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QUASIDIAGONAL WEIGHTED SHIFTS

RUSSELL SMUCKER

We characterize the quasidiagonality of a two-way
weighted shift solely in terms of the weights. We use the
characterization to show that quasidiagonality fails to be
an invariant for similarity: an operator similar to the (un-
weighted) bilateral shift may fail to be quasidiagonal.

Introduction* We given necessary and sufficient conditions for
the quasidiagonality of a two-way weighted shift. We use the
characterization to show that quasidiagonality fails to be invariant
for similarity.

A (bounded) operator A on a separable Hubert space is quasi-
diagonal if there exists a sequence {Pn}T of orthogonal projections of
finite rank such that {PJ converges strongly to 1 and {PnA — APJ
converges uniformly to 0. The only facts about quasidiagonal opera-
tors that we use in this paper are that each normal operator is
quasidiagonal and that each compact perturbation of a quasidiagonal
operator is again quasidiagonal. Both facts are proved in [6, § 4],
where the concept was introduced.

Throughout this paper {ejί~ is a fixed basis for a complex Hubert
space, and {wJiS is a fixed, bounded sequence of complex numbers.
The operator B determined on the Hubert space by the equations
Bet = Wiei+1 is a two-way weighted shift with weight sequence {wji£.
The main goal of the paper is to prove Theorems 1, 2, and 5, which
together characterize quasidiagonal weighted shifts solely in terms
of their weight sequences.

1* Sufficiency*

THEOREM 1. If the weight sequence of a two-way weighted shift
has 0 as a limit point in both directions, then it is quasidiagonal.

Proof. Let {w<Λ}ί~-co be a subsequence of the weights that con-
verges to 0 in both directions. For each positive integer n9 define
Pn to be the (orthogonal) projection onto the span of {e<_w+1, βi_n+2, >
ein}. It is easy to compute that \\PnB — BPn\\ is the larger of | w,_J
and \win\; therefore \\PnB — BPn\\~>0. The Pn are increasing, and
the union of their ranges contains all the vectors in the basis;
therefore Pn -* 1 strongly. By definition, consequently, B is quasi-
diagonal. •
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DEFINITION. A two-way sequence {wt)±Z of complex numbers is
block-balanced if for each positive number ε and for each positive
integer n there exist integers p and q with p + n < 0 < q and
\wp+k — wq+k\ < ε for each k with 0 ^ k ^ n.

Roughly, {Wi}±™ is block-balanced if there exist arbitrarily long
blocks (permitted to overlap) on each side of the center number that
are arbitrarily near each other. It is obvious that the center number
does not have to be at wo; it could be at any fixed number wt.

THEOREM 2. // the weight sequence of two-way weighted shift is
block-balanced, then it is quasidiagonal.

We prove Theorem 2 after two lemmas. Next we describe a
projection of the kind to be used in the proof. Let n be a positive
integer, and let p and q be integers with p + n < 0 < g. For each
integer k with 0 ^ k <> n, define vectors gk and hk by

gk = Vkjnep+k + V(n - k)/neq+k ,

hk = V[n - k)/nep+k - \/kJneq+k .

The set {#0, #!, , #„, h0, hl9 , /*,„} is an orthonormal set whose span
is precisely the span of the orthonormal set {eP, ep+ί, — ,ep+n, eq,
eg+i, m' ,eq+n). (Note that there may be many vectors et between
ep+n and eq.) We define the projection P, depending on n, p, and g,
to be the projection onto the span of the orthonormal set {g0> glf ,
Qn, βp+n+i, βp+n+2, ", βg-i)> ( tha t is, t h e vectors gk and each vector et

between ep+n and eq). The vectors λfc, though not involved directly
in the definition of P, are nevertheless useful in the computations
to come.

What is needed for Theorem 2 is an estimate for \\PB — BP\\;
the next two lemmas provide it. Let D be the diagonal operator
(basis: {ejί£) with diagonal entries {wJίΞ, and let W be the un-
weighted bilateral shift (same basis). Clearly, B — WD.

LEMMA A. \\PD — DP\\ <Zma.x\wp+k — wq+k\, (over k with O^k^n).

