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THE CONSTRUCTION OF CERTAIN BMO FUNCTIONS
AND THE CORONA PROBLEM

AKIHITO UCHIYAMA

In Euclidean space R? let I denote any cube with sides
parallel to the axes and write |I]| for the measure of I. A
real valued locally integrable function f(x) on R¢ has bounded
mean oscillation, f< BMO, if

sup infg | flw) — elda/ 1= || f llzxo < o .
I ceR I

Our result is the following.

TueoreMm 1. Let 2> 1. Let E,, -+, Ey C R’ be measur-
able sets such that

(1.1) min |INE;|/|I]| < 2%
1<j<N
for any I. Then, there exist functions {f;(x)}/_; such that
N
(1.2) El filw)y=1,
(1.3) 0=fix) =1, 1=5=N,
1.4) flx)=0 ae. on E;,, 1Sj=N,
(1.5) ”fj”nmo§c1(d;N)/l» 1§.7§N
Converely, if there exist {f;(x)}/_, that satisfy (1.2)-(1.4) and
(1.6) I fillsxo S ex(d, NY2, 1=5=ZN,

then (1.1) holds.
In particular, if N = 2, then the following holds.

COROLLARY 1. Let »>1. Let A, B C R® be measurable sets
such that
™ min (| I 0 Al/|I], [INBI|/|I]) <27
for any I. Then, there exists a function f(x) such that
1.7 flx)y=1 ae. on A,

(1.8) f®)=0 ae. on B,
£ llsxo = e(d, 2)/N .

Conversely, if there exists f(x) that satisfy (1.7)-(1.8) and

Il f llewo = ex(d, 2)/\
183
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then (*) holds.

Corollary 1 is implicit in Garnett-Jones [10] and is the essential
part of their proof. [See also Jones [13].] Thus, Theorem 1 is an
extension of [10]. In §3, we give the proof of Theorem 1.

Recently, Jones [14] showed that their paper [10] is closely related
to the corona problem. Using [10], he gave an estimate for corona
solutions. In §§4 and 5, we refine Jones’ result by using Theorem 1
instead of [10].

I would like to thank Professor P. W. Jonse for sending his papers
[13]-[16]. I would like to thank Professor M. Kaneko who suggested
me the condtition (*) and Professor K. Yabuta who gave me a valuable
information. I would like to thank referee for his helpful sugges-
tions and for finding some errors.

A comment on notation: The letter C will denote the various
constants which depend only on d and N. The latters &, 1, 7, k, m, n
and p will denote integers.

2. Preliminaries. First, we prepare some notations and lemmas.

For a cube I, I* denotes the cube having the same center as I
and #(I*) = 37(I), where #(I) denotes the side length of I.

We say that a(x) e C(R?) is adapted to a cube I if

suppacC I*
and
la(@) — a()| = @ — yl/2(I) .
Let q be a large integer, depending only on d and N, such that
(2.1) 1+ N3*g <20,

In the following, ¢ will be fixed.
A dyadic cube is a cube of the form

[£27%, (b, + 1)27%) X - -« X [k 27", (kg + 1)27%)

where h and k; (1 < j < d) are integers. Let D, denote the set of
all dyadic cubes with side length 27,
For each I, set

g{I) =log, (| I|/IINE;]), 1=j=N,
where log (|I|/0) means oo.

LEMMA 2.1. If IcCJ and 2¥|I| = |J|, then
9iI) z 9;(J) — kd .
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Proof.

g,(I) = log, ( I|/|I 1 E;]) = log, (||27%/|I  B))
= log, (| /11N By)) — kd = log, (| J1/|J N Ey]) — kd
= gJ) — kd .

LEMMA A [See Fefferman-Stein [7]]. If f € BMO (R?), then
!(f)l - (f)1*| é 2(1 + 3d)”f“BMo ’

where (f); = Slf(y)d?//)fl-

Proof. Note that

I

|, 17@) = Drawn 11 = | 17@) = eldyil 1] + le = (]
2

< Sllf(y)—CIdy/lIl for any ceR.
Thus, | 1) — (Fuldu/l 1] £ 2] owor S0,

D= Del 2 | 17@) = Drlavn11 + | 17@) = (el
<207 flowo + 3° | 1F@) — (Prldw/| I
< 20 + 8 £ flaso -
LEMMA B [See Coifman-Weiss [6]].
1| £ llsxo = sup {]SRd f(y)h(y)dy]: there exists a cube I such that

supph L |l < 1117 | )y = 0} .

