thus D n
(1 — 2/)ttjR = 0. Since A is reduced (1 — y)u is a central idempotent
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in A. Hence (1 — y)uR is an ideal in A. Thus D((l — y)uR) £ ΰ π
(1 - y)uR = 0. Therefore (1 - y)U = (1 ™ y)uR. Hence A is a
quasi-Baer ring. By Lemma 1, A is an abelian Baer ring. In fact,
any idempotent generated reduced right ideal of R is an abelian
Baer ring. This completes the proof.

From Lemma 2, it can be seen that every nonzero ideal of R
contained in B has nonzero nilpotent elements. Hence every reduced
ideal of R is contained in A. Also, we note that commutative FPF
rings (e.g., integers mod 12) are not necessarily quasi-Baer but
satisfy the hypothesis of Theorem 3 [10, p. 168 Lem. 3A]. In fact,
Theorem 3 is a generalization of the decomposition for commutative
FPF rings obtained by C. Faith [10, p. 184].

COROLLARY 4. Let R be a quasi-Baer ring. Then R — A 0 B
where B is the MDSN and an essential extenison of Nt, and A is
a reduced right ideal of R which is also an ahelian Baer ring.

Letting R be the 2 x 2 lower triangular matrix ring over a
domain (e.g., example vii) and applying Corollary 4, we have

A =

A right i?-module B is a rational extension of a submodule X if
whenever x, y eB with x Φ 0, there exists an element reR such
that xr Φ 0 and yr e X. Note that if B is a rational extension of
X then B is an essential extension of X. A MDSN ring is a ring
which equals its MDSN.

COROLLARY 5. Let R be a semiprime (quasi-)Baer ring. Then
R = A 0 B (ring direct sum) where B is a MDSN (quasi-)Baer ring
which is a rational extension of Nt, and A is a reduced abelian Baer
ring.

Proof. From Corollary 4, R = A 0 B where B is the MDSN.
Let B = bR where b = ¥ and A = (1 - b)R. Then bR(l - 6) = 0
because R is semiprime. Since 1 — 6 is a unity for A, it follows
that 1 — 5 is central in R. Hence A and B are rings with unity. Let
0 Φ x 6 B. Then xRf]Nt Φ 0 since Nt is essential in B. Now xNt Φ 0
because R is semiprime. Let r e Nt such that xr Φ 0. Then, for
any y eB, yreNt. Hence B is a rational extension of Nt. This
completes the proof.

Corollaries 4 and 5 generalize Proposition 5.7 of [17, p. 255] and
Rangaswamy's decomposition of a von Neumann regular Baer ring
which is the endomorphism ring of an abelian group [16]. Further-
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more, according to Kaplansky's classification of Baer rings [14], types
II and III and semiprime type I i n f are MDSN rings. Hence reduced
Baer rings are type I f l n.

Three important classes of semiprime quasί-Baer rings are the
class of semiprime right FPF rings [10, p. 168], the class of von
Newmann regular Baer rings (e.g., Examples (i), (iii) and (iv)) and the
class of Baer *-rings (i.e., a ring with involution *, such that the
right annihilator of any subset is generated by a projection [14, p.
27]). A useful subclass of Baer *-rings are the AW*-algebτ2LS (i.e.,
a C*-algebra which is Baer * [2, p. 21]). Examples (i) and (ii) are
AT7*-algebras [2, pp. 21, 24, 40]. From Lemma 1 and [14, p. 10],
we note that an APF*-algebra is commutative if and only if it is
reduced. Thus for ATF*-algebras we have

COROLLARY 6. Let R be an AW""-algebra. Then R—A0 B {ring
direct sum) where A is a commutative AW*-algebra and B is a
MDSN AW*-algebra which is a rational extension of Nt. Further-
more, A contains all reduced ideals of R.

We remark that a quasi-Baer ring which is a rational extension
of Nt is not necessarily DN. Let R be a 2 x 2 matrix ring over a
domain which is not a left Ore domain. By [15], R is a prime
quasi-Baer ring; and from [5] R is MDSN. Hence, by Corollary
5, R is a rational extension of Nt. However, R is not DN [5].