Proof. For each integer k (0 <£ k <£ n) the space Mk — V {fe ^} =
V {ePik, eq+k} ("V" denotes span) reduces PD - DP, and PD - DP
vanishes on the orthogonal complement of the space spanned by all
the vectors gk and all the vectors hk. It is therefore sufficient to
prove that

UPD-DP)\Mk\\£\wp+k-wq+k\ for 0 ^ k ^ n .

Using the equations Pgk — gk and Phk — 0, one can easily com-
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pute that the matrix for (PD — DP) \ Mk with respect to the basis
{Qk, hk} is the matrix

0 (Dhk, gk)

~(Dgk, hk) 0

whose norm is the larger of \(Dgk, hk)\ and \(Dhk, gk)\. Now

I(Dgk, hk)\ = \(wp+kVk/nep+k + wq+kV{n - k)/neq+k,

V{n - k)/nep+k - Vkjneq+k) \

= Vk(n - k)/n\wp+k - wq+k\ ^ |wp+fc - wq+k\ .

A similar computation shows that \(Dhkf gk)\ ^ \wp+k — wq+k\;
therefore ||(PD - DP)\Mk\\£ \wp+k - wq+k\. •

LEMMA B. \\PW - WP\\ ̂  2/i/¥.

Proof. The basic idea of the proof is quite simple: each vector
in the orthonormal set {g0, -, gn, ep+n+1, •• ,βg_1} is mapped by W
almost into the next one (and the last vector is mapped almost into
the first one). It makes sense therefore that the span of the set,
which is by definition the range of P, should be almost reducing.
The computations are simplified if we note that ||PTF — WP \\ ̂
||(1 - P)WP\\ + \\PW(1 - P) | | ; we shall show that^each of the two
summands on the right is bounded above by l/l/ n.

To estimate ||(1 - P)WP\\, begin by computing (1 - P)Wf for
each basis vector/in the orthonormal basis {g0, - - -, g«, ep+n+1, , eq_^
for the range of P. For each integer i with p + n + l^i^ίq — 1,
the vector ei+1 is in the range of P (note that eq — g0); therefore
(1 - P)Wet = (1 - P)ei+1 = 0. For each integer k with 0 <: k ^ n - 1,
the vector Wgk is in V {ep+*+i, βg+fc+1} = V {ΰh+i, hk+i}- Because the
vector gk+1 is in the range of P, and because the vector hk+1 is in
the range of 1 - P, it follows that (1 - P)Wgk = (Wgk9 hk+1)hk+1.
Finally, gn = ep+n; therefore ( l - P ) ^ = ( l-P)β, + » + 1 = 0. The
computations so far show that (1 — P)W annihilates all the vectors
in the basis for the range of P except g0, , gn_u each of which it
maps into a multiple of the corresponding vector in the orthonormal
set {hlf --,K}. The norm of ( l - P ) T F P is therefore simply the
largest absolute value of the multiples; that is, \\(1 — P)WP\\ =
max \(Wgk, Λfc+1)I, (0 ^ k ^ n - 1). Now,

\(Wgk, Λi+1)| - \Vk(n - k - 1) -

This proves that ||(1 - P)WP\\ S
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The estimation of || PW(1 - P) || is similar to that for || (1 - P) WP ||
therefore we give only a sketch. The vectors in the basis {• , ep_2t
eP-ι, K , K eq+n+l9 eq+n+2, •} for the range of 1 - P a r e all an-
nihilated by PW except hQ, , hn_19 and PWhk — (Whk,gk+1)gk+1 for
O^k^n-1. Therefore || PW(1 - P) || ^ max \(Whk, £j+1) l> (0 ^
k ^ n — 1), and the right side is again bounded by l/l/ n. •

Proof of Theorem 2. Since the weight sequence {wJίS is block-
balanced, there exists for each positive integer n a pair of integers
p and q such that p + n <0 < q and | wp+k — w?+fc | < 1/n for 0 ^ fc ^ w.
Define PΛ to be the projection P (depending on n, p, and q) defined
just before Lemma A. We shall prove that the sequence {Pn}ΐ°° of
projections of finite rank implements the quasidiagonality of B = WD.

Because PnB - BPn = (PnW - WPn)D + W(PnD - ZλPJ, it follows
that

^ | | P . Ϊ F - TΓP.||||Z)|| + \\W\\\\PnD - DPn\\ .

By the two lemmas, the right side is dominated by
\\W\\/n, so that || P.B - B P J - > 0 .

