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CHARACTERIZATION AND ORDER PROPERTIES
OF PSEUDO-INTEGRAL OPERATORS

A.R. SOUROUR

Let (X, %, m,) and (Y, £Z, m.) be separable s-finite measure
spaces. A linear transformation T from an order-ideal L of
measurable functions on Y into the space of measurable
functions on X is called a pseudo-integral operator if it is
induced by a measure ¢ on X X Y via the equation

S (TF)@)9(@)m, (d) = ngw)g(xm(dm, dy)

for sufficiently many functions 9. Our main theorem states
that 7 is a pseudo-integral operator if and only if Tf,—0
a.e. whenever 0= f, =< feL and f,— 0 a.e. We also study
the order structure of the class of pseudo-integral operators
showing that they form a band (order-closed ideal) in the
space of order-bounded operators.

Introduction. Let (X, .o m,) and (Y, <&, m,) be separable o-
finite measure spaces, and let M(X) and M(Y) be the linear spaces
of equivalence classes of (real or complex) measurable functions on
X and Y respectively. A linear operator T from a linear subspace
L of M(Y) into M(X) is called an integral operator if there exists
a measurable function ¥ on X x Y (called the kernel of T) such that
for every f in L, Tf is given by the equation (Tf)(x) =
S Fk(x, y)m,(dy) for m,—almost every x. Arveson [2] introduced

a more general class of operators, which he called pseudo-integral
operators, associated with measures, rather than functions, on X x Y.
By a pseudo-integral operator we mean an operator given by the
equation

0.1) | @r@e@mds) = || rwe@uds, a)

for sufficiently many functions ¢ (this will be made precise later).
If (Y, Z) is a standard Borel space, then T can be given explicitely
by the equation

0.2) (T5)a) = | Fwdy)

where {g,} is a certain family of measures on Y, related to g via
the theorem on disintegration of measures.

The purpose of this paper is to give a necessary and sufficient
condition for an operator between spaces of measurable functions to
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be a pseudo-integral operator. We also study the order structure
of the class of pseudo-integral operators and show that they form
a band in the vector lattice of order-bounded operators.

The “natural domain” of an integral or a pseudo-integral operator
is an order-ideal of M(Y), that is, a linear subspace E of M(Y) such
that fe E whenever |f| < geE. In view of this, we will consider
operators from an order-ideal L of M(Y) into M(X). Our main result
(Theorem 5.2) states that 7' is a pseudo-integral operator if and only
if it satisfies the condition: whenever |f,| < fe L and f, — 0 almost
everywhere, we must have Tf, — 0 almost everywhere. A similar
characterization of integral operators has been obtained by A.V.
Bukhvalov [6].

THEOREM (Bukhvalov). A linear operator T from L into M(X)
18 an tntegral operator if and only if it satisfies the condition:
Tf, — 0 almost everywhere whenever |f,|< feL and f,—0 in
measure on every subset of Y of finite measure.

Our approach is different from Bukhvalov’s.

1. Preliminaries. For clarity of exposition we will deal first
with standard measure spaces. The generalizations to general sepa-
rable measure spaces will be indicated toward the end of the paper.
Let (X, .o m, be an arbitrary measure space and (Y, &, m,) a
standard Borel space, i.e., (Y, &) is Borel-isomorphic to a Borel
subset of a complete separable metric space (see [13] or [3, Chapter
3]). The measures m, and m, are positive and finite. (Our results
are valid for o-finite measures and follow immediately from the finite
case.) Let L be an order-ideal in M(Y), and we will assume that
le L. This assumption is not essential (see Remark 2.7), but will
simplify statements and proofs.

All linear spaces are over the real or the complex numbers. The
proofs will be carried out only for the real case. As usual, equality
between two members of M(X) or M(Y) will mean equivalence module
sets of measure zero. The measure being m, or m,. The characteristic
function of a set E will be denoted by 1,

DEFINITION 1.1. A kernel is a map x — g, of X into the space
of bounded Borel measures on Y satisfying the following two con-
ditions.

(i) If Be<Z and m,B) =0, then yg,(B)=0 for m,-almost
every . «

(ii) For every B in <%, the maps z — p,(B) and x — |, |(B)
are Borel function.
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The domain of the kernel x — g, is the ideal
L, ={f: fe M(Y), fe L)(|p,]) for m,-almost every x} .

The kernel x — g, will also be denoted by {z.}.