REMARK 2.1. The function h(x) satisfying the above conditions
is called “l-atom”.

Lemma B follows immediately from the argument of dual spaces.
We omit the proof.

LEMMA C [John-Nirenberg [12]]. If feBMO (R?), then
{ee I | f(@) — ()] > M| = e(d)27ee ¥ Newo

for any cube I and any »\ > 0.

For the proof of Lemma C, see [12].
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3. Proof of Theorem 1. The converse part of Theorem 1 is
an immediate consequence of Lemma C.

Let I be any cube. By (1.2), there exists j,€{1, ---, N} such
that

(fi)r Z 1/N .
Thus,

N E; |/l = {oel: [ f;(®) — (fi):] =2 UNH/II| by (1.4)
< ¢(d)2-s@/Weat, b by (1.6) and Lemma C
<27% by A>1

if ¢,(d, N) is sufficiently small. This concludes the proof of the con-
verse part of Theorem 1.

The difficult part of our proof is the construction of f, ---, fx.
The idea of the following construction is essentially due to P. W.
Jones [13]. [See also L. Carleson [3].]

By (1.1),

Thus, if )\ is not so large, then
N
S =TS, 1S5S N,

satisfy the desired properties, where X, denote the characteristic
function of a measurable set F. So we may assume that )\ is large
enough.

First, we assume

3.1) E,---,EycCl0,1)x --- x[0,1)=1,.

We will inductively construet the sequences of BMO functions
{71} A < 7 £ N) such that

L2y IACERS

1.3y EPACESY

1.4y @) < g;())d on I if IeD,,
(1.5 I i llno < (d, N) .

If the above {/;,} have been built, then there exists a sequence
1§h1<h2<h3<

such that {7, }i.. 1 < j < N) converge weakly* in L~ since || /[l <M
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by (1.3)". Set
£ =wrlim g

Then, (1.2) and (1.8) follow from (1.2)" and (1.3). Let A(x) be any
l-atom. Then,

| rwrway| = |tim | £a,@nr@dun
< limsup || 4, [lswo/r by Lemma B
< ¢(d, N)/» by (1.5).
Thus, (1.5) follows from Lemma B. Since

lim g¢g,(I)=0

Iax,|I|—0
for almost every x € E; by Lebesgue’s theorem,

}llim/j,h(x) =0 a.e. on E;

by (1.4). Thus, (1.4) follows. Hence, f,, ---, fy are the desired
functions.

It is fairly easy to remove the restriction (3.1). By the same
argument as above, for any positive integer », we can construct
fiws 1 = 7 =< N, such that

N
j2=1 Fin(®) =1,
0= fi(®)=1,
Jin@®) =0 on E;N{(®, -, @) |z.|=p,1=n=d},
”fj,p”BMO é c1(d; N)/>" .
There exists a sequence
1 é Dy < D: SOERE
such that {f;,}i-. 1 £ 7 < N) converge weakly* in L”. Then,
f:i = w:']'imfi:pk ’ 1 é .7 é N,
are the desired functions.
Thus, all we have to show is the construction of {/,} that satisfy
(1.2)-(1.5)'. In Lemma 3.1, we will construct {4,} and show that

they satisfy (1.2)'-(1.4)’. In Lemma 3.3, we will show that they
satisfy (1.5)".

Lemma 8.1. If E, ---, Ey satisfy (1.1) and (3.1), then there exist
{/;.(®)} and A;, c D,, where 1 £ j < N and 1 £ h, having the prop-
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erties (1.2)-(1.4) and

(3.2) @) = a@)| = 24a — g,
(3.3) Ajp = (I Dy sup (@) > 9D},
(3.4) Fal®) 2 fiaiw) — 3,

(3.5) @) Z fa@) on (U I

Proof. By (1.1), for any I
max g,(I) = 2d .
1<j<N

Set
s(I) =min{j: 1 < j§ < N, ¢9,(I*) = 2d\} .

We may assume s(l)) = 1. Set

K,O(KE)EN,
/i) =0, 27 N.

Then, {/,} satisfy (1.2)-(1.4)" and (3.2). Assume that 4,, 1 <7<
N,1<h=<k-1) and 4, A<j=<N, 0<h=<k—1) have been
defined so that they satisfy (1.2)-(1.4)’ and (8.2)-(3.5).
Define A;, by (3.3). By modifying 4,_,, we will build /4.
Let b,(x) be adapted to I, 0 < b,(x) <1 and

(3.6) b(z)=1 on I.
Let A;, = {L}m=1,....,r Set

az,(®) = min (¢b,,(), /(%))

a;,(@) = min (gb., @), s (x) — 3 01,(2))

= min <qb,m(x), max ( Aea(Z) — glqbln(x), 0>>
for m=2,.-.-,N.