It remains to show that Pn —> 1 strongly; it is sufficient to prove
that Pnei->ei as ^-> oo, for each basis vector et. Two cases must
be considered: i < 0 and ΐ ^ 0. The proofs for the two cases differ
in notation only; therefore we prove only the case i ^ 0. Also, we
need to consider only n ^ i. If the q corresponding to n satisfies
the inequality q > ί, then p + n + l^O^ί^q — 1, so that et is in the
range of Pn, and Pnet = eέ. If on the other hand, g ^ i, let fe = i — q,
and note that 0<^k^n. The basis vector et = eq+k is in V K+fc, βj>+fe} =:

V {9k9 hk}; consequently Pnet = (eq+k, gk)gk = V(n — k)k/nep+k + (n —
k)/neg+k. It follows that Pnet — et = i/(% — k)k/nep+k — k/neq+k, so that
ll PiA — ̂ ill2 = &M The condition 0 < q implies that k = ί — q < i,
so that || Pnβi — βiH2 < ί/n. In summary, we have proved in either
case (q > ί or q ^ i) that ||Pne< — e<||2 < i/n, provided n}zi. For
each integer i ^ 0, therefore, P ^ —> β< as n —> oo. •

COROLLARY. // the weights of a two-way weighted shift are
periodic, then it is quasidiagonal.

Proof. If the weights are periodic, then they are block-
balanced. •

In case the weights are strictly positive, it is interesting to
compare the corollary with a result of R. L. Kelley, which says that
B is reducible if and only if the weights are periodic [7, Thm. 11,
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p. 44], The proof of Kelley's result produces projections that com-
mute with B but that are (unavoidably) of infinite rank. The proof
of the corollary produces projections that are of finite rank and that
nearly commute with B, but that cannot actually commute with B.

2. Necessity• The theorems in § 1 produce two kinds of quasi-
diagonal two-way weighted shifts. In this section, we prove that
they are the only ones. The key idea is that for each shift that
does not belong to one of the two kinds, there is a nonquasitri-
angular operator in the C*-algebra generated by the shift, so that
by Theorem 3 the shift itself fails to be quasidiagonal.

Throughout this section, it is necessary to assume that the weights
are nonnegative (Theorems 4 and 5 are false, otherwise), and it is
convenient to assume that | |B| | ^ 1 (so that 0 ^ wt ^ 1). No real
generality is lost in either case, for the weighted shift with weights
{w%)±2 is unitarily equivalent to the weighted shift with weights
{|w{|}i~ [4, Problem 75], and quasidiagonality is unchanged by multi-
plication by scalars (this is obvious from the definition).

THEOREM 3. // A is quasidiagonanl, then each operator in the
C*-algebra generated by A is also quasidiagonal.

Proof. If the sequence {Pn} of projections of finite rank imple-
ments the quasidiagonality of A, then {Pn} also implements the
quasidiagonality of A*, because ||PWA* - A*Pn\\ = \\PnA - APn\\. It
therefore implements the quasidiagonality of finite products involving
A and A*, because I! P . S Γ - STP%\\ ̂  \\PnS - SP. || \\ T\\ + | | S | | | | P . Γ -
TPn\\; also it implements all polynomials (possibly noncommutative)
in A and A*, because

|| P.(S +T)-(S+ Γ)PmII ^ || P.S - SPn\\ + | |P.Γ -

If, finally, Sn—>S and each Sn is a polynomial in A and A*, then
by a diagonal argument it is possible to select a subsequence {Pn])
of {Pn} that implements the quasidiagonality of S; the inequality
needed is

P.J
D

The next theorem provides the tool necessary for applying Theo-
rem 3 in the context of weighted shifts. In its proof, we need an
approximation theorem of the Stone-Weierstrass type. Let % be a
fixed, nonnegative integer and let X be the Cartesian product of
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n + 1 copies of the closed unit interval [0, 1], the component func-
tions being indexed by the integers 0 to n (so that a typical point
in X is (xOf xlf , xn) with 0 ^ xt ^ 1). Let Cr(X) be the normed
space of real-valued continuous functions on X with the sup norm.
We need the fact that if the functions in a subset S of Cr(X) vanish
identically on a closed subset Xo of X and separate points in the
complement of XQ, then the algebra of functions generated by S is
dense in the set Co of functions in Cr(X) that vanish identically on
Xo [9, Thm. 7, p. 46].

