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THE CONSTRUCTION OF CERTAIN BMO FUNCTIONS
AND THE CORONA PROBLEM

AKIHITO UCHIYAMA

In Euclidean space Rd, let / denote any cube with sides
parallel to the axes and write \I\ for the measure of I. A
real valued locally integrable function fix) on Rd has bounded
mean oscillation, /eBMO, if

sup inf I \f(x) — c\dxl\ I\ — II/HBMO < °° .

Our result is the following.

THEOREM 1. Let λ>l. Let El9 "-fENczRd be measur-
able sets such that

(1.1) min \IC\Ej\l\I\ <2~2dλ

for any /. Then, there exist functions {fj{x)}jT=ι such that

(1.2) Σ

(1.3) 0

(1.4) fλ%) = 0 a.e. on E, , l^j^N,

(1.6) IIΛ HBMO ̂  cx(d, N)lλ , l ^ j ^ N .

Converely, if there exist {/,(α?)}£i that satisfy (1.2)-(1.4) and

(1.6) || Λ HBMO ̂  ct(d, N)lλ , l ^ j ^ N ,

then (1.1) holds.

In particular, if N = 2, then the following holds.

COROLLARY 1. Let λ > 1. Let A, B c Rd be measurable sets

such that

(*) min (II n A |/ | IU J n 5 | / | I | ) < 2-*'

for any I. Then, there exists a function fix) such that

(1.7) fix) = 1 a.e. on A ,

(1.8) fix) = 0 a.e. on B ,

Conversely, if there exists fix) that satisfy (1.7)-(1.8) and
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then (*) holds.

Corollary 1 is implicit in Garnett-Jones [10] and is the essential
part of their proof. [See also Jones [13].] Thus, Theorem 1 is an
extension of [10]. In § 3, we give the proof of Theorem 1.

Recently, Jones [14] showed that their paper [10] is closely related
to the corona problem. Using [10], he gave an estimate for corona
solutions. In §§ 4 and 5, we refine Jones' result by using Theorem 1
instead of [10].

I would like to thank Professor P. W. Jonse for sending his papers
[13]-[16]. I would like to thank Professor M. Kaneko who suggested
me the condtition (*) and Professor K. Yabuta who gave me a valuable
information. I would like to thank referee for his helpful sugges-
tions and for finding some errors.

A comment on notation: The letter C will denote the various
constants which depend only on d and N. The latters h, i, j, k, m, n
and p will denote integers.

2Φ Preliminaries* First, we prepare some notations and lemmas.
For a cube I, I* denotes the cube having the same center as I

and /(I*) = 3/(1), where /{I) denotes the side length of /.
We say that a(x) e C(Rd) is adapted to a cube I if

supp a c J*

and

\a(x)-a(y)\^\x-y\//(I).

Let q be a large integer, depending only on d and JV, such that

(2.1) 1 + NS2dq ^ 2q .

In the following, q will be fixed.

A dyadic cube is a cube of the form

(fe + 1)2"*) x x [kd2~\ (kd + l)2~fe)

where h and ks (1 ̂  j £ d) are integers. Let Dh denote the set of
all dyadic cubes with side length 2~hq.

For each J, set

where log (|/I/O) means oo.

LEMMA 2.1. If IczJ and 2kd\I\ = | J\, then

gά{I) ^ Qj(J) - kd .
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Proof.

g5{I) = log2(II\l\In E,|) = log2(| J |2" M / |IΠ JEζ,I)

= iog2 (i j\ι\ i n # f I) - kd ̂  iog2 (i j | / | J n s , I) - M

= $,( J) - kd .

LEMMA A [See Fefferman-Stein [7]]. 1/ / e BMO (Rd), then

l(/)r - (/)z.| ^ 2(1 + 3011/HBMO ,

where (/)/ = ( f(y)dy/\I\.
JI

Proof. Note that

|c -

for any ceR.

Thus, jj/(») - (f)Ady/\I\ ̂  2||/||BM0. So,

)/ - ifU ^ \χ\f(y) - (/)Ady/\I\ + j j

^ 2||/|Uo + Zd \f(y) - (fUdy/\I*\
JI*

<^2(1 + 3 W | | B M O .

LEMMA B [See Coifman-Weiss [6]].