Since the supports of {b, } overlap at most 3% times, 3~%¢~'a, are
adapted to I,. Set

@) = fip@) = B a,@) = (@) = 03ul@) -
Since

/@) = max (5, (@) — 3 gb,(),0),

Tedgk

we get
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max (5,.() — 8%, 0) < 44(@) £ £,.(@),
foan@) = Gu) on (U I

€45,k

Thus, {4}, satisfy (1.8), (3.4) and (3.5).
If Ie A;, and x €I, then

~

A5(®) = max (,.(x) — ¢q,0) by (3.6)
< max(g,J)/d —q,0), where JeD,, and JDOI,
< g9;(I)/d by Lemma 2.1.

If IeD\A;, and z €I, then
Jin®) £ (@) < g4I)/d

by the definition of A, ,. So, {/,}i, satisfy (1.4). But, they don’t
satisfy (1.2)". So, we have to modify {,} further.
Set

@) = @) + by a,()

3.7 1eUN_ Aot =5
= @) + w; () .

Since
N N
—JZ'=1 v;,.() + JZzl w;(x) =0,

{7} satisfy (1.2)’. (1.8), (3.4) and (3.5) are clear since a,(x) = 0.
If Ie D, and w;,,(x) = 0 on I, then

~

/is®@) = @) S g(D/d on I

since /,N . satisfies (1.4). If IeD, and w;,(x)#0 on I, then, by the
definition of w;, in (8.7), there exists Je D, such that

J*o I and 9;(J*) = 2dn .
By Lemma 2.1,
9;(I) =z 9;(J*) — (log; 3)d = \d
since \ is large. So, by (1.3)
@) = N = gi(D)/d

and (1.4)" holds.
Lastly, we show (8.2). If x, yeJ and JeD,, then

[(=2;4@) + w;1(@) — (—;,(Y) + w;,.(¥) |
(3.8) = > la () — ay)| .

N
IsU’m:l Am,k
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Since the supports of {aj};eu?_ 4,, overlap at most N 3¢ times, (3.8)

is dominated by

msk

N32.8%.q-|x — y|-2%,

So,
| 47@) = | = | A a(@) — /7)) + N824g|z — y
= {1 + N3“gj2"|x — y|
2%y —y| by (2.1).
This concludes the proof of Lemma 3.1. ]

LEMMA 3.2. 4,(x) < g9,I)/d — hq — log, (#(I)) + 8-2d"* + 2 on I
for any I such that #(I) < 3.2,

Proof. There exist at most 4¢ dyadic cubes J,, - -, Jun € Dy,
k(I) < 4%, such that

JNI+ Q.
Let
r = min g,J;) .

1<i<k(I)

Then, by (1.4)
inIf sin@) S rld .
So, by (3.2)
(38.9) @) < r/d + 3-2%d* on I.
On the other hand,

9:(1) = log, (| Z/| I 1 By
2 log, (1) %, 7.0 B

3.10
@10 = log, (|1)/(4* max | 7,0 )
=7 + log, (|I]|/27*?%) — 2d .
Thus, the desired result follows from (8.9) and (3.10). O

LEMMA 3.3. H/éhHBMo = cl(d; N).
Proof. Let I be any cube. If /(I) < 27", then by (3.2)
(3.11) int | 14,0 - eldy/ 1] < 27

If 0<n<hand 27" < /(I) <27, put
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8=\ Awaun.

Note that by Lemma 3.2

(3.12) Bi = 9(IM[d + q + 3-2'd” + 2.
We will show

(3.13) |, 1w - silawi 1 s €.
Put

fxel:| fu@) — B;| > a}
(3.14) ={rvel: 4, ()< B; —alU{zel: 4,(x)>p;+ a}
=G, j, ) UH(, j, @) .
First, we estimate |G(Z, j, «)|. Let a > d"*2?. Note that /,(x) >
B; — d”*2¢ on I by (3.2). So, if zeG(I, j, a), then, by (3.5), there
exists Je A;;, n <k < h, such that
xed*,

So,
Sra(®) < B; — a + 3%q by (3.4)
and
Sia(y) < By — a + 3%q + 2d* on J by (8.2).
Thus,

g9:J)jd < B; — a + 3%q + 2d** by (3.8) .