THEOREM 4. If u is a function in Cr(X) that vanishes iden-
tically on the coordinate faces xd = 0 (0 ^ j ^ n), then the weighted
shift Bu with weights {n(wif wi+1, •••, wi+n)}t?-ao is in the C*-algebra
generated by the weighted shift B with weights {wjl~ (0 ^ wt ^ 1).

Proof. Let <s$f[B] be the C*-algebra generated by B. If j is a
nonnegative integer, then the operator Ds defined by the formula
Dά — v/β*(i+1)i?(J'+1> is the diagonal operator with diagonal entries
[WiWi+t - - - wί+J }£f_oo (the assumption 0 ^ wt has just been used), and
Dj is in j^f[B] (because Dό is in J^[D]] by the Gelfand-Naϊmark
theorem [3, Thm. 7, p. 876], and ^[D%]c:^[B]). The product BDά

is the weighted shift with weights {wtwi+1wi+2 w^^t--^, and it is
in ,jy[J5]. More generally, if bQf blf , bn is a sequence of nonnegative
integers, then the operator BDίΦ^Dl* Z?»» is the weighted shift
whose ίth weight is

and it is in J^[J5]. Put another way, if m0, m2, , mn is a sequence
of integers with m0^ m^ ^ mw ^ 0, and if u is the function
in Cr(X) defined by u(xQ, , xn) = x^^'^Γ 1^ 2 »Γn, then the
weighted shift J?M is in j^f[B],

Let Co be the subset of Cr(X) consisting of the functions in
Cr(X) that vanish on the set Xo of points in X one of whose coordi-
nates is 0. We want to show that Bu is in J%f[B] whenever u is
in Co; the first paragraph proves that Bu is in J^[B] whenever u is
in the set S consisting of the functions in Cr(X) that have the
special form u(xQf •••,#*) = xlmQ+ι)x?ιxT2 cC% where the mf are
integers such that m0^ m^ ^ mw ^ 0. Because the set S is
closed under multiplication, each function in the algebra S? generated
by S is merely a linear combination of functions in S. Because BUl +
Bu% = J5Wl+ίt2 and Bau — aBu for each scalar α, the operator 5W is in
J^[J5] whenever u is in £fm If un—>u uniformly on X, then BUn —> Bu

uniformly; therefore Bu is in J^[B] whenever u is in the uniform
closure of ^Γ The set S separates points in X — Xo; therefore, by
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the remark preceding the theorem, the uniform closure of Sf is all
of Co. •

The condition 0 ^ wt in Theorem 4 is necessary. To see this,
suppose the weights of B are

{...,-1,1,-1,(1), - 1 , - 1 , 1 , - 1 , - 1 , ."}

(note that the weight 1 alternates with a single —1 in the backward
direction while it alternates with a pair of — Γs in the forward direc-
tion). The operator B is quasidiagonal (because it is normal); there-
fore each operator in j*f[E\ is quasidiagonal, by Theorem 3. If u
is a continuous function of one variable such that u(l) = 1 and
u(-l) = 2, then Bu has weights {• , 2, 1, 2, (1), 2, 2, 1, 2, 2, -}, and
Bu fails to be quasidiagonal (as the next theorem shows); therefore
Bu is not in

THEOREM 5. If a two-way weighted shift with nonnegative
weights is quasidiagonal, then either the weight sequence has 0 as a
limit point in both directions, or it is block-balanced.

Proof. Suppose that the weight sequence does not have 0 has
a limit point in one direction and that it is not block-balanced. We
must prove that B is not quasidiagonal. Since quasidiagonality is
invariant under the adjoint operation, it is sufficient to prove the
case where the weight sequence does not have 0 as a limit point in
the forward direction. It is then possible to alter a finite number
of the weights to produce a new weight sequence (which is still not
block-balanced) that is bounded below in the forward direction by
a positive number, say δ. Such a change amounts to a compact
perturbation of B, and as such does not alter quasidiagonality.