DEFINITION 1.2. A linear operator T from an ideal L < M(Y)
into M(X) is called a wpseudo-integral operator if there is a kernel
{t¢,} such that L ¢ L, and

(T = | rom@n ae. o
for every f in L.

For examples and counterexamples of pseudo-integral operators
on LXY), see [17].

REMARKS 1.3. (i) The kernel is uniquely determined by the
operator in the sense that if {g.} and {v,} are kernels of the same
operator, the g, =v, for m,-almost every x. This follows from
the fact that .<# has a countable generating family {B,}, (see [13]),
and the observation that p(x, B,) = (T1; )(x) = v(x, B,) for m,-almost
every .

(ii) The domain of {z,} is the same as the domain of {|z.|}.
Consequently, if T, is an integral operator from L into M(X), then
{l 2,1} is the pseudo-kernel of an operator T, from L into M(X).

(iii) Let {z,} be a family of measures on Y inducing an operator

T on L by the equation (7f)(x) = S Fp.(dy). Then {z,} obviously

satisfy condition 1.1(i). Furthermore, by modifying the measures
{¢,} for x in an m,null set, we obtain a kernel satisfying the
measurability conditions 1.1(ii). This follows from our characteriza-
tion theorem (Theorem 5.2), and we do not know of an independent
proof. This problem is analogous to the question of measurability
of the kernels of integral operators which was settled, in the affirma-
tive, by Bukhvalov [6]. It is easy, however, to prove one half of
1.1(ii), namely the measurability of the maps x — z,(B) after modi-
fying g, for 2 in an m,-null set if necessary. This follows from the
equality p.(B) = (T1;)(x) a.e., and the fact that .<Z is countably
generated.

2. Measure kernels. We have defined a kernel as a map z — £,
of X into the space of measures on Y. We wish to replace {,}
by one measure g on the product space (X X Y, .o ® ). The
measure 2 is the product of m, and {g,}. The only difficulty is the
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fact that S[#,l(Y)ml(dx) may be infinite. Therefore we must con-

sider “measures” g which are defined only on an ideal of sets &, in
7 QR & We will use the term local measure to refer to such an
object, i.e., a countably additive complex-valued set function on an
ideal of measurable sets. (This resembles a Radon measure except
that we do not have any topology.) Equivalently, a local measure
on a Borel space (Z, &) is a product of a unimodular measurable
function and a positive (extended real-valued) measure, that is
w(dz) = ¢(2)| p|(dz), where |¢(z)] =1. A local measure g is called

o-finite if | p¢| is o-finite. For f e L'(| ¢|), define Sfd/,e by Sf(z)y(dz) =

| r@0@) 12,

Let ©— p, be a kernel, and let X, ={x:n — 1= |2, |(Y) < n}.
Thus {X,} are disjoint measurable sets and X = J X,. The product
¢ of m; and {¢,} can be defined on the Borel subsets of X, X Y by
e, dy) = pdy)m(dz), that is, p(B) = | | L@ ve(dym @),
for every Borel set £ in X, x Y. For the details of this construc-
tion, see [4, Theorem 2.6.2]. It is easy to see that p extends to a
local measure on X X Y, and that |p|(dz, dy) = | ¢, |(dy)m,(dx). It is
also easy to see that || vanishes on marginally null sets. (Recall
that a measurable subsets of X X Y is called marginally null if it
is a subset of a rectangle A x B with m,(A) = 0 or my(B) = 0.)

The above construction is valid for any measure space. Under
the assumption that Y is a standard Borel space, we can recover
{e,} from g as shown below.

DEFINITION 2.1. By a measure kernel, we mean a local measure
r# on X XY satisfying the following two properties:

(i) There are countably many disjoint measurable sets X, such
that X =J X, and |¢|(X, X ¥) < « for every =.

(ii) || vanishes on marginally null sets.

LEMMA 2.2. Let p be a measure kernel. Then there exists a
map x— pt, of X into the set of all bounded Borel measures on Y
such that

(i) For B in <&, the maps x — #,(B) and x — |, |(B) are Borel
functions, and are zero (m,-a.e.) if my,(B) = 0.

(ii) p(de, dy) = p(dy)m,(dx).

(iii) |gl(dz, dy) = | ¢ |(dy)m,(dx).

Moreover, the measures p, are essentially unique, i.e., if v, are
measures satisfying (i) and (ii), then p, = v, for m,-almost every .