: there exists a cube I such that

suppfec J, \\h\U ^ \I\-\ \h{y)dy = θ} .

REMARK 2.1. The function h(x) satisfying the above conditions
is called "1-atom".

Lemma B follows immediately from the argument of dual spaces.
We omit the proof.

LEMMA C [John-Nirenberg [12]]. If feBM.O(Rd), then

\{xel: |/(aθ ~ (/),! > λ}/|I| ^

for any cube I and any λ > 0.

For the proof of Lemma C, see [12].
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3* Proof of Theorem l The converse part of Theorem 1 is
an immediate consequence of Lemma C.

Let / be any cube. By (1.2), there exists joe{l, ---,N} such
that

Thus,

\IΠEJQ\/\I\ ^ \{xel: \fdo(x) - (fJ0)A ^ 1/N}\I\I\ by (1.4)

^ cΆ(d)2-c^dmNc^d'N)/λ) by (1.6) and Lemma C

^ 2~2dλ by λ > 1

if c2(d, N) is sufficiently small. This concludes the proof of the con-
verse part of Theorem 1.

The difficult part of our proof is the construction of flf •••,/#.
The idea of the following construction is essentially due to P. W.
Jones [13]. [See also L. Carleson [3].]

By (1.1),
N

Γ\E3
5 = 1

= 0 .

Thus, if λ is not so large, then

satisfy the desired properties, where XE denote the characteristic
function of a measurable set E. So we may assume that λ is large
enough.

First, we assume

(3.1) El9 , EN c [0,1) x x [0,1) = Io.

We will inductively construct the sequences of BMO functions

U Jr=i (1 ^ j ^ N) such that

(1.2)' Σ/ί,ι(s) = λ ,
3=1

(1.3)' 0 ^ /fth(x) ^ λ ,

(1.4)' /SM^ΰiWId on / if IeDh,

(1.5)' W/ΪABKO ^cMN).

If the above {/?Λ} have been built, then there exists a sequence

1 ^ h t < h 2 < h s < . « .

such that {/f,hk}ΐ=i (1 ^ 3 ^ N) converge weakly* in L°° since \\/fιh ||co ̂  λ
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by (1.3)'. Set

Then, (1.2) and (1.3) follow from (1.2)' and (1.3)'. Let h(x) be any
1-atom. Then,

\\fJ(vMy)dy\ = I Urn \/ί,hh(v)Hy)dy/\

^ limsup ||/f,AJ|BMo/λι by Lemma B

^ eάd, N)/X by (1.5)'.

Thus, (1.5) follows from Lemma B. Since

lim 0/1) = 0
/3ίc,|/|->0

for almost every xeEά by Lebesgue's theorem,

lim/f,Λ(a?) = 0 a.e. on E,

by (1.4)'. Thus, (1.4) follows. Hence, fu--,fN are the desired
functions.

It is fairly easy to remove the restriction (3.1). By the same
argument as above, for any positive integer p, we can construct
fSlP, 1 ̂  j ^ JV, such that

= 0 on

There exists a sequence

1 ^ px < p£ < ..

such that {fj}Pk}t=i (1 ̂  i ^ -f̂ ) converge weakly* in L°°. Then,

/, = w*-]imfJl9k, l ^ i ^ Λ Γ ,

are the desired functions.
Thus, all we have to show is the construction of {/fΛ} that satisfy

(1.2)'-(1.5)'. In Lemma 3.1, we will construct {/f,h} and show that
they satisfy (1.2)'-(1.4)'. In Lemma 3.3, we will show that they
satisfy (1.5)'.

LEMMA 3.1. If El9 , EN satisfy (1.1) and (3.1), then there exist
{/f,h(x)} and AjΛ c Dh, where 1 ̂  j <̂  N and 1 <̂  h, having the prop-
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erties (1.2)'-(1.4)' and

(3.2) \/fΛ(x) - /fΛ(y)I ^ 2 ( Λ + 1"|x - y\ ,

(3.3) AiΛ = {/ e 2>»: sup/ί^ί*) > gj(I)/d) ,
xel

(3.4) ^ ( s ) ^ / ^ ( x ) - 3*<z ,

(3.5) 4th(x) ^ /f,h_M on ( U nc .