The next lemma and theorem show that under mild finiteness
conditions (e.g., no infinite direct sums of index two nilpotent left
ideals or no infinite direct sums of reduced subrings with unity) a
nonsemiprime (quasi-)Baer ring can be decomposed in terms of a
reduced Baer ring, a nilpotent ring and a (quasi-) Baer MDSN
ring.

LEMMA 7. Let Rbe a ring which is neither reduced nor MDSN
and in which at least one of the following conditions holds:

( i ) R is a direct sum of indecomposable right ideals)
(ii) R has no infinite sets of orthogonal idempotents {el9 e2, }

such that each of ê ife* is reduced;
(iii) R has no infinite direct sums of nilpotent left ideals of

the form bRa where a and b are orthogonal idempotents with aRa
reduced and the ring eRe has a MDSN for every nonzero idempotent
eeR.
Then there exists a positive integer n such that for each k = 1, , n
there is an idempotent bk where Rbk — bkRbk, a reduced ring Sk with
unity, and a left ideal Xk of R such that Xk = 0. Also, Rb^ is
ring isomorphic to
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sk o
Xk Rbh

with b0 — 1 and Xk 0 Rbk (left ideal direct sum) is the MDSN of
Rbk^. Consequently, R — S 0 X 0 i 2 δ w (additive group direct sum)
where S = φ j = 1 Sk (ring direct sum) is a reduced ring, X = φ£= 1 Xk

is a nilpotent left ideal of Rf and Rbn is a reduced ring with unity
or a MDSN ring with unity.

Proof The proof of the lemma using condition (i) is in [4].
Suppose that condition (ii) holds. Then by [3, Thrm. 2.4] R has a
MDSN. Hence there exists e = e2 such that R = eR 0 (1 — e)R where
e Φ 0 and e Φ 1, and eR = eRe is a reduced ring with unity and
(1 - e)R is the MDSN of R. Let bx = 1 - e, X1 = b1 Re, and Sλ = eR.
By [4, Lem. 1] R = Sx 0 Xx 0 i26x (additive group direct sum), X,
is a left ideal of R such that XI == 0, Jϊδj. = Z^ϋ^ is a ring with
unity, and X10 jβδi = bjt (left ideal direct sum) where bJR is the
MDSN of R. If J?δx is reduced or if Rbx is MDSN then we are
finished; otherwise we will continue the decomposition with Rt =
b1Rbι = Rbx. Observe iί a = a2 e Rx then aRxa = aφjtb^a = αίJα since
6X is the unity of i2lβ Thus i2x has no infinite sets of orthogonal
idempotents {alf a2, •••} such that each a^a^ is reduced. Again by
[3, Thrm. 2.4], Rt has a MDSN. Hence there exists et = ej such
that ^J?! = ejt^ = βiiZβi is a reduced ring with unity and {bx — β^i^
is the MDSN of Rx. Let δ2 = bx — ex, >S2 = e ^ , and X2 = bjt&i =
δ2i?e1. Note {β, βx, &J is a set of orthogonal idempotents of R.
From [4, Lem. 1] 6^62 = RJb2 = i?δ2 = δ2i2δ2 is a ring with unity
and thus ί = i S 1 © I 1 φ S 2 © I 2 0 i ϋ δ 2 (additive group direct sum)
where Sλ 0 S2 is a ring direct sum of reduced rings with unity.
Since bjt is an ideal in Rf it can be shown that r = ere + 6Lre + δ^δi
for r e R. Thus rX2 = (b^b^Xz S X2 because X2 is a left ideal of i^
[4, Lem. 1]. Therefore X2 is a left ideal of R. Hence X x 0 X 2 is
a nilpotent left ideal of R. Also X 2 0iϋδ 2 (left ideal direct sum) is
the MDSN of Rx. If i2δ2 is reduced or if i2δ2 is MDSN, then we are
finished; otherwise, we will continue with R2 = Rb2. Since {e, ej is
a set of orthogonal idempotents such that eRe and e1Re1 are reduced,
one can see that the above procedure will terminate after, say, n
steps. Thus it follows that R has the desired group direct sum
decomposition. The triangular matrix characterization for Rb^
follows from [4, Lem. 1].

