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FIXED POINT CLASSES OF A FIBER MAP

CHENG-YE YOU

Let (E, p,B) be a fiber space with E, B and all fibers
compact connected ANR's. Let /: E->E be a fiber map, then
/ induces /: B-+B. For each fixed point b of /, we define
f*=f\p-l{b):p-1(b)->p-lib). Then p°/=/°p and %°fb=f°%,
where ib is the inclusion map. We have Nielsen numbers
N(f), N(f) and N(fb). A product formula relating these
Nielsen numbers was published by Brown in 1967. There
have been several improvements of the formula since that
time.

In this paper, we study the structure of the fixed point
classes of /, and prove some theorems about the product
formula of the Nielsen number of a fiber map, which imply
results of Fadell and of Pak.

Throughout this paper we assume all spaces are path-connected
and all fiber spaces are Hurewicz fiber spaces.

I am grateful to Professor Boju Jiang (Po-chu Chiang) for some
important suggestions.

I would also like to thank the referee for his help.

1* Fixed point iϊ-classes* The concept of fixed point iϊ-classes
is presented in [8] and [7]. For convenience of calculation, we give
its definition a precise algebraic formulation.

Let X be a space, and H be a normal subgroup of π^X) (which
means that for each x e X, a normal subgroup H(x) of πt(X, x) is
defined, such that for any path w in X from x to x', we have
w*(H(x))-H(x'), where w*: πx(X9 x)-+π1(X, x') is defined by w*((a))~
(w^aw), for any (a) eπι(Xf x)). Two paths c, d in X are said to

TT

be H-homotopic and written c ~ d, if c(O)=<Z(O), c(ΐ)=d(l) and (cd'1} e
TT TΊΓ T T

H. One can easily see that when c ~ d, then d ~ cy c~ι cz d~x and
TT TT

also uc en ud, cv ~ dv if uc and cv are well-defined.
Let xeX, we can think of every element of πx(X, x)jH(x) as

TT TT

a ~ equivalence class of loops based at x. Let <α># denote the CΞ
equivalence class of the loop a. For each path w in X from x to
x'9 let wH: πx(X, x)/H(x) -> π^X, xr)jH{xr) be the homomorphism in-
duced by w*, that is, wH{{a)H) = (w^awya.

Suppose that a map /: X —> X satisfies fΛ(H) c H (it means that
for any xeX, fx(H(x))czH(f(x)) where fJt:π1(Xfx)->π1(Xff(x)) is
the induced homomorphism). Then, for each xeX, fπ: π^X, x) ->
πt(X, f{x)) induces a homomorphism fH: πx(X9 x)/H(x) —> πx{Xy f(x))J
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Let Φ(f) be the set of fixed points of /. Any two fixed points
x, xf 6 Φ(f) are said to be in the same H-class, if there is a path c

ΎT

in X from x to xf such that c ~ foe. Then Φ{f) is divided into a
finite number of equivalence classes, called nonempty fixed point
H-classes of /. Let ΦΉ(f) denote the set of nonempty fixed point
iί-classes of /.

Let xQeX and let w be a path in X from xQ to /(&<>)• We define
a homomorphism / H = WB^/H- πx(X, xo)/H(xo) -> πx(X, xo)/H(xo), so
/H«Λ> H ) = (w(foa)w~1)H. Any two elements α, α' of ^(X, xo)IH(xo)
are said to be " ~ equivalent" (written α ~ α') if there is a 7 e
^(X, xo)/H(xo) such that α' = ΊafH{Ί~ι). Let FH(/; «0, w) denote the
set of ~ equivalence classes, and let [a] denote the ~ equivalence
class of a.

LEMMA 1.1. For each xeΦ(f), the set {(cifoc^w"1}^ for any
path c from x0 to x) is exactly a ~ equivalence class, so x determines
an element of FH(f; xOf w). Two fixed points determine the same
element of FH(f; x0, w) if and only if they are in the same H-class.