Proof. By (1.1), for any I

max #/!) Ξ> 2dλ .

Set

8(/) - min {j: 1 £ j £ N, gά{Γ) ^ 2dX}

We may assume a(J0) = 1. Set

Then, {/f,0} satisfy (1.2)'-(1.4)' and (3.2). Assume that Ajth (1 ^ j ^
N,l<*h<>k-1) and /fth (1 £ j £ N, 0 £ h £ k - 1) have been
defined so that they satisfy (1.2)'-(1.4)' and (3.2)-(3.5).

Define Ajtk by (3.3). By modifying /ftk_19 we will build /hh.
Let hjix) be adapted to /, 0 ^ bj(x) ^ 1 and

(3.6) δ/x) = 1 on I.

Let AiΛ = {!.}«»!.....,. Set

ah(x) = min (qbh(x), /f,*_i(a;))

j \*v/ — 111 111 I tft// \JϋJ) fjf]c_ I\*ΛSJ x t I*/ \<

= min (qbj (x), max (/ίtk-ι(x) — Σ ?&/ (»),

for m = 2, .., AT.

Since the supports of {bJm} overlap at most 3d times, Z~dq~1aIm are
adapted to Jm. Set

/? (rp\ Z7 (Ύ*\ — X ' ft (sγ*\ Z' (Ύ>\ ___ /jj (Ύ\

Since

/jtk(x) = max (/y.fc-̂ α?) — Σ Φi(%), 0) ,

we get
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max (4,k^(x) - 2>% 0) <, /5tk{x) ^ /hh_l%) ,

Λk-M = AM on ( U /*)c

IeAj,k

Thus, {/ζk}U satisfy (1.3)', (3.4) and (3.5).
If IeAj}k and xel, then

/f9h(x) ^ max (4,kM - g, 0) by (3.6)

^ max {gό(J)ld — g, 0) , where JeDk_λ and J D J ,

5g gs(I)/d by Lemma 2.1 .

If IeDk\Aj>k and # e l , then

by the definition of Aiffc. So, {/̂ fc}f=1 satisfy (1.4)'. But, they don't
satisfy (1.2)'. So, we have to modify {/ftk} further.

Set

/£*(») = 4M + Σ ate)
(3.7) /eu^v^.u)^-

Since

N ViM + Σ *>iM = o .
N

/̂ »}f=1 satisfy (1.2)'. (1.8)', (3.4) and (3.5) are clear since a^x) ^ 0.
If IeDk and wjtk(x) = 0 on I, then

AM = 4M ^ δi(I)/d on I

since /^j. satisfies (1.4)'. If IeDk and w, ,k(x)&0 on J, then, by the
definition of wiΛ in (3.7), there exists JeDk such that

J* D 7 and ^ ( ) ^

By Lemma 2.1,

gt(I) ^ flr/J*) - (log, 3)d ^ λd

since λ is large. So, by (1.3)'

AM ^ >• ^

and (1.4)' holds.
Lastly, we show (3.2). If x,yeJ and JeDk, then

(3<8) ^ Σ
U
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Since the supports of {^i}ieu^=14w,fc overlap at most NSd times, (3.8)
is dominated by

So,

|aj - y\

| α j - i / | by (2.1) .

This concludes the proof of Lemma 3.1. •

LEMMA 3.2. /f)h(x) ^ gό{I)Id - hq - log2 (/(/)) + 3 2*d1/2 + 2 on I
for any I such that /(I) ̂  3 2"^.

Proof. T h e r e e x i s t a t m o s t Ad d y a d i c c u b e s Ju •••, J f c ( z , 6 J D Λ >

k(I) ^ Δd, s u c h t h a t

Ji n / Φ 0 .

Let

r = min
l

Then, by (1.4)'

So, by (3.2)

(3.9) 4>h(x) ^ r/d + 3 2'd1/2 on J .

On the other hand,

^ log,(Ii|/ Σ
(3.10) 1 S i S

Thus, the desired result follows from (3.9) and (3.10). Q

LEMMA 3.3. \/iΛ | | B M 0 ^ cα(d, JV).