Noticing the above fact, we can take disjoint dyadic cubes
{Jm} - Un<k§h Aj,k such that

J.cI*,
G(I! j’ a)CUJWT 2

(3.15) 0,(J)d < B; — o + 3%q + 2di” .
Thus,
]G(I: j: a)] = 3dz ]Jm] = 3d2 ij N EjIZgj(Jm)

= C2%7 31| J, N E;| by (3.15)
(3.16) < C209= 3 |, N B;| by (3.12)
< C2g1~(r*)—ad]I* n Ejl < C|I‘2—mi .
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Next, we estimate |H(I, j, «)|. Let a > (N — 1)d"*2?. Note that
S Bm =\ by (1.2). So, if xe H(I, j, a), then

(@) = N — (%)

= 38— a0 = (3 B — (fal@) = )
é (1 Z .5 Bm) — Q.

<m<N,m

Thus,
(B = smal@)) Z .
1<m<N,m#j
So,
AS G(I, m, (X/(N - 1)) ’

1<Sm<N,m+*j

Thus,
H(I’ J,a)C U G(I, m, a/(N —1)).
1<m<N,m+j

By (3.16),
(3.17) |H(I, j, )] < (N — 1)C|Tj2-/®-
Thus, if 1= +(I)= 2", then (3.18) follows from (8.16), (3.17) and
(8.14).

If ~(I) > 1, put

B =N

Then, (3.13) follows from the same argument. Thus, Lemma 3.3
follows from (3.11) and (3.13). O

4. A refinement of Jones’ paper ‘‘Estimates for the corona
problem’. Let H> denote the Banach algebra of bounded analytic
functions defined on R% = {z = («, ¥): x € R', ¥y > 0}, endowed with the
usual sup norm. The corona problem is as follows. We are given a
finite number of functions F), F,, ---, F\y e H* which satisfy

inf sup | Fy(z)| > 0.

z=(x,y) € R?,_ 1sj<N

We then must produce G, G,, ---, Gy € H* such that
N
jZﬂF,(z)G,-(z) =1.
The functions G; are called corona solutions. As is well known, the

corona problem was solved affirmatively by L. Carleson [1]. [See also
[2], [11], [8] and [18]]
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Recently, Jones [14] gave an estimate for the corona solutions.

THEOREM A. Let 0 < e < ¢(N). Suppose F, -+, Fye H” satisfy
“F.?”wél, 1§.7§N,

(4.1) max |Fy(z)| >1—¢ for any zecR:%.
1<GEN
Then, there are corona solutions G, ---, Gy € H™ satisfying

1G;]l. <1+ A(N,e), 1Sj=<N,
ﬁle(z)G,.(z)[§1+A(N, §) for any zeR:,
=

N

2. Im (Fi(2)G5(2))| = A(N, ¢) for any zeR%,

j=1

where

(4.2) A(N, &) = ¢,(N)(log™"(1/e))™
log®™¢ = log (log® t) .

As is pointed out in [14], (4.2) is the best order possible when
N = 2. In this section, as an application of Theorem 1, we show

THEOREM 2. In Theorem A, we can replace (4.2) by

(4.3) A(N, ¢€) = cy(N)(log (1/e))™" .

REMARK 4.1. (4.3) is the best order possible when N is fixed.

In [14], Jones showed two kinds of proofs. In this note, we
show Theorem 2 by refining the second proof of [14].

As is shown in [14], though it is not explicitly stated, for the
proof of Theorem 2, it suffices to show

THEOREM 3. Let F,, ---, Fy and ¢ be as in Theorem A. Then,
there exist f,, ---, fv € BMO (R") satisfying

(4.4) S =1,
(4.5) 0<f@=1l, 1Sj=<N,

@8 |Pe-onwa<veN) i (Rl <1-e,

(4.7) | fillewo < e(N)(log (1/e))™, 1=<j=<N,

where
P,(x) = y/(z(x* + ¥7))

that 1s the Poisson kernel.
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The proof of the fact that Theorem 3 implies Theorem 2 is com-
plicated. We omit it in this note. Roughly speaking, it is through
“Carleson measure” that H*= relates to BMO (RY). For the definition
of “Carleson measure” and for detailed discussion about the relation
between Theorem 2 and Theorem 3, that is the relation among H>,
BMO (R") and “Carleson measure”, see [14].

In the following, we prove Theorem 3.

