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AN INDEX THEOREM AND HYPOELLIPTICITY
ON NILPOTENT LIE GROUPS

KENNETH G. MILLER

Extending results of Grushin we determine the index of
p(x, D) where p(z, £) is a polynomial homogeneous with respect
to some family of dilations on R*? and p(x, )0 if (x, £)+(0, 0).
In general these operators are not elliptic. If G is a step
two nilpotent Lie group and Pis a left invariant differential
operator on G which is homogeneous with respect to some
family of dilations, we apply this index theorem to prove
that P is hypoelliptic if and only if P* is hypoelliptic. This
extends a result of Helffer and Nourrigat.

1. An index theorem. A family of dilations on a Lie algebra
% is a one parameter family of automorphisms {6,: » > 0} of & of
the form 4, = exp ((log 7)A), where A is a diagonalizable automorphism
of & with positive real eigenvalues. There is no loss of generality
in assuming that the smallest eigenvalue is 1. A finite dimensional

normed vector space V with norm | | determines an abelian Lie
algebra. Let {5,} be a family of dilations on V. For we V define
lw] by ||w] =2 if |6;*(w)] =1. Then w — ||w|| is continuous on

V and C~ on V — {0} by the implicit function theorem. Let <& =
{w,, w,, ---, w,} be a basis for V consisting of eigenvectors of A

with corresponding eigenvalues g, ---, ¢t,. If w =aw, + --- + a,w,,
then

(1.1) o,w = >, ra;w; and

(1.2) |wl ~ X la; " .

Throughout this section we will be considering a family of
dilations on the abelian Lie algebra R* = R:@P R{. We do not
necessarily assume that either R? or R? is invariant under {9,}. Let
FeC=(R*), flw) = 0 for ||w]|| < 1/2, and f(w) = 1 for ||w|| = 1. Define
O(w) =1+ flw)||w] and p(w) = 1 for all w = (x, &) e R*. Note that
there is a C such that if |w — w'| =< @(w) then d(w') < CO(w). Thus
(@, @) is a pair of weight functions on R? as defined in Beals [1].
We will usually not mention ¢ and will refer to @ as the weight
function for the family of dilations {4,}. Note that @ satisfies the
coercive estimate

(1.3) |w| < Co@wY:

where /£ = max {f, - - -, )
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For me R, let S7 denote the set of all smooth functions p on
R* such that for each a and ge N*®

sup {@(x, &) | D¢Dip(x, &): (2, &) € R} < oo .

™ is the set of pseudodifferential operators with symbols in S&,
Hj is the associated (global) Sobolev space as defined in [1] and
| llme is a norm for the topology on H. We note that in the
special case where m e N and m/g; e N for all j (this is necessarily
the case in the context of Theorem 2 below, by Proposition 1.3 of
[7], then || |,.- can be given explicitly as follows: Let <Z be a
basis for R* consisting of eigenvectors for {5,} and let a,(x, & be
the jth coordinate of (x, &) with respect to the basis <% By (1.2)
above and 6.17 of [1]

(1.4) #llms ~ 2 |l as(@, D)™ iu]| + [l

where || || is the I? norm.
We shall denote by S% the subset of S consisting of functions
p such that for all « and g in N*

sup {O(w, &) # | D Dip(, §)|: (x, &) € B} < oo .

We say that p € C*(R*) is homogeneous of degree m with respect
to {9,} for large w if there is a ¢, 0 < ¢ < 1, such that p(d,w) = r™p(w)
for all » = 1 and all w for which ||w]|| = ¢. If p is homogeneous of
degree m with respect to {d,} for large w and if » is an eigenvector
for the generator A of {§,} with eigenvalue g, then

r“D,p(8,w) = r*D,p(w) .

If |w]=1, let »=||w|] and w =4 (w). Then |w'||=1 and
D,p(w) = ||w||™*D,p(w"). Thus there is a C such that

(1.5) |IDp(w)| = Cllw|™* = Cllw|™

for all w, ||w]| = 1. Consequently if p is homogeneous of degree m
with respect to {4,} for large w, then peSm. It follows from this
remark that @ ¢S} and hence o™ e S» for all m e R.

We say that p € Sy is @-elliptic if there is a C such that o(w)” =<
Clp(w)| for |w| = C. Note that if p is a polynomial and p is homo-
geneous of degree m with respect to {9,}, then p is @-elliptic if and
only if p(w) == 0 for |w| = 0. Note that in general @-ellipticity does
not imply ellipticity in the usual sense. For example on R* X R?
p(x, &) = & + a2 + 22,8 + & + & + a2 is P-elliptic and homogeneous of
degree two, where the dilations are given in terms of coordinates
@ =¢,a, =%+ &, a =§&and a, =, with ¢, =2, tf, = p, =y, = 1.