Proof. Let I be any cube. If /(I) ̂  2-"9, then by (3.2)

(3.11) inf ( \/?,h(y) - c \dy/\ I\ £ 2'd1*

If 0 ^ n < h and 2-(Iί+1)ί < /(I) ̂  2-πίf, put
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Note that by Lemma 3.2

(3.12) ft g gό(Γ)ld + q + 3 2'd1/2 + 2 .

We will show

(3.13)

Put

{xel:\/fιh(x) - ft| > a}

(3.14) ={xel: /iΛ{x) < ft - a} U {x e /: /£»(*) > ft + α}

= (?(/, i, α) U #(/, i, α) .

First, we estimate |G(I, j , a)\. Let α > dm2". Note that //,„(*) >
ft - d1/229 on 7 by (3.2). So, if a; e G(I, j , a), then, by (3.5), there
exists JeAjrk, n < k^h, such that

a e J* ,

/sM < ft - α
So,

//,*-!(«) < ft - α + 3*ί by (3.4)

and

Λk-i(v) < ft - α + 3dg + 2d1/2 on J by (3.2) .

Thus,

< ft - a + Z"q + 2dw by (3.3) .

Noticing the above fact, we can take disjoint dyadic cubes
{JJ c {Jn<kih Ajtk such that

(3.15) QiiJJId < ft - a + Zdq + 2dί/2 .

Thus,

I G(I, j , a) I <ί 3" Σ IΛ. I = 3rf Σ I Jm n ^ |2 i"-»

^ C 2 ^ - a d Σ I J» n JK, I by (3.15)
( 3 1 6 ) ^ C2'im-" Σ I «/* n ^ I by (3.12)

^ C2 ?i ( ί* )-α d |I* Π Ej\ ^ C|7|2-α i .
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Next, we estimate |H(I, j, a)\. Let a > (N - l)dm2q. Note that
Σ L i βm = λ by (1.2)'. So, if x G H(I, j, α), then

iV

— ^LJ P m /j,h\dy) — V ^LJ Pm)
m~l l<m<1N,'m,φQ

^ ( Σ βJ-a.
l<m<,N,mΦj

Thus,

i < T O Σ m # . ( / 3 m - / ^ , f t ( x ) ) ^ α .

So,

x e JJ G(/, m, α/(iV - 1)) ,

Thus,

H(I, j, a) c U <?(i, m, α/(2yΓ - 1)) .

By (3.16),

(3.17) \H(I, j, a)\^(N-

Thus, if 1 ^ /(/) ^ 2"^, then (3.13) follows from (3.16), (3.17) and
(3.14).

If /(I) > 1, put

& = 0 , 2 £ j ^ N .

Then, (3.13) follows from the same argument. Thus, Lemma 3.3
follows from (3.11) and (3.13). •

4* A refinement of Jones' paper "Estimates for the corona
problem"* Let H°° denote the Banach algebra of bounded analytic
functions defined on R% = {z — (x, y): x e R\ y > 0}, endowed with the
usual sup norm. The corona problem is as follows. We are given a
finite number of functions Fl9 F2, , FN 6 H°° which satisfy

inf sup I Fj(z) \ > 0 .

We then must produce Gu G2, , GN e H°° such that

Σ V ( ) y ( )

The functions Gd are called corona solutions. As is well known, the
corona problem was solved affirmatively by L. Carleson [1]. [See also
[2], [11], [8] and [18].]
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Recently, Jones [14] gave an estimate for the corona solutions.

THEOREM A. Let 0 < ε < cβ(N). Suppose Flf , FN e H™ satisfy

(4.1) max | FAz) | > 1 — e for any zeR2+ .
1<3<LN

Then, there are corona solutions Gu , GN e H°° satisfying

Σ I Fό(z)Gό(z) | ^ 1 + A(N, ε) for any zeR2, ,
3=1

Σ I Im (FjφG&z)) I ̂  A(N, ε) /or α ^ a; e R\ ,

(4.2) A(N, ε) = c7(iVr)(log(ΛΓ-1)(l/ε))-1

log(fc+1)ί - log (log(/b) ί) .