Proof. Let |y¢|, be the first marginal of ||, that is, |¢|,(4) =
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|¢#](A x Y). Condition 2.1(i) implies that | x|, is o-finite, and condi-
tion 2.1(ii) implies that it is absolutely continuous with respect to
m,. The theorem on disintegration of measures ([1, Theorem 2] or
[5, pp. 59-63] together with [2, p. 461]) gives a map = — p, from
X into the space of probability measures on Y such that:

(a) For every B in &, the map x — p,(B) is a Borel function.

(b) |¢l(dz, dy) = p.(dy)| ¢]:(d).

An examination of proofs in [1] and [5] shows that we need only
require that Y is standard.

Let \,(dy) = k(z)p,(dy), where k is the Radon-Nikodym derivative
of |¢¢], with respect to m,. So |¢|(dz, dy) = N.(dY).,(dx). Finally, let
©(dy) = ¢(x, y)n,(dy), where ¢ is the Radon-Nikodym derivative of
¢ with respect to |¢¢]. Therefore p(dzx, dy) = p.(dy)m,(dx). It is also
evident that |g,| = A,.

To prove the uniqueness, let {v,} be another family of measures
on Y such that maps x — v,(B) are Borel functions, and p(dz, dy) =
v, (dy)m.(dx). Let {B,} be a countable generating family for <#. Then

| v(BIL(@m(da) = wA x B,) = | (B L@)m,(do)

whenever Ae .o |¢|(A X Y) < . Thus p,(B,) = v,(B,) for almost
every x and hence y, = v, for almost every x. This ends the proof.

REMARK. It follows easily from conditions (ii) and (iii) of the
Lemma that

1 (dx, dy) = (1) (dy)my(dx), and  p(dx, dy) = (¢.)"(dy)m,(dx) .

The term kernel will be used for both g and {z,}. When we
wish to distinguish between the two, we will call ¢ the measure
kermel and {g,} the disintegrated kernel.

Next we describe how the measure kernel g directly induces an
operator. For any f in M(Y), let .o, = {A: Ae .o and f(y)l.(x) e
L'(|p#])} and F;, = {9: 9 € M(X), and f(y)g(x) e L*(|¢])}. The domain
L, of p is defined to be the set of those functions f in M(Y) for
which .97, generates .o~ as a c-algebra (equivalently, the ideal of
functions .#;, has support X). It is obvious that L, is an order-
ideal in M(Y), and 1¢ L,.

LEMMA 2.3. Let pt be a measure kernel. Then p induces an
operator T, from L, into M(X) by the equation

(1) [(Tmp@L@m@s) = || roL@nds, ) for ez
We also have

i) [ (Tp@omed) = || rwgwuds, ay) for ge 77,0
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Proof. Let felL,, and let X = |J X, where X, are disjoint and
1,,€.% . Since it suffices to describe Tf on every X,, we may

assume that 1¢.%7%,. For A in .o/ let n (A) — “ @)z, dy).

Thus A, is a countably additive bounded measure on X, absolutely
continuous with respect to m,. Let T.f be the Radon-Nikodym deriv-
ative of A, with respect to m,. Then T, is the desired operator.

REMARK. The measure g is uniquely determined by equation
2.3(i) since it determines g¢ uniquely on enough rectangles to generate
7 Q) B

Observe that in the preceding Lemma, the condition that Y is
standard is not needed. In the case Y is standard, we will show
that the class of operators induced by measure kernels agrees with
the class of pseudo-integral operators induced by disintegrated
kernels.

PROPOSITION 2.4. Let pt be measure kernel and {{t,} its disinte-
gration. Then the domain L, of tt is the domain of {ft,}. Further-
more the operator T, induced by tt (Lemma 2.3) agrees with operator
induced by {1t} (Definition 1.2).

Proof. Apply the general Fubuini’s theorem [4, Theorem 2.6.4].

COROLLARY 2.5. The set of all pseudo-integral operators from a
linear space.

Note that there is some difficulty in proving this directly from
Definition 1.2. The difficulty lies in proving the measurability con-
dition 1.1(ii) for the variation of the sum of two disintegrated
kernels.

PROPOSITION 2.6. Let T be a pseudo-integral operator with
measure kernel p and let p(dz, dy) = p(dy)m,(dx). The following
conditions are equivalent.

(i) T is an integral operator.