If " is an oriented curve and p maps the range of I’ into
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C — {0}, let 4, arg p denote the change in the argument of p along
I'. In the following theorem [I” is the curve in R, R, given by
x(0) = cos f, y(@) =sinfd, 0 < 6§ < 2rx. In the case where R? and R!?
are eigenspaces for A with eigenvalues 1 and 1 + § respectively,
6 > 0, this theorem was proved in [2].

THEOREM 1. Let 6, = exp ((log r)A4), » > 0, be a family of dila-
tions on R¥, @ the weight function for {6,}. Let p = p, + p, where
Do 18 D-elliptic and homogeneous of degree m with respect to {8,} for
large w and p,e€SP for some m, < m. Then p(x, D): Hy — L* is
Fredholm. If d>1, then indp(x,D)=0. If d=1, then
27 ind p(x, D) = d,argp,. If d =1 and p, is a polynomial, then
ind p(z, D) is also given by (1.6) below.

Proof. By Theorem 7.2 of [1] and (1.3) above, p(x, D): Hy — L?
is Fredholm. By Corollary 6.13 of [1], p.(x, D): Hy — L* is compact.
Hence ind p,(x, D) = ind p(x, D). Let feC=(R*) be real valued,
flw) =0 for |lw|=1/2, flw)=1 for |w| =1  Let aw)=
fw)/||wl||™?, ¢ = pa*. Then A = a(x, D) e &3;™?, and by the pseudo-
differential operator calculus p,(x, D)A*A = q(x, D) + B where
Re 7. Thus ind gz, D) = ind p(x, D). Also q(6,w) = p,(w) = 0
for all =1 and all w, ||w||=1. If d>1, {weR* |w| =1} is
simply connected, so ¢ can be continuously deformed to a nonzero
constant through @-elliptic symbols which are homogeneous of degree
0 for large w. Hence ind q(x, D) = 0.

Now consider the case d = 1. Although ¢ is not elliptic in the
classic sense, ¢ is included in the class of symbols for which
Hormander proves the index theorem in §7 of [5]. In [5] it is shown
that 27 ind ¢¥(x, D) = 4, arg q, where ¢“(x, D) is the Weyl pseudo-
differential operator with symbol ¢q. By (4.10) of [5] ¢“(x, D) =
a(x, D) where a =q + r, r€S;*. Thus indq(x, D) = ind ¢“(x, D).
Clearly 4,argq = 4, arg p,.

If d =1 and p, is a polynomial, then ind p(x, D) can also be
computed as follows: Let v, and v, be eigenvectors for the generator
A of {9,}, chosen so that if (x, &) and (x,, &) are the respective
x, & coordinates of », and v, then x¢&, — 2,6, > 0. Let I'. be the
line t — v, + tv, and I'_ the line t —» —v, + tv,, t€ R. Let m, = m/t,.
Let v, be the number of complex roots z of p,(v, + 2v,) with positive
imaginary part and v_ the number of complex roots of »,(—wv, + 2v,)
with negative imaginary part. By the homogeneity of »,,

drarg p, = 4r, arg p, — 4r_argp, and
dryargp, = —i |~ Lipo + to)|dt = 2200, — mf2)
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dr_argp = —i|  Lip(to, — v)|dt = 2a(m2 —».) .
Thus
(1.6) ind p(x, D) = v, + v_ — m,.

2. Hypoellipticity of P*. Let & be a nilpotent Lie algebra
of step 2; i.e., [Z, &,] = 0 where &, =[Z, £]. Let G be the corre-
sponding connected, simply connected Lie group. A family of dilations
{0,} on & induces a family of algebra automorphisms, also denoted
{8,}, of ZZ(¥), the complexified universal enveloping algebra of Z.
An element P of /(%) is said to be homogeneous of degree m
with respect to {9,} if §,(P) = »™P for all » > 0. The set of all Pe
7z (<€) such that P is homogeneous of degree m with respect to a
given family of dilations {6,} will be denoted #%,.(<, {9,}) or simply
Z (%) when there is no chance of confusion. We consider the
elements of /(<) as left invariant differential operators on G.

THEOREM 2. Let & be a nilpotent Lie algebra of step two and
{0,} a family of dilations on &. If Pe Z, (<, {0,}) is hypoelliptic,
then P* is hypoelliptic.

When {6,} is the natural family of dilations for a grading & =
2, P &, of &, then this result was proved in Helffer and Nourrigat
[4]. For the Heisenberg group such a result was proved in Miller
[6]. It follows from this theorem that any hypoelliptic Pe %, (&)
is locally solvable.