As is pointed out in [14], (4.2) is the best order possible when
N — 2. In this section, as an application of Theorem 1, we show

THEOREM 2. In Theorem A, we can replace (4.2) by

(4.3)

REMARK 4.1. (4.3) is the best order possible when N is fixed.
In [14], Jones showed two kinds of proofs. In this note, we

show Theorem 2 by refining the second proof of [14].
As is shown in [14], though it is not explicitly stated, for the

proof of Theorem 2, it suffices to show

THEOREM 3. Let Fu , FN and ε be as in Theorem A. Then,
there exist fl9 , fN 6 BMO (R1) satisfying

(4.4) Σ //(*) Ξ 1 >
5 = 1

(4.5) 0 ^ /,(») ^ 1 , 1 ^ j ^ N ,

(4.6)

(4.7)

where

is ίfee Poisson kernel.
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The proof of the fact that Theorem 3 implies Theorem 2 is com-
plicated. We omit it in this note. Roughly speaking, it is through
"Carleson measure" that H™ relates to BMO (J?1). For the definition
of "Carleson measure" and for detailed discussion about the relation
between Theorem 2 and Theorem 3, that is the relation among JET00,
BMO (R1) and "Carleson measure", see [14].

In the following, we prove Theorem 3.
For an interval IaR1, let

= {z = (x, y ) : x e l , \I\/2 < y < \I\} ,

All we need is the following

THEOREM 4. Let Flf , FN and ε be as in Theorem A. Then,
there exist measurable sets Elf , EN c R1 such that

(C.I) min |/Π Ed\/\I\ < ειm for any interval I,
l<j<N

(C.2) | / n ^ |/ |I | > l - ε 1 / 1 0 1 if

(4.8) Fό{I) < 1 - εm .

Jones showed Theorem 4 for the case N — 2. Since our proof
is very complicated, we postpone it to § 5.

It is fairly easy to show that Theorem 3 follows from Theorem
4 and Theorem 1. This idea is also due to [14]. First, by Theorem
4, we get Elf — ,EN satisfying (C.I) and (C.2). Next, we apply
Theorem 1 to these El9 --,EN and λ = —(log2ε)/(52d). Then, we
Set flf ••-,/* satisfying (1.2)-(1.5). (4.4), (4.5) and (4.7) follow from
(1.2), (1.3) and (1.5). So, it suffices to show (4.6).

Let (x, y) e R\ and 1 <; j ^ N be such that

\Fa{x,y)\<l-^ .

Put

I = (« — y, % + y).
Then,

F0 (I) < 1 - ε1/3 .

So, by (C.2) and (1.4),

(4.9)

On the other hand, by Lemma A and (4.7),

(4.10) S χ+2'cy rx+2''-ly

Mt)dtl2t+1v - fj(t)dt/2ky
x-2'cy Jx-2fc~1y

8c9(iV)(log (1/ε
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for k = 1, 2, . So, by (4.9) and (4.10),

S co f«+2*»
P,(* - t)fά(t)dt ^ C Σ \ ft

fc=0 J χ-2Jcy

<c 0 \* 2~k{Jc(\oί£ fl/β))""1 + ε1/101}

^ C(log (1/ε))"1

^ 1/2N if cβ(iSΓ) is small enough .

Thus, (4.6) follows.

5* Proof of Theorem 4* First, we prepare some definitions
and lemmas.

DEFINITION. For an interval I, a function F(x, y) defined on R%
and a positive number a, let

Γ(x, a) = {(u, v): \x — u\ < 2v, 0 < v ^ a} ,

F*a(x) = inf

I, F, δ) = {xe I: F*lIl(x)

For a measurable set E and a; e J2, let

LEMMA 5.1. Let F(xf y) be as above. Let δ > 0. Let I and J
be intervals such that

IaJ and F(I) = inf \F{z)\ < 1 - δ .
Γ(ί)

\
2 6Γ(ί)

Then, IczR(J, F, δ).

Since Γ(x9 \J\)ZD T(I) for any a e l , this follows very easily.
See Fig. 1.

LEMMA D [Jones [14]. See also [4] and [17]]. Let 0 < ε < c10.
Let F(x, y) be a complex valued function, harmonic over R% and
satisfying

Let I be an interval such that

sup \F(z)\ > 1-ε .
zeTU)

Then,

\R(I,F,εm)\ ^εm\I\ .
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For the proof of Lemma D, see [14].