For an interval I c R, let

) ={z=(@y:awel [I|2<y <|I]},
FJ(I) - infzéT(I) {Fj(Z)l, 1 é .7 é N-

All we need is the following

THEOREM 4. Let F,, ---, Fy and ¢ be as in Theorem A. Then,
there exist measurable sets K, ---, Ky C R' such that

(C.1) m_iI}I 1IN E; NI <ée” for any interval I,
(C.2) IINE;|/[I]>1—¢e" if
(4.8) F(I)<1—¢e".

Jones showed Theorem 4 for the case N = 2. Since our proof
is very complicated, we postpone it to §5.

It is fairly easy to show that Theorem 3 follows from Theorem
4 and Theorem 1. This idea is also due to [14]. First, by Theorem
4, we get E, ---, B, satisfying (C.1) and (C.2). Next, we apply
Theorem 1 to these E, ---, Ey and A = —(log,¢)/(62d). Then, we
get fi, - -+, fv satisfying (1.2)-(1.5). (4.4), (4.5) and (4.7) follow from
(1.2), (1.3) and (1.5). So, it suffices to show (4.6).

Let (xz, y)eR% and 1 < j < N be such that

| Fi(x, y)| <1—¢e”.
Put
I=(@—-y,2+v).
Then,
F(I)<1—¢".

So, by (C.2) and (1.4),
(4.9) SI Fi0dE)I| < & .

On the other hand, by Lemma A and (4.7),

+2k—1

@iy || sy - |

g—ok—1

: £ dt/2ky| < 8e(N)(log (1/e))™
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for k=1,2, ---. So, by (4.9) and (4.10),
) z+eoky
| Po = trmar < €3 |7 ar ey
<C ki‘, 2-*k(log (1/¢))™* + &}

= C(log (1/e))™
< 1/2N if ¢(N) is small enough .

Thus, (4.6) follows.

5. Proof of Theorem 4. First, we prepare some definitions
and lemmas.

DEFINITION. For an interval I, a function F(x, y) defined on R%
and a positive number a, let

', e)={w,v):lz—ul<2v,0<v=a},
F*@)= inf |F(u,v)|,
(u,v) e(z,a)
R, F,o)={xecl: F*"'(x) <1 — ¢} .
For a measurable set F and z ¢ R, let

My(x) = sup [N E|/|I].
LeMMA 5.1. Let F(x, y) be as above. Let 6 > 0. Let I and J

be intervals such that

IcJ and F(I)= inf |F(2)|]<1—0.
zeT(I)
Then, I R(J, F, 9).

Since I'(x, |J])D T(I) for any xzeclI, this follows very easily.
See Fig. 1.

LEMMA D [Jones [14]. See also [4] and [17]]. Let 0 <e < ¢
Let F(x,y) be a complex valued function, harmonic over R%: and
satisfying

IFll.<1.

Let I be an interval such that
sup |F(z)|>1—¢.
zeT(I)

Then,
|R(I, F, e)| < eI .
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For the proof of Lemma D, see [14].

Our fist claim is the construction of the measurable sets &, - - -,
&y C R' such that

©1  max|Ing|Ilz1—e® if Icl=(-11),
1<j5<

(c.2y 1IN &;|/|I| <e™ if IcI, and if (4.8).
Note that if these &, ---, &y have been constructed, then
(5.1) Ei=(&), 1=J=N,
satisfy
(C.1)” min |[InEf|/|I] <e if Icl,
(C.2)” [ INEH/NII >1—¢e/ if Icl, and if (4.8).

In particular, E}, ---, E} satisfy (C.1) and (C.2) if IC L.

Now, we show the first step of this construction. See Fig. 2.
By (4.1), there exists p(1)e{l, ---, N} such that
sup) |F,(2)] >1—¢.

zeT(

Set
R = R(Ily Fp(l)y 81/3) ’

ZQ1) = 1\R .
Set
(5 2) g)10(1),1 = g(]-) ’

' =0 if j#pl) and 1=j=<N.
By Lemma D,

(5.3) |R| = e 1,] .
Set

G = {xel;: Myx) > %} .
By the Hardy-Littlewood maximal theorem and (5.3),
|G| = Ce™™|R| < ™| L] .
If IcI, and I ¢ G, then
[INR|NI| £ e®
by the definition of G. So,
(5.4) 1IN &pwal/lI] >1 —e"*.
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If IcI and if F,,,(I) <1 — ¢, then IC R by Lemma 5.1. So,
(5.5) INn&w.=o.

Thus, by (5.4) and (5.5), &,,, ---, &y, satisfy (C.1) and (C.2)
under an additional condition I ¢ G. This concludes the first step.