The proof of the theorem using condition (iii) is similar to the
above proof except that "the procedure will terminate after, say, n
steps because there can be only finitely many Xt." This completes
the proof.
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COROLLARY 8. Let R-=S®X@Rbn as in Lemma 7. Then
N(R) = {keR\k = x + y where xeX and yeN(Rbn)}, and N(R) is
an ideal of R if and only if N(Rbn) is a left ideal of Rbn. Further-
more, if N(R) is an ideal of R then N{R) = XφN(Rbn) (direct sum
of left ideals of 22).

Proof. From repeated use of [4, Lem. 3], N(R) = {keR\k = x + y
where xeX and y eN(Rbn)}. SupposeN(R) is an ideal of R. N(Rbn) =
2SΓ(22) Π Rbn. Thus N(RbJ is a left ideal of R. Hence N(Rbn) is a
left ideal of Rbn, in fact N(Rbn) is an ideal of Rbn; and N(R) = I φ
N(Rbn) (direct sum of left ideals of 22).

Conversely, assume N(Rbn) is a left ideal of Rbn. From the
triangular representation of Rbk, it follows that a left ideal of Rbn

is also a left ideal of 22. Hence N(Rbn) is a left ideal of 22. Thus
iV(22) = X@N(Rbn) (direct sum of left ideals of 22). Consequently
N(R) is a left ideal of R, hence N(R) is an ideal of 22. This com-
pletes the proof.

We note that if Rbn is reduced then JV(22) = X is a ideal of R.

THEOREM 9. Let R be a (quasi-)Baer ring which is neither
reduced nor MDSN and in which at least one of the following con-
ditions holds:

( i ) R is a direct sum of indecomposable right ideals)
(ii) 22 has no infinite sets of orthogonal idempotents {elf e29 }

such that each eiRet is reduced)
(iii) 22 has no infinite direct sums of nilpotent left ideals of

the form bRa where a and b are orthogonal idempotents with aRa
reduced.
Then there exists a positive integer n such that for each k = 1, , n
there is an idempotent bk where Rbk = bkRbkf a reduced Baer ring
Sk, and a left ideal Xk of R such that Xk = 0. Also Rbk_x is ring
isomorphic to

Sk 0

Xk Rbk

with b0 = 1 and Xk φ Rbk (left ideal direct sum) is the MDSN of
Rbk-!' Consequently, R = S 0 X 0 2 2 δ w (additive group direct sum)
where S = φ£=i Sk (ring direct sum) is a reduced Baer ring, X =
φ ί = 1 Xk is a nilpotent left ideal of 22, and Rbn is a reduced Baer
ring or Rbn is a MDSN (quasi-)Baer ring. Furthermore, N(R) is
an ideal of R if and only if N(Rbn) is a left ideal of Rbn.

Proof. The proof follows from Lemma 7, Corollary 4, Corollary
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8 and the fact that if e = e2 and R is (quasi-)Baer then eRe is (quasi-)
Baer [8] and [14, p. 6].

By observing that an indecomposable reduced Baer ring is a
domain, it follows that if R satisfies condition (i) or (ii) of Theorem
9, then each Sk is a ring direct sum of domains; consequently S is
a ring direct sum of domains.

From [13], a right ϋ?-module M is quasi-continuous (also known
as π-injective [11]) if it satisfies the following two conditions:

( i ) each submodule of M is essential in a direct summand of
M.

(ii) if P and Q are direct summands of M such that PθQ — 0,
then P φ Q is a direct summand of M.

From [7], a right .K-module M is a CS module if and only if
each complement submodule of Λf is a direct summand of Λf, equi-
valently each submodule of M is essential in a direct summand of
M (i.e., condition (i) in the definition above). A ring is right (quasi-
continuous) CS if it is (quasi-continuous) CS as a right iϋ-module
[6]. Right self-injective rings and products of right Ore domains
are right quasi-continuous [13 & 19]. A n x n(n > 1) lower triangular
matrix ring over a field is a right CS ring which is not a right
quasi-continuous ring.