Our fist claim is the construction of the measurable sets
gV c R1 such that

(C.I)' m a x | J n ^ |/|/| ^ 1-ε1/25 if I c Jx = (-1 , 1) ,
1<3<N

(C.2)' I I n if, |/ |I | ^ει/m if ί c J , and if (4.8) .

Note that if these £?lt •••, g^ have been constructed, then

(5-1) Ej = (^Y, lgj^N,

satisfy

(C.I)" min I / n Ej\I\I\ < eI/25 if / c I , ,
1<3<N

(C.2)" \Iί\E}\l\I\ > 1 - ε1/100 if IcI, and if (4.8) .

In particular, El, •• ,E1

N satisfy (C.I) and (C.2) if Iczl,..
Now, we show the first step of this construction. See Fig. 2.

By (4.1), there exists p(l)e{l , •••, N} such that

sup \FpU)(z)\ > 1 - ε .

Set

Set

(5.2)

By

(5.3)

Set

By the

If Id,

R = Ril,,
g-(l) =

8Vi = 0 if 3 Φ P(

Lemma D,

G = {xel^.Ά.

Hardy-Littlewood maximal

|(τ| s oε

and I ςtG, then

i^u), ε1/3) ,
= ϋ\Λ

1) and 1 ̂  i ^ Λ

^\IΛ .

IB(x) > ε1/25} .

theorem and (5.3),

R| ^ε^lΛ .

by the definition of G. So,

(5.4) img
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If Id I, and if Fp{1)(I) < 1 - ε1/3, then la R by Lemma 5.1. So,

(5.5) If] gfptiM^ 0 .

Thus, by (5.4) and (5.5), gf14, •••, gV,i satisfy (C.I)' and (C.2);

under an additional condition I φ G. This concludes the first step.

In the second step, we make each £?ifl a little larger so that
(C.I)' holds under a weaker condition than I g! G. But, if we make
^άΛ too large, then (C.2)' will not hold. This is the difficult point.

Set

(5.6) G = Σ 1(2, m) ,

where {/(2, m)}£=1 are disjoint open intervals. In the second step we
repeat the above argument for each 1(2, m). In the first step, we
had only to consider the intervals included in Ix. But, this time,
we cannot restrict our attention to the intervals included in 1(2, m)
since the condition (C.2)' is very delicate. We have to pay attention
to the relations among {1(2, m)}m. This is why we will introduce
the intervals {J(2, m)}m in the following. See Fig. 3.

LEMMA 5.2. We can inductively construct open intervals {I(h, m)},
{J(h,m)}, measurable sets {&(h, m)} and integers {p(h,m)}, where
1 <>h and 1 ^ m, having following properties:

( i ) 1(1, 1) = Iu gf(l, 1) - gf(l), p(l, 1) - p(l), J(l, 1) - (-ε-1'100,
ε"1/100), 7(1, m) = 0 , Sf(l, m) = 0 , p(l, m) = 0, J(l, m)= 0form^ 2,
{1(2, m)}m are defined by (5.6),

( ϋ ) Σm I(h + 1, m) c Σm -ί(Λ, w&), where {I(h, m)}m are disjoint,
(iii) Σ . |/(Λ + 1, m)| ^ ε 1 / 2 5 Σ. IK*, m)|,
( iv ) Σm e/"(fe, m) = {x: MΣnI{h>n)(x) > ε1/m}, where {J(h, m)}m are

disjoint,
( v ) g?(Λ, m) c I(h, m),
( vi) i/ J(Λ, m) ^ 0 , ίλew p(Λ, m) e {1, , N],
(vii) if Iczli and if I φ Σm ί(A + 1, m), then there exist h' <. h

and n^l such that

(5.7) | / n &(h',n)\/\I\^l-ε^,

(viii) if I, h and n satisfy Ici^mJ(h, m), p(h, n)e{l, •• ,iV}
and Fp{h>n)(I) < 1 - s1/3, then &(h, n) Ci I = 0 .

Let us accept Lemma 5.2 for the moment.
Set

(5.8)
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Note that when h — 1, this definition concides with (5.2). Note that

(5.9) <gύΛ c &i%% c c gV,* c

LEMMA 5.3.