(ii) g is absolutely continuous with respect to m, X m,.

(iii) e, is absolutely continuous with respect to m, for m,-almost
every x.

Proof. The implication (i) = (iii) follows from the uniqueness of
the kernel. The implication (ii)= (i) is obvious. To prove that
(iii) = (i1) assume that g.(dy) = k(x, y)m,(dy). The function £ is
measurable in the second variable. (It may not be jointly measur-
able.) Let E be a Borel subset of X x Y with (m, x m,)(E) = 0, and
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let E° = {y: (z, y) € E}. Thus m,(E®) = 0 for m,-almost every x, and
hence p,(E®) =0 for m,-almost every x. Thus p(E) =

S t(E*)Ym,(dx) = 0, that is, ¢ is absolutely continuous.
YJx

REMARK 2.7. The condition that 1€ L is not essential. Let L
be any order-ideal in M(Y). By replacing Y by the support of L,
we may assume that the support of L is all of Y (i.e., L is a foun-
dation in the terminology of [18]). It is easy to see that there
exists a disjoint countable family {Y,} of Borel subsets of Y such
that Y =UY, and 1, e L for every n. In the definition of a dis-
integrated kernel, the measures y, must be replaced by local measures
which are uniformly o-infinite. Similarly, in the definition of a
measure kernel g, condition 2.1(i) must be weakened to the following
form: There is a countable disjoint family {Y,} of measurable sub-
sets of Y, and for every =, a countable disjoint family {X,;:j =
1,2, ---} of measurable subsets of X suchthat Y = 7Y,, X =U, X,;,
for every =, and |p¢|(X,; X Y,) < « for every n and j. With these
modifications, it is easy to see that all the results in this paper are
still valid without the assumption that 1e L.

3. Positive operators. In this section we prove the characteri-
zation theorem for positive operators, i.e., operators which map non-
negative functions into nonnegative functions.

As before we have finite measure spaces (X, .7 m,) and (Y, <&, m,)
where Y is standard. We also have an order-ideal L of M(Y) with
lelL.

LeMMA 3.1. A pseudo-integral operator is positive tf and only
if its measure kernel is positive.

Proof. The “if” part is trivial. To prove the “only if” part,
let T be a positive pseudo-integral operator with kernel g Let
Aec.»/, Be<# be such that 1,T1,e L‘(m,), then p(4 x B) =

1, (x)(T1)x)m,(dx) = 0. There are enough such rectangles to gener-

ate .7 ® &, and so ¢ is a positive measure.
Note that g is positive if and only if measures g, are positive
for m,-almost every x.

THEOREM 3.2. Let T be a positive operator from L into M(X).
The following conditions are equivalent.

(1) T is a pseudo-integral operator.

(ii) T s order-continuous, i.e., if 0 < f, < felL, and f,—0
almost everywhere (m,), then Tf, — 0 almost everywhere (m,).
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Proof. (i)= (ii). Let T be a pseudo-integral operator with
kernel {z¢,}, and let 0 < f, < fe L, f, — 0 almost everywhere. Let
X; = {x: (Tf)(x) < j}. The dominated convergence theorem implies
that Tf, — 0 a.e. on every X;. This proves (ii).

(ii) = (i). Every standard Borel space is Borel-isomorphic to a
compact metric space [13], so we may assume that Y is a compact
metric space and <% is generated by the topology of Y. Let C(Y)
be the space of real-valued continuous functions on Y. Let {¢,:n =
0,1,2, ...} be a countable linearly independent subset of positive
continuous funections such that ¢, = 1 and the linear span & of {e,}
is dense in G(Y). Let &, be the linear manifold, over the rationals,
spanned by {e,}. For every =, Let ={Te,} be a function in the
equivalence class Te,. Extend = by linearity to <. For every z,
the map ¢,, defined by ¢.(f) = n(Tf)(x), is a linear map of & into
the real numbers. There is an m,-null set X, such that z(7f)(x) = 0
for every x € X\X, and every nonnegative f in =Z,.

We will show that ¢, is bounded on & for every z in X\X,.
First consider f in &, with —1 < f(y) < 1. By the positivity of T,
we have —hy(x) < ¢,(f) < hy(zx), where h, = #(T1). Thus ¢, is bounded
on &, with norm hx). For every positive integer =, let _#Z, be
the linear span of {e, e, ---,¢,}. The norm of the map ¢.| #, is
determined on the dense set <. N _#,, so the norm equals &(x).
Every f in & belongs to _#, for some %, so |¢,(f)| = h(®)|| f ||~ for
every f in &. Therefore ¢, extends to a bounded linear functional
(still denoted by ¢,) on C(Y) with norm h(x).