In the second step, we make each &, a little larger so that
(C.1) holds under a weaker condition than I ¢ G. But, if we make
& ;. too large, then (C.2)" will not hold. This is the difficult point.

Set

(5.6) G =312, m),

where {I(2, m)};_, are disjoint open intervals. In the second step we
repeat the above argument for each I(2, m). In the first step, we
had only to consider the intervals included in I,. But, this time,
we cannot restrict our attention to the intervals included in I(2, m)
since the condition (C.2)" is very delicate. We have to pay attention
to the relations among {I(2, m)},. This is why we will introduce
the intervals {J(2, m)}, in the following. See Fig. 3.

LEMMA 5.2. We can inductively construct open intervals {I(h, m)},
{J(h, m)}, measurable sets {L(h, m)} and integers {p(h, m)}, where
1<h and 1 £ m, having following properties:

(i) I, =1, £Q1,1)=&Q1), p(1,1) = p1), J, 1) = (—e",
), Il, m) = @, &1, m) = @, p(1, m) =0, J(1, m) = @ for m = 2,
{12, m)},, are defined by (5.6),

(it ) 3. I+ 1, m)C . I(h, m), where {I(h, m)},, are disjoint,

(iii) 25a [I(h + 1, m)| < & 3, | I(h, m)],

(iv) XnJh, m) = {x: Ms, 10,nm(x) > "}, where {J(h, m)}, are
disjoint,

(v) &, m)cIh, m),

(vi) 'if I(h” m) #* &, then p(h’ m) G{l, Tt N}:

(vii) of IcCIL and if I & 3., I(h + 1, m), then there exist b" < h
and n =1 such that

(5.7) Ingr,n)l/|Ilz1—e",

(viii) ¢f I, b and n satisfy Ic3.,J(h, m), p(h,n)efl, ---, N}
and Fo;..(I) <1 —¢”, then &k, n)NI= Q.

Let us accept Lemma 5.2 for the moment.

Set
(5.8) gj,h = U g(k, m) .

k,m:k<h,plk,m)=3
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Note that when h = 1, this definition concides with (5.2). Note that
(5.9) EinC & T CEjp T

LEMMA 5.3.
(C.1y” ma}fvlln Einlllll =1 —ev®
1<j<
of IcI and of IS I(h+1,m),
(C.2)" 1IN &ull|Il £ iof Icl, and if (4.8).

Proof. If IcI and if I ¢ 3, I(h + 1, m), then by (vii) there
exist A < h and » = 1 such that (5.7). Since &, ,m, 2 LR/, n),
[IN gp(h',n),h[/[I[ =1—e"™.

This shows (C.1)".
Note that by (ii) and (iv)

(5.10) zm‘, Jk + 1, m)C Zm, J(k, m) .
Let Icl, and F(I)<1-—¢” 1If IcC>,,J(h, m), then by (5.10)
IcS,,.J(h, m) for any h'e{l, ---, h}. By (viii),

gh,myNl=0Q
for any ' < h and » = 1 such that p(#’, n) = 5. So, by (5.8),
(5.11) EinNl=0.

Ifk,<h, ICS,,Jk;,m) and I & 3. J(k; + 1, m), then by the
same argument as above

Ein,NI=0.
By (iv)
[IN %,I(k, + 1, m)|/|I| < e/™.
Since
EinC S, U (% Ik; + 1, m))
by (5.8) and (v).
6.12)  [I0 &Il = 110 S 1+ TN Ik + 1, m) |/ 1]

< 81/100

So, (C.2)"" follows from (5.11) and (5.12). This conclcudes the proof
of Lemma 5.3. 1
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Set
gi:ggj.k, 1<j=<N.
Let I c I,. Since
|3 I(h + 1, m)| — 0 as h— oo

by (iii), there exists %, such that
I¢gUIh +1,m) forany h=h,;.
Thus, "
max [In &;l/11] = maxlim [T 0 &;.0/lT] by (5.9)
= }Eg max | I N &;,/| 1]
=1-—¢"* by (C.1)".
If I c I, and if (4.8), then
I1I0 &l = lim |In &1/ by (5.9)
< e by (C.2)".

Thus, these &; (1 <j < N) satisfy (C.1) and (C.2). So, E}
(1 £ § £ N) defined by (5.1) satisfy (C.1)” and (C.2)".