(C.I)"' max 11Π 8V J/l I | ^ 1 - ε V 2 5

1<<N

if I a I, and if ί
TO

(C.2)'" | l n g-ί.J/l/l^s1'100 if I c Λ and i/(4.8).

Proo/. If Iczl, and if I <£ Σ»I(& + 1,*»), then by (vii) there
exist hf <Ξ,h and » ^ 1 such that (5.7). Since ^vW,n)Λ 3 8W, »),

This shows (C.I)'".
Note that by (ii) and (iv)

(5.10) Σ J(fc + 1, m) c Σ J(*f m) .
m m

Let la I, and f / ί X l - Λ If ί c Σ . / ( λ , » ) , then by (5.10)
', i») for any fc' e {1, , h}. By (viii),

gr(Λ'f») n / = 0

for any h' ^ h and % Ξ> 1 such that p(h', n) = j . So, by (5.8),

(5.H) gr/lik n i = 0 .

If fcj < h, IcΣm Jφi, w) and J £ Σ « ̂ i + 1» w), then by the
same argument as above

if,,*, n i = 0 .

By (iv)

Since

by (5.8) and (v).

(5.12) i j n grίlfc l/l i | ^ 11 n gfi>lkI I/I i | + 11 n Σ i(kz + 1 ,
tn

^ ε1/100 .

So, (C.2)'" follows from (5.11) and (5.12). This conclcudes the proof
of Lemma 5.3. •
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Set

Let / c Ix. Since

\ΣιI(fr + 1, m)| >0 as λ > oo
m

by (iii), there exists hΣ such that

Igt\JI(h + 1, m) for any h^hj .

Thus,

max I I n g'il/l/l = maxlim \If] &iΛ\l\I\ by (5.9)

= l immax|In &ilh\l\I\

^ 1 - ε1/2δ by (C.I)'" .

If I <= Ix and if (4.8), then

|IΠ if,I/II| = l imlln ^ ,J/ |I | by (5.9)
h—*oo

^ s1/100 by (C.2)'" .

Thus, these gfy (1 ^ i ^ JV) satisfy (C.I)' and (C.2)'. So, £J
(1 ^ j ^ iV) defined by (5.1) satisfy (C.I)" and (C.2)".

Lastly, we remove the restriction IcI^ in (C.I)" and (C.2)".
By the same argument as above, for each positive integer L we get
measurable sets Ef, , Ek such that

(C.I)"" m i n | I n # / | / | I | < 6 I / β if I c ( - L , L ) ,

(C.2)"" | l n E[\/\I\ > 1 - ε1/100 if I c ( - L , L) and if (4.8) .

There exists a sequence

1 ^ L(l) < L(2) < •

such that

{Z*f »}*U , l^j^N,

converge weakly * in L". Let

Ej = {x € i2: w*-lim^» Z,t»)(») > 1/2} .

Then,

min | l n JSf|/|I| ^ min 2 ( w*-limXELmdy/\I\
l<j<N l^j^N Jl 3

= 2 lim min
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Thus, (C.I) follows. If F}(I) < 1 - s1/3, then

^ 1 - 2J|/| - (
(. Ji

^ 1 - 2{1 - (1 - ε1/100)} ^ 1 - evm .

Thus, (C.2) follows. This concludes the proof of Theorem 4.

Proof of Lemma 5.2. Assume that {I(h, m)}, (h = 2, • , k; m =
1,2, . ), y(A,ro)}, {&(h,m)}, {p(h, m)}, (h = 2, , k - 1; m =
1,2, •••), have been defined so that they satisfy (i)-(viii). Define
{J(k, m)}m by (iv). We show how to define {&(k, m)}m, {p(k, m)}m and
{I(k + 1, m)}..

Let

ί(J) = min {1 ̂  i ^ iV: sup 1 ,̂(2) | > 1 - e} .
zeΓC)

By (4.1), ί(J) is well defined.
If J(fc, w) = 0 , then set

, n) = 0 , p(fc, w) = 0 .