For x ¢ X\X,, the map ¢, is positive since ||¢,|| = ¢,(1). By the
Riesz Representation Theorem, there exists a positive Borel measure

L, on 'Y such that #(Tf)(x) = S fp.(dy) for every fin &. Finally,
define g, for x ¢ X;, by g, = 0.

To show that {g,} is the required kernel, let & be the set of
all f in L for which

(Tf)x) = Sf(y)yx(dy) , for m,-almost every « .

We must show that & = L. First we show that & contains C(Y).
We have already established that & c . Let feC(Y) and let
f.€Z be such that f, — f uniformly. Let a,=|f, — fll., so
—a, = f, — f < a, and hence —a,T1 < Tf, — Tf < a,T1. So Tf, —
Tf almost everywhere. On the other hand, the dominated conver-
gence theorem implies that S fy)p(dy) — S fyr(dy). This shows
that fe&.

The dominated convergence theorem and the order-continuity of
T (condition (ii)) imply that & is a monotone class, i.e., if f,€%&,
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foz=0, f.,1f, and feL, then f€%. But every monotone class con-
taining C(Y) must also contain every characteristic function and
hence must also contain L. Thus & = L.

It remains only to show that z, can be chosen so that x,(B) is
a Borel function of x for every Be.<Z. To prove this, let {B,} be
a countable generating family for <Z. Since ¢, (B,) = (T1; )(*) almost
everywhere, there is an m,-null set E such that the maps x — p.(B,)
are Borel functions from X\E into the real numbers. Redefine g,
for x € E to be 0, so the maps = — x,(B,) become Borel functions on
X. The measurability of x — p,(B) for any Be.<Z follows easily.

COROLLARY 3.3. Let S and T be positive linear operators from
L into M(X) such that S< T. If T is an integral (respectively,
pseudo-integral) operator, then so is S.

Proof. If T is a pseudo-integral operator, then 7' is order-con-
tinuous. The operator S must also be order-continuous and hence is
a pseudo-integral operator.

If ¢« and v are the measures inducing T and S respectively, then
v < ¢t by Lemma 3.1. If T is an integral operator, then z, and hence
also v, is absolutely continuous with respect to m, X m,. Thus S is
an integral operator.

COROLLARY 3.4. Ewvery positive operator from L*(Y) into LY(X),
12p< 0,195 o is a pseudo-integral operator.

Proof. Let T be a positive operator from L7(Y) into LYX)
and let f,eL”(Y), f,10. By the monotone convergence theorem,
| fullp—0. Since T is automatically norm bounded [15, p. 84], we
also have ||Tf,||,—0. Since {Tf,} is a decreasing sequence, we
must have Tf, — 0 almost everywhere. Thus 7T is order-continuous,
and hence is a pseudo-integral operator.

The following result is stated in [10], but the proof given there
seems to be incomplete.

COROLLARY 3.5. Ewvery bounded operator from LYY) into LY X)
is a pseudo-integral operator.

Compare also [9, Corollary VI. 8.9] where X, rather than Y, is
assumed to be a compact metric space.

Proof. For a bounded operator T from LYY) into LY(X), it is
well-known that there are positive bounded operators 7T, and T, such
that T=T, — T, (in the complex case, =T, — T, + T, — iT,,
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where every T; is a positive bounded operator), see [7]. The result
follows from the preceding corollary.

4. Order properties. For terminology and notation concerning
vector lattices and operators between them we refer to Schaefer [15].
When the vector lattices under consideration are lattices of equiva-
lence classes of measurable functions, the notions of order convergence
and order continuity can be reformulated in terms of the more
familiar concepts of measure theory. In particular, in a vector
lattice L of equivalence classes of measurable functions, a sequence
of functions {f,} order-converges to 0 if and only if it converges to
zero almost everywhere and dominatedly, i.e., | f,| < feLand f, —0
(a.e.). In the lattice M(X), the condition of domination is automa-
tically satisfied in the presence of almost everywhere convergence;
see [15], p. 141, exercise 2(c).