The proof is based on the Helffer-Nourrigat-Rockland characteri-
zation of the hypoelliptic operators in #,(¥): Pc %, (%) is hypo-
elliptic if and only if #n(P) is injective in &% for every nontrivial
irreducible unitary representation 7 of G. (See [3] and [8]. That
this result holds for arbitrary dilations is shown in [7].) We shall
also need some other preliminary information before beginning the
proof of Theorem 2.

By Lemma 1.2 of [7] there is a basis {X,, ---, Xy; ---, X,} of
% such that each X; is an eigenvector for the generator A of {5,},
{Xy41, -+, X,} spans &,, and for each & > N there are 7 and j = N
such that [X,, X;] = X,. Let y; be the eigenvalue of A correspond-
ing to X;. If aeN", let ap =3, a;p¢; and X* = X--- X, Then
Pez, (&) if and only if
2.1) P = #Z, a,X*
for some a,cC.

Let &, be the subspace of & spanned by {X,, ---, Xy}. Letting
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Z* denote the vector space dual of &, we define §, on £* to be
the transpose of 4, on & for each r > 0. Since ¥, is invariant
under {5,}, {6,} (on Z£*) restricts to a family of dilations on the
vector space £F. For ne &f define |7 as in §1. If XeZ, let
X =X"+4+ X" where X'e%,, X"e%, Forne<y,

(2.2) T, (exp X) = exp i(7, X’)

defines a unitary representation of G on C. It follows from (2.1)
that if Pe %, (%), then

2.3) 75 (P) = r"wy(P) = w,(0,P); neZy.

We next recall some facts about the representation theory for
G. More details are given in [7]. Let {eZ}. Then there is a
d =d() £ N/2 and a basis Z ) = {Y.(0), ---, Yx()} for &, such
that <Z({) is orthogonal with respect to the inner product determined
by the basis {X,, ---, X} and such that

(2'4) <C’ [YJ(C)! Yy+d(C)]> =1 fOI‘ _7 é d
G Y0, Y QD =0

for all other choices j <k < N. (In [7] we had [Y;(Q), Y;..(0)] =
X; > 0. This was necessary because we wanted the basis to be
orthonormal, but that is not needed here.) For any pec R"™* there
is an irreducible unitary representation 7, of G on L*(R?) such that

To, (Y (O)u(t) = oufot; , J=d;

2.5) Tpo(YipaO)u(®) = itu(t) , J=d;
o, (Yipea@)u(t) = 105u(?) , JEN-2d;
To,i(Z)u(t) = KE, ZHu(d) , Ze%Z,.

Furthermore every irreducible unitary representation of G is
unitarily equivalent to 7z, for some {e £y and some peR" %9,
Note that if { = 0 we obtain the representation defined by (2.2).

For {eZ}, teR* teR* and pe R"™, d = d({), let 9(t, 7; 0, 0)
be that element 7 of &} such that

<77y Yg(C)> =Tj, <777 Yi+d(€)> = tj ’ .7 =d ’
@, YO =05, J=N-2d.

Let fe C=(R") satisfy f = 0 in a neighborhood of 0 and f= 1 outside
some bounded set. Define

D,i(t, 7) =1+ ft, 7, 0) 17, 75 0, Ol -

Let (e &¥, L # 0, be fixed. If for all pe R, ¢q,e C~(R*) and
for all multi-indices &« and g there is a C,; such that

(2.6)
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| DzDiqu(t, 7)| = Cop@,c(t, 7)1

for all (¢, 7, p) € RY we will write “g,eS%. uniformly in p”. ke
is the space of pseudodifferential operators with symbols in S%,;
*. the corresponding global Sobolev space as defined in [1].
It follows from (2.5), (2.6) and (2.2) that, for Xec <z,

2.7 sym T, (X)(t, T) = Tyie,0,0(X)

where sym @ denotes the symbol of the operator Q. Let (e ¥ be
fixed and let {X,, ---, X,} be the basis for & described at the
beginning of this section. By (2.7) and (1.2),

(2.8) 7,«(X;) € &% uniformly in pif j< N,
2.9) 7o, (X;) € &5, uniformly in p if j > N.
Thus if Pe Z, (%), then r,(P) e &%, uniformly in p.
LEMMA. Let Pe %/, (%) satisfy m,(P) =+~ 0 for each of the omne

dimensional unitary representations w, ne <}, n+*0. Then for
fized Le Z¥, L+ 0, there is a ¢ > 0 and a C > 0 such that

[sym 7,,((P)(, 7)| = ¢@,,:(t, 7)™
for all pe R*™* and all (¢, 7) € R* such that |t| + |z]| = C.
Proof. Let S={nezf: |n| =1} and let ¢, = min {7, (P): n € S}.
For arbitrary ne ¥, 7 #0, let » = ||7|™*. Then |§,7] =1. (2.3)

implies that [7,(P)| = ¢,[[7]|". Thus letting p; (¢, T) = Ty,e,0,0(P),
we have

(2.10) [D6,c(¢, )| = |7, 750, O™ -

Let p,;=symmz,(P). By (2.7), the pseudodifferential operator
calculus, (2.9) and the remark following (2.9),

(2.11) Do; — Ppc €807t uniformly in p .