Lastly, we remove the restriction Ic I, in (C.1)” and (C.2)".
By the same argument as above, for each positive integer L we get
measurable sets Ef, ---, B} such that

(C.1)"" min | In EF|J|I| < e if Ic(—L, L),
1<j<N

(c.2y" |[INEFINI|>1—¢e" if Ic(—L,L) and if (4.8).
There exists a sequence

1S L)< L)< ---
such that
{XEf(k)}lc;ozl , 1= .7 <N ’

converge weakly * in L*. Let
E; = {w e B: w*-lim, .. Xyra(z) > 1/2} .
Then,
min |10 ;|1 < min 2 | w*lim Xypwdy/|1]

= 2lim min [I N EX% |)|I| < 2675 < & .
<N

k—oo 17
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Thus, (C.1) follows. If F,(I) <1 — &3, then
TN E;|/[N1I=1~-[InE;|/|I|
2121 = | wrlimgwanf i1
=1-—2{I| —lim|INE|}I|
k
>1-— 2{1 -1 - 51/100)} =1 — g

Thus, (C.2) follows. This concludes the proof of Theorem 4.

Proof of Lemma 5.2. Assume that {I(h, m)}, (h =2, ---, k; m =
1’ 2’ o ')’ {J(h: ’”’I/)}, {g(h: 7)’!/)}, {p(h, m)}a (h' = 2, Sty k— 1; m =
1,2, ---), have been defined so that they satisfy (i)-(viii). Define
{J(k, m)},, by (iv). We show how to define {&(k, m)},, {p(k, m)}, and
{Itk + 1, m)},..

Let

tI)=min{l < j < N: sup |[Fz)| >1—¢}.
By (4.1), #¢(I) is well defined.
If I(k, n) = @, then set
&k, n) =0, ok, m) =0.
If I(k, n) # @, then there exists unique J(k, m,) satisfying
Ik, n) C J(k, m,)
by the definition of {J(k, m)},.. Set

R(k, n) = I(k, n) N R(J(k, M), Fyre,myns €7°) »
&k, n) = I(k, n)\R(k, n) ,
o(k, n) = U(J(k, m,)) .

Note that

(5.13) w(k’mzc,m’m) &Lk, n) < J(k, m)\R(J(k, m), F,;i,m»s €°) -
Set

(5.14) Z Ik +1,1) = ; {x € I(k, n): Mz, (x) > €%}

where {I(k + 1, 1)}, are disjoint open intervals. Then,
DIk + 1, 9)] < Ce® 3, | R(k, m)|

by the Hardy-Littlewood maximal theorem ,
é C€—1/25 Z 1R(J(k, m), Ft(J(k,m)), 81/3)|
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by the definition of {R(k, n)},,
(5.15) < Cemvana 3 | J(k, m)| by Lemma D,
é C€—1/25+1/4—1/100 Z II(k’ n) I

by the definition of {J(k, m)}, and
the Hardy-Littlewood maximal theorem ,

= eV 3 [I(k, n)] .

Lastly, we show that the above defined {J(k, m)}., {£k, m)}n,
{p(k, m)},, and {I(k + 1, m)}, satisfy (ii)-(viii). (ii) and (iv)-(vi) are
clear. (iii) follows from (5.15).

Let

Icl, and I ¢ > IKk+1,m).

If I¢ >, I(k, m), then (vii) follows from the hypothesis of induction.
Let

Ic Ik, n).
Then, by (5.14)
[INRE, n)||I| <™.
So
IIn &k, m|/|I]>1—e"™.

Thus, (vii) follows.
Let

IcJk, m), ok, n)e{l, ---, N} and
(5.16) Fp(k,n)(I) < 1 - 81/3 .

If Ik, n)N I + @, then
Ik, n) C J(k, m)
by the definition of {J(k, m)}, and
(5.17) ok, n) = UJ(k, m))
by the definition of p(k, n). So, by (5.16)-(5.17) and Lemma 5.1,
Ic R(J(k, m), Fymn, €7°) -

Thus, by (5.13)

INEk n) =09 .
Hence, (viii) holds. This concludes the proof of Lemma 5.2. O
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6. Further discussion. Jones [14] showed that for the case
d = 1 Corollary 1 follows from Theorem A. By the same argument,
we can show that for the case d = 1 Theorem 1 follows from Theo-
rem 2.

The following is completely due to [14].