Let T: L — L' be a linear operator between vector lattices L and
L' of equivalence classes of measurable functions. Then T is order-
continuous if and only if 0 f, < feLl, f,—0 a.e. implies that
Tf,—0 a.e. and |Tf,| < geL’. Again if L' = M(X), the condition
that |Tf.| < ¢ is redundant. Order-continuous operators are called
(0)-linear operators in [18], p. 214.

THEOREM 4.1. Let T be a pseudo-integral operator from L into
M(X) with kernel . Then T is order-bounded (regular) and the

operators T+, T, and |T| are pseudo-integral operators with kernels,
pr, p1m, and | p] respectively.

Proof. The measure || induces a positive operator S from L
into M(X). Since —|¢|=p<|p¢], we must have —S=<T < 8.
Therefore T is order-bounded and |7T'| < S. By Corollary 3.3, |T'| is
a pseudo-integral operator whose kernel v satisfies v < [¢¢]. On the
other hand, 0 <27~ =|T|—-T=1T,_,, and so vy — ¢ is a positive
measure. Similarly T,,, = 27" and hence v + g is a positive measure.
Therefore v = |#|. Thus we have v = ||, and so |T| =T, It
follows that T* = (T + |T|)/2 = T+ and T~ = T\-.

COROLLARY 4.2 [12]. Let T be an integral operator with kernel
k. Then T*, T, and |T| are integral operators with kernels k*,
k=, and |k| respectively.

Proof. Use Theorem 4.1 and Proposition 2.6.

COROLLARY 4.3. Let T, and T, be pseudo-integral operators from
L into M(X). Then sup(T., T.)) = Ty, and inf (T, T.) = Ty,
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REMARK. pVv and g Ay are the usual supremum and infimum
of £ and v in the lattice of local measures, i.e., #Vv =v + (¢ — ),
and gAY =v — (¢t — v)".

Theorem 4.1 establishes that the set of pseudo-integral operators
is an order-ideal in the vector lattice .&5(L, M(X)) of all order-
bounded (regular) operators from L into M(X). We will show later
(Corollary 5.3) that the pseudo-integral operators form a band (or a
component in the terminology of [18]) in <4(L, M(X)). Recall that
a band (a component) in a vector lattice & is by definition an
order-ideal .7 with the property that whenever z,€ . # and = =
sup {x,} exists in <&, we must have xec.” (It would be more de-
seriptive to call an ideal with this property an order-closed ideal.)

5. The characterization theorem.

LeEMMA 5.1. Let T be an order-continuous operator from L into
M(X). Then T is order-bounded, and the operators T+, T, and |T|
are order-continuous.

Proof. The proof is given in [18, p. 214 and p. 216] for opera-
tors between more general vector lattices. We give a sketch of the
proof.

To prove that T is order-bounded it is enough to consider se-
quences [18, p. 154], i.e., if | f,| < fe L, we must show that sup {Tf,}
exists. To prove this, it suffices to show that A,Tf,— 0 a.e. when-
ever {\,} is a sequence of positive real numbers converging to 0.
But this follows from the order-continuity of 7.

To prove that 7't is order-continuous, let f, =0, f, 1 feL. We
must show that T*f = sup {T*f,}. If0<g < f, then (g A f.) T ¢ and
hence Tg = sup T(gA f,) =sup T (gA f,) =<sup T*f,. So T*f=sup{Tyg:
0=9g=f}<supT*f,. The reverse inequality is trivial. This shows
that T* is order-continuous and so T~ and |T| must also be order-
continuous.

THEOREM 5.2. Let T be a linear operator from L into M(X).
The following conditions are equivalent.

(1) T is a pseudo-integral operator.

(ii) T 1s order-continuous, i.e., if 0 < f, < feLand f, —0a.e.,
them Tf,— 0 a.e.

Proof. If T is a pseudo-integral operator, then T'* and 7~ are
pseudo-integral operators by Theorem 4.1. It follows from Theorem
3.2 that T* and T~ are order-continuous, and hence T'= T+ — T~
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is order-continuous.

Conversely, if T is order-continuous, apply Lemma 5.1 and
Theorem 3.2 to conclude that 7T is the difference between two pseudo-
integral operators, and so 7 itself must be a pseudo-integral operator.

COROLLARY 5.8. The pseudo-integral operators form a band (an
order-closed ideal) in the wvector lattice of order-bounded operators
from L into M(X).