PROPOSITION 10. Let R be a semiprime ring such that the right
annihilator of every ideal is essential in an idempotent generated
right ideal of R. Then R is quasi-Baer.

Proof. Let X be an ideal of R and Y is the right annihilator
of X. Then J π 7 = 0 since R is semiprime. Let eR be an essential
extension of Y with e — e2. Hence X Π eR = 0. Now (XeR)2 =
(XeR)(XeR) - X(eRX)eR = 0. Thus X(eR) = 0. Therefore Y - eR.
By [8, Lem. 1], R is quasi-Baer.

COROLLARY 11. Let R be a semiprime ring. If R is a CS ring
or a right quasi-continuous ring, then R is a quasi-Baer ring.

Corollary 11 has no converse since a domain which is not a right
Ore domain is quasi-Baer, but such a domain is not a right CS ring.
Also the semiprime condition is necessary since the integers mod 4
form a quasi-continuous ring which is not quasi-Baer.

The next theorem and corollaries generalize several results [3,
Thrm. 3.9], [11, Thrm. 1.15], and [13, Prop. 5.2 & Prop. 5.5].

THEOREM 12. Let R be a ring such that each reduced right ideal
is essential in an idempotent generated right ideal. Then i? = 4 0 β
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where B is the densely nil MDSN, and A is both a reduced quasi-
continuous right ideal of R and a right quasi-continuous abelian
Baer ring.

Proof. By Zorn's lemma there exists a maximal reduced right
ideal K. From [13, Lem. 5.1], any right ideal which is an essential
extension of K is also reduced. From the maximality of K, aR — K
where a = α\ By [3, Prop. 1.2 & Prop. 1.7], A = K and B = (1 - a)R
is the densely nil MDSN. Since every right ideal of A is a right
ideal of R [3, Lem. 1.1] we need only show that A is a right quasi-
continuous ring. We note that part (ii) of the definition of a quasi-
continuous module is satisfied since every idempotent is central in a
reduced ring. To show part (i) of the definition of a quasi-continuous
module, let X be a nonzero right ideal of A. Then there exists
e = β2 such that X is essential in eR as an iϋ-module. Now X Q aeR
and iaef = aee A. Let 0 Φ aer e aeR. Then er Φ 0, hence there
exists seR such that 0 Φ ers e X £ A. Thus ers = aers = {aer){as)
since a is a unity for A. Therefore X is essential in aeR as an A-
module and as an j?-module. From Lemma 1 and Corollary 11, A is
a reduced abelian Baer ring. This completes the proof.

COROLLARY 13. Let R be a right {quasi-continuous) CS ring.
Then R = A 0 B where B is the {quasi-continuous) CS densely nil
MDSN, and A is both a quasi-continuous reduced right ideal of R
and a right quasi-continuous abelian Baer ring

From the proof of Theorem 12, one can see that if the reduced
right ideals of a ring are essential in idempotent generated right
ideals then every idempotent generated reduced right ideal of R
is a quasi-continuous reduced abelian Baer ring. Furthermore, A
contains every reduced ideal of R since B is DN. Also, any condition
on R (such as semiprime) which forces (1 — a)Ra = 0 will make the
decomposition a ring decomposition. From Corollary 11 and Corollary
13 we have:

COROLLARY 14. Let R be a semiprime right {quasi-continuous)
CS ring. Then R = 4 φ B where A is a right quasi-continuous
reduced abelian Baer ring, and B is a {quasi-continuous) CS densely
nil quasi-Baer ring.

Any n x n{n > 1) lower triangular matrix ring over the integers
provides an example for Theorem 9 and Theorem 12 which is a
quasi-Baer ring but not a right CS ring [6, p. 73]. Example (iv)
satisfies the hypothesis of Corollary 14. Also, from [12, Thrm. 2.3]
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and [13, p. 219], any strongly modular Baer*-ring is a semiprime
quasi-continuous ring and thus satisfies the hypotheses of Corollaries
5 and 14. In particular, any finite AΫF*-algebra (e.g., example (ii) is
a strongly modular Baer*-ring [12, p. 14].
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