Let E, -, Ey C R' be such that (1.1). Let &,(z) be the harmonic
extension to R% of X;(x) and Hh,(z) be the harmonic extension to
R’ of the Hilbert transform of X, (x). If

[(@ — 2%, © + 2') N E;|/|(x — 2%y, o + 2%y)| = 27%

and if ) is large enough, then

i@, y) =\ /(a1 + y))dt/n

dat/(zy)

x—zzuyac+22ﬂ)ﬂEj

,
(6.1 = S Wl = 6+ vty + |
27

IA

Set
Fy(z) = 270 +iHhien | where 4 =1/—1.
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Then,
F,eH>,
|Fille=1,
max |Fz)| >1—2N2"%* for any zecR: by (6.1).
1<j<N
Let G, ---, Gy be corona solutions guaranteed by Theorem 2. Since
1G;ll. =2
|Fiy(x, 0)] < 27" a.e. on E;,
we get
(6.2) |Gy(z, 0)Fy(x, 0)| < 2-2°¥ < 1/2N a.e. on E,.
Since

[ Im (Fy(-, 0G,(+, 0) [l = A(N, 2N27%) < Cy/\

by Theorem 2 and since the Hilbert transform is a bounded operator
from L~ to BMO, we get

(6.3) ||Re (Fy(-, 0)G;(-, 0))|lsmo = Cy/N .
Set
fi(x) = max (Re (Fy(x, 0)G,(x, 0) — 1/2N), 0) .

Then,

fix)=0 on E; by (6.2)
and

”fi”BMO = Cy/n by (6.3).
Since

S\Re(F,G) =1,
ﬁ‘, fi@)=1/2 for any xeR'.

Set

£@) = Fia) [ o)
Then, these satisfy (1.2)-(1.5).

REMARK. Recently, J. B. Garnet and P. W. Jones found a simple
proof of [15]. And their method simplifies the proof of Theorem 1
in this paper. I would like to thank Professor P. W. Jones for
valuable information and for his encouragement.



204 AKIHITO UCHIYAMA

REFERENCES

1. L. Carleson, Interpolation by bounded analytic fumctions and the corona theorem,
Ann. of Math., 76 (1962), 547-559.

2. L. Carleson, The corona theorem, Lecture Notes in Math., 118 (1968), 121-132.

3. —————, Two remarks on H' and BMO, Advances in Math., 22 (1976), 269-275.

4. S.Y. Chang, A characterization of Douglas subalgebras, Acta Math., 137 (1976),

81-89.

5. R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math.
Soc., 79 (1980), 249-254.

6. R. Coifman and G. Weiss, Extensions of Hardy spaces and their wuse im analysis,
Bull. Amer. Math. Soc., 83 (1977), 569-645.

7. C. Fefferman and E.M. Stein, HP? spaces of several variables, Acta Math., 129
(1972), 137-193.

8. T.W. Gamelin, Wolff’s proof of the corona theorem, preprint.

9. J.B. Garnett, Two constructions in BMO, Proceedings of Symposia in Pure Mathe-
matics, 35 (1978), 295-302.

10. J.B. Garnett and P, W. Jones, The distance in BMO to L®, Ann. of Math., 108
(1978), 873-393.

11. L. Hormander, Generators for some rings of analytic functions, Bull. Amer. Math.
Soc., 73 (1967), 943-949.

12. F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure
Appl. Math., 14 (1961), 415-426.

13. P.W. Jones, Constructions with functions of bounded mean oscillation, Ph.D.
thesis, University of California, 1978.

14. ——— FEstimates for the corona problem, to appear in J. Functional Anal.
15. ————, Factorization of A, weights, Ann. of Math., 111 (1980), 511-530.
16. ———, Carleson measures and the Fefferman-Stein decomposition of BMO (R),

Ann. of Math., 111 (1980), 197-208.

17. D.E. Marshall, Subalgebras of L* containg H®=, Acta Math., 137 (1976), 91-98.
18. M. Rosenblum, A corona theorem for countably many functions, Integral Equations
and Operator Theory, 3 (1980), 125-137.

19. N. Th. Varopoulos, BMO functions and the o-equations, Pacific J. Math., 71 (1977),
221-273.

20. —, A remark on functions of bounded mean oscillation and bounded har-
monic functions, Pacific J. Math., 74 (1978), 257-259.
21. ———, A probabilistic proof of the Garnett-Jones theorem on BMO, preprint.

Received April 20, 1980. Supported in part by Science Research Foundation of Japan
(General Reserch (C) 1980).

UNIVERSITY OF CALIFORNIA
Los AxNceLEs, CA 90024
AND

ToHOKU UNIVERSITY
KAWAUCHI, SENDAI, JAPAN

Current address: University of Chicago
Chicago, IL 60637