Proof. It is known [18, p. 216], that the order-continuous opera-
tors between two vector lattices from a band in the lattice of re-
gular operators.

We are now in a position to show that the measurability con-
dition 1.1 (ii) is redundant as far as operators are concerned.

PROPOSITION 5.4. Let x — p, be a map of X into the space of
bounded Borel measures on Y, and let L be an order-ideal of M(Y)
and T an operator from L into M(X) such that

(a) every f in L belongs to L'(|u¢,|) for almost every zx,

®) (TH@ = | Fw)rdy) for feL.
Then there are measures v, such that

(e) v, =p, for almost every «,

(d) for every B in &, the maps x — v(B) and x— |v,|(B) are
Borel functions.

Proof. By the dominated convergence theorem, the operator T
is order-continuous. Theorem 5.2 implies the existence of v,.

6. More general measure spaces. In this section we generalize
our results to the case of a separable (not necessarily standard)
measure space (Y, &&, m,). In this case, we will use the term “pseudo-
integral operator” to mean an operator induced by a measure kernel
¢ as in Lemma 2.3. Since the theorem of disintegration of measures
is not available in the present case, we may not be able to obtain
an explicit representation of the operator as in (0.2). Operators
given by (0.2) form a subclass of what we now call pseudo-integral
operators.

Examination of the proofs of our previous results shows that
they extend to the present general case once Theorem 3.2 has been
so extended. In what follows (Y, <% m,) is a separable finite measure
space.

LEMMA 6.1. Let T be a positive pseudo-integral operator from
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L into M(X), then T is order-continuous.

Proof. Let f,10. We must show that Tf, | 0. Toward this
end, let g = inf {Tf,}, and let X; = {x: (Tf)(x) < j}. If suffices to
show that g =0 a.e. on every X;, and so we may assume that Tf;
is a bounded function. Let g be the kernel of T, and A €. the
monotone convergence theorem shows that

S 9(2)1 ((@)m,(dx) = lim g (Tf) (@)L (2)m,(d)
= tim | ) L@)ds, ) = 0.

Thus g = 0. This proves the Lemma.

For any separable measure space (Y, <%, m,), there is a compact
metric space Y’, a Borel measure m; on Y’ and an isomorphism of
the measure algebra (Y, m,) onto the measure algebra of (Y, m,)
(see [11, p. 173] for the nonatomic case). This isomorphism induces
a one-to-one positive linear map + of M(Y) onto M(Y’), see [8, pp.
252-254] for details. It is easy to see that . preserves almost
everywhere convergence, that is f, — 0 a.e. if and only if +(f,) — 0
a.e. This follows from the observation that « preserves the order
structure and the fact that f, —0 a.e. if and only if there is a
decreasing sequence of positive functions {g,} such that | f,| < ¢, and
inf {g,} = 0.

For an operator T from L into M(X), let 7 be the operator
from (L) into M(X) defined by T(f) = T(y7(f)). It is straight-
forward to see that 7' is positive if and only if 7T is positive and
that 7' is order-continuous if and only if T is order-continuous.

THEOREM 6.2. Let T be a positive operator from L imto M(X).
The following conditions are equivalent.

(i) T is a pseudo-integral operator, in the semse that it has a
measure kernel on X X Y.

(ii) T 4s order-continuous.

Proof. The implication (i)= (ii) has already been proved. Assume
that T is order-continuous. Therefore 7 is order-continuous and so
by Theorem 3.2 it is a pseudo-integral operator induced by a measure
Z on X x Y'. Define ¢ on the measurable rectangles of X X Y by

(A x B) = SIA(x)(TlB)(m)ml(dac). Thus p(A X B) = (A X 4(B)). In
order to show that g extends to a countably additive measure on

7 ® & it suffices to show that g is countably additive on rectan-
gles [14, p. 224]. But this is satisfied because /I is countably additive.
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In order to prove that T is a pseudo-integral operator induced
by the measure y, we must prove the following:

(a) For every fin L, the ideal of sets .7 = {A: Ae .7 1,(2)f(y) e
L'(pt)} generates . as a c-algebra.

®) | (@r@L@md) = || f@g@mds, dy) for every £ e Land

A€ ..

When f is a simple function, each of the conditions (a) and (b) is
obviously satisfied in view of the definition of #. Their validity for
arbitrary f in L follows from the order-continuity of 7' and the
monotone convergence theorem.
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