If J(fc, • w) ^ 0 , then there exists unique J(kf mn) satisfying

I(k, n) c J(k, mn)

by the definition of {J(&, m)}m. Set

R(k, n) = I(k, n) n Λ(/(fc, m j , F ί ( J l ^ , , , ε1/3) ,

gf (fc, n ) = /(fc, n)\R(k, n) ,

Note that

(5.13) Σ ί?(fc, n) c J(&, m)\R(J(k, m), Ftmk,m)), ει/3) .
Λ:7(Jfc,Λ)Cj(fc,»)

Set

(5.14) Σ Kfc + 1, *) = Σ {* 61(k, n): MB{k,n)(*) > «1/2δ}
i n

where {I(k + 1, i)}t are disjoint open intervals. Then,

I, i)\ <ί Cε-^Σ\R(k, n)\

by the Hardy-Littlewood maximal theorem ,
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by the definition of {R(k, n)}n ,

(5.15) ^ Cε" 1 / 2 5 + 1 / 4Σ \J(k, m)\ by Lemma D ,

by the definition of {J(k, m)}m and
the Hardy-Littlewood maximal theorem ,

Lastly, we show that the above defined {J(k, m)}m, {i?(&, m)}m,
{p(k, m)}m and {I(k + 1, m)}m satisfy (ii)-(viii). (ii) and (iv)-(vi) are
clear, (iii) follows from (5.15).

Let

I a I, and I £ Σ I(k + 1, m) .

If Iςt'ΣlmI(k, m), then (vii) follows from the hypothesis of induction.
Let

Idl(k,n) .

Then, by (5.14)

\I

So

Thus, (vii) follows.
Let

n

I c J(&, w) , jj(fc, w) e {1, , N) and

(5.16) Fpik,M) < 1 " sI/3

If I(k,n)f]lΦ 0, then

I(k, n) c J(&, m)

by the definition of {J(k, m)}m and

(5.17) p(k, n) = t(J(k, m))

by the definition of p(k, %). So, by (5.16)-(5.17) and Lemma 5.1,

Thus, by (5.13)

IΠ ίί(A;, n) = 0 .

Hence, (viii) holds. This concludes the proof of Lemma 5.2. •
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FIGURE 1

->f-

MM
1(2,1) 1(2,2)

FIGURE 2

1(2,3)

-1

«J(2,l),Γ t ( J ( 2 f l ) ) ,

FIGURE 3

Γ
1(2,3)

J(2,2)

6* Further discussion* Jones [14] showed that for the case
d = 1 Corollary 1 follows from Theorem A. By the same argument,
we can show that for the case d = 1 Theorem 1 follows from Theo-
rem 2.

The following is completely due to [14].
Let Eu , EN c R1 be such that (1.1). Let hά{z) be the harmonic

extension to R\ of XEj(x) and Hhά{z) be the harmonic extension to
R\ of the Hubert transform of XEi(x). If

I (a? - 2% x + 2xy) Π #,-!/!(& ~ 2% x

and if λ is large enough, then

hfa y) = \ (v/((χ ~ tγ
JEj

(6.1) ^ ( (y/((x - ί)2 + t))dt/π + f
J l l ! Jla;-tl>2 !

!/ (a -2^2/,03+2^

Set
M) , where i = V^Λ
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Then,

max IJVsOl > 1 - 2N2~i/2 for any zeR\ by (6.1) .

Let Glt , GN be corona solutions guaranteed by Theorem 2. Since

11^11.^2
\F}{x,ϋ)\ ^2- 2 J Γ a.e. on E,,

we get

(6.2) \Gj(x, 0)Fj(x, 0)| ^ 2 2-2ΛΓ^ 1/2N a.e. on E, .

Since

||Im(^.( , 0)G,( ,

by Theorem 2 and since the Hubert transform is a bounded operator
from Lr to BMO, we get

(6.3) || Re (Fs( , 0)(?,( , 0)) ||BM0 ^ CN/X .

Set

/Λs) - max (Re (F^x, 0)Gj(x, 0) - 1J2N), 0) .

Then,

7r(aO = 0 on Ej by (6.2)

and

HΛ IUo SCyλ by (6.3).

Since

Σ / i ( « ) ^ 1/2 for any xeR1 .

Set

Then, these satisfy (1.2)-(1.5).

REMARK. Recently, J. B. Garnet and P. W. Jones found a simple
proof of [IS]. And their method simplifies the proof of Theorem 1
in this paper. I would like to thank Professor P. W. Jones for
valuable information and for his encouragement.
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