Now there exist ¢, > 0 and C, such that if [£| + || = C, then
7@, 750, O™ = e(|it] + |z]) for all p. Thus, by (2.10), there exist
¢, > 0 and G, such that if |t| + |7]| = C,, then |p).(t, 7)| = ¢,P,.(t, 7)™
for all p. Also, by (2.11), it follows that given ¢ > 0 there is a
C,(e) such that if |¢]| + [7] = Cye), then for all p

| Do,c(t, T) — Dpc(t, T)| < 1/26D,, (¢, T)™ .

The lemma follows by taking C = max {G,, C,(c,)}.
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Proof of Theorem 2. By the theorem of Helffer-Nourrigat-
Rockland, to prove P* hypoelliptic it suffices to show that
ker 7, (P*) = 0 for all {e &} and all pe R, except { =0, p = 0.
(We consider 7, (P) and 7, .(P*) as bounded operators from H . to
H),). If {=0, then

(2.12) To(P*) = 7o (P) = 0

for all o+ 0. If {0, then by Theorem 7.2 of [1] and the above
lemma, 7, (P) is Fredholm for all p. Also by Remark 1.4 of [4]
and the Helffer-Nourrigat-Rockland Theorem, ker z, (P)=ker 7, .(P) N
%% = 0. Hence it suffices to prove that ind 7, (P) = 0.

We consider first the case when d = d() < N/2. Let q,. =
sym 7, (P*). By (2.12) and the above lemma there is a ¢ > 0 and
a C such that |g,.(t, )| = ¢@,.(t, ) for all (¢, 7, p)e RY with
[t|+]z]=C. Choose feC~(R*) suchthat f(t,z)=0if |[t|+ || ZC,
fit,oy=1if |¢|+|r|=2C. Leta,,= fq,%. Then a,,cS,? uniformly
inp and b,, =1 — a,.:°q,. €8S, uniformly in p, where poqg denotes
the symbol of (¢, D)q(t, D). Let () = 1 + |z[)"*™. There is a
C > 0 (depending on ), such that (r) < C®,.(t, t) and, by (2.8),
such that |p|° < C®, (¢, z) for all (¢, 7, p) e RY, where ¢ = min {1/y;:
1 = j = N}. Thus a,,€S) uniformly in o and |p|b,. €S} uniformly
in p. By the L* boundedness theorem for pseudodifferential operators
there is a C, such that ||a, (¢, D)ul| < C,||u|| and [p|*||b, (¢, D)u|| <
C/llu|l, for all we LA(R* and all p. Thus if [p|* = 2C,,

lull = |lap,c(t, D)o, (P*)u|| + [[by,:(¢, D)u ||
= Cllmo, (PH)ull + 1/2[u] .

Hence 7, (P*) is injective and thus indz, (P) = 0 if |p|° = 2C,. Since
ind 7, .(P) is independent of p, ind 7, (P) = 0 for all pe R¥*.

If d = d({) = N/2, we write n; for 7,,. Define ¢: RIP R — T *
by @(t, v) = 1(t, 7; 0, ), as defined before (2.6). Let 8, = @105, 0.
Then {6;} is a family of dilations on R*. Let p/({, T) = Ty c0,00(P).
It follows from (2.83) that p; is homogeneous of degree m with
respect to {6;} and by (2.12) p. is @ -elliptic. Since p; — sym 7 ,(P)
Sr~* we can apply Theorem 1 to find indzx,(P). If d > 1, then
ind 7,(P) = 0.

If d =1 and Z () = {Y.(0), YO}, set Yi(—0) = Yy(0), V(-0 =
Y, (£). Then &Z(—0) = {Yi(—0), Y(—O)} satisfies (2.4) for —{. Also
N, ;3 =0 = 9(z, t; ) and p’.(¢, ) = pi(z, ¢). By Theorem 1

2z indzw_(P) = d,argp_, = —4d,arg p; = —2wind 7,(P) .

But ker 7,(P) = ker 7_,(P) = 0 implies ind 7,(P) = 0 and ind #_.(P) = 0.
Thus ind 7, (P) = 0.
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