The assumptions now are that 0 ^ wt ^ 1 for each integer i,
that 0 < 3 ^ wt ^ 1 for i ^ 0, and that there exists a positive num-
ber ε and a positive integer n such that to each pair of integers p
and q with p + n < 0 < q there corresponds an integer k (0 ^ k ^ n)
such that I wp+k — wq+k | ^ ε. We must prove that B is not quasi-
diagonal. Let Y be the closure in the normed space X (defined just
before Theorem 4) of the set of points {(wi9 wi+1, , wi+Λ)}t"o (note:
in the forward direction only), and let Z be the closure of the set
consisting first of the points in {(wi9 wi+1, , w<+J}?=_oo (note: in the
backward direction only) and second of the points in X at least one
of whose components is 0. The assumption on ε and n implies that
the set 7 is at a distance at least ε from each point of the first
kind in Z, and the assumption on δ implies that Y is at a distance
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at least δ from each point of the second kind in Z. The closed sets
Y and Z are therefore disjoint. By Urysohn's lemma, there exists
a continuous function % on I with u[Z] — 0 and u[Y] — 1. The
function u vanishes on the face x0 = 0 of Theorem 4 because the
points in that face are contained in Z.

By Theorem 4, the shift Bu is in the C*-algebra generated by
B. If B were quasidiagonal, then by Theorem 3, Bu would also be
quasidiagonal. Except for a compact perturbation, Bu is the weighted
shift with weights { , 0, 0, 0, (1), 1,1, } (the weights with indices
from — n + 1 to —1 may be different). The quasidiagonality of B
thus implies the quasidiagonality of 0 0 U (U is the unweighted
unilateral shift). It is known, however, that 0 0 U fails even to
be quasitriangular (proof: U is not quasitriangular [5, Thm. 3];
therefore neither is 0 0 1 7 [2, Thm. 8]). The weighted shift B
consequently fails to be quasidiagonal. •

3* Applications* In this section we give two applications that
use the characterization of quasidiagonal weighted shifts developed
in the previous two sections. The first application is a reformulation
of the characterization in a special case, namely where the weighted
shift has compact self-commutator (the self-commutator of A is
A*A — AA*). The second example shows that quasidiagonality fails
to be invariant for similarity.

THEOREM 6. A two-way weighted shift with nonnegative weights
that has compact self-commutator is quasidiagonal if and only if
there exists a number that is both a forward limit point and a
backward limit point of the weight sequence.

L. G. Brown, R. G. Douglas, and P. A. Fillmore have proved that
if an operator A with compact self-commutator is quasidiagonal, then
it is a compact perturbation of a diagonal operator [1, Cor. 11.12].
Theorem 6 therefore also characterizes two-way weighted shifts that
are compact perturbations of diagonal operators.

Proof. A diagonal operator with weights {c£JΐΞ is compact if
and only if the weights converge to 0 in both directions. Since
B*B — BB* is the diagonal operator with weights {w\ — w2

i+1}±™, it
follows that B*B — BB* is compact if and only if {wt — wi+1}±Z con-
verges to 0 in both directions. In that case, the set of forward
limit points is a closed interval R, and the set of backward limit
points of {Wi)±Z is a closed interval L.
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If R and L have a point in common, say x, then, because
[wt — wi+1}±~ converges to 0 in both directions, there exist arbitrarily-
long blocks, on both sides of the center weight, such that the weights
in the blocks are arbitrarily near to x, and therefore arbitrarily near
to each other. The weight sequence is therefore block-balanced, so
that B is quasidiagonal by Theorem 2.

If R and L are disjoint, then they are a positive distance apart.
The condition that {Wi — wί+1}±Z converges to 0 in both directions
means that eventually the blocks to the right of the center weight
are a positive distance (sup norm) from the blocks to the left of the
center weight. The weight sequence is therefore not block-balanced.
Neither does it have 0 as a limit point in both directions, since R
and L are disjoint. By Theorem 5, the shift B fails to be quasi-
diagonal. •

EXAMPLE. An operator that is similar to the (unweighted) bi-
lateral shift W may fail to be quasidiagonal.

Proof. Let A be the two-way weighted shift with weights
{• , 1, 1, 1, (1/2), 2, 1/2, 2, •}. If S is the diagonal operator with
diagonal entries {• , 1, 1, 1, (1), 2, 1, 2, •}, then S^AS = W, so that
A is similar to W. By Theorem 5, on the other hand, A fails to
be quasidiagonal. •
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