Proof. We take a path c0 from xQ to x. For any path c from
x0 to x, ceo1 is a loop based at x0. Then

<c(/o C)-1™-1)^ = (cCo'CoifoC

Hence {(c{f °c~1)w~v)H\ for any path c from x0 to cc} c [(^(/oc
On the other hand, if 7 = (r)H, then (writing c = rc0)

Hence [(co(/° c o " > " % ] c «c(/o c " > " % | for any path c from x0 to
#}. Thus we get the first conclusion.

Let x, x' e Φ(f) be in the same Jϊ-class. Take a path d from x

to #' such that d ~ (f°d), and a path c from #0 to x. Then ccί is
a path from #0 to x\ and

Hence α;, xf determine the same element [(c(/oOίί;~%] eFH(/; α?0, «?).
Conversely, if x, x' 6 Φ(/) determine the same element, then,

according to the first conclusion, we can find paths c, c' from xQ to
x, x' respectively such that
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rr

It follows that <rV ~/o(c~~V). Since c~V is a path from x to a?',
we get that x, xf are in the same H-class. •

Lemma 1.1 permits us to define an injection p(xOf w): Φ'n(f) —»
Viλf\ xo, w) by p(x0, w)(F) - [ < c ( / o O r % ] , where xeFeΦ'H(f) and
c is a path from cc0 to #.

The set FH(f;x0, w) depends on the pair (x0 w). Let (x, w) and
rr

(x\ w') be two such pairs. If x — x', w ~ w', then wH = w/7 and
///, ^ equivalence are the same, so PH(f; x, w) = VH(f'\ x', wr). In
general, however, FH(f; x, w) is different from VH{f\ x', wf). We
now show the relation between them. It is easy to prove that:

LEMMA 1.2. (a) If {ά)Hi <α'>71 e πx{X9 x)/H(x) are — equivalent
and u is a path from x to xf, then

Thus we can define a transformation v: FH(f; x, w) —> FH(f; x\ w') by

(b) v is independent of the choice of path u.
rr

(c) When x = x' and w ~ w', then v is the identity.
(d) If we have another pair (cc", w"), then the diagram

FH(f; x', w')

FR{f\ x, w) <ί

r*{f\ x", w")

is commutative.
(e) We have a commutative diagram

FH(f; x, w)

ΦΊi(f) <(
p(χ', w')\

V if' xf wr) I—I

The conclusions (c) and (d) show that v is bijective and that
we can identify all Fπ(f; x, w) by v to get an abstract set denoted
by Fπ(f). Then (e) shows that we can identify all p(χ9 w) to get
an injection p: Φ'H{f) —> Fπ(f).

The elements of Fπ(f) are called fixed point H-classes of /. A
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pair (x, w) with xeX and w a path from x to f(x) is called a refer-
ence pair for /. Each element of FH(f; x, w) is called the represen-
tation of the corresponding element of FH(f) in the reference pair
(x, w). We will identify each element F of Φ'π(f) with ρ(F), and
think of ΦΉ(f) as a subset of FH(f).

When i ϊ is trivial, then the fixed point ίf-classes are the ordinary
fixed point classes, and fH = fπ, wH = w*, /# = fπ. In this case, we

abbreviate FH(f) to F(/), Φ'B(f) to Φ'(/), - to - and so on.
We now state some results about the fixed point iϊ-classes

without proof.
Let G: f cz g: X-> X be a homotopy, where / satisfies fJJS)aH

(so gπ{H)aH). The following lemma shows the relation between
FH(f) and Fs(g).

LEMMA 1.3. (a) Let (x, w) be a reference pair for f, and (x\ wr)
be a reference pair for g. Let n be a path from x to x'. If (a)H,
(aryH e FH(f; x, w) are ~ equivalent, then

(u~ιawA(G, uiw^s ~ (u~WwA(G, V^W'^H ,

where J(G, n) is the diagonal path defined by J(G, u)(t) = G(u(t), t).
Thus we can define a transformation μG\ FH(f; x, w) —> FH(g; x\ w') by

Since FH(f; x, w) and FH(g; x', wf) are representations of FH(f) and

FH(g) respectively, we can think of μQ as a transformation from

FΛf) to FH(f)
(b) μG does not depend on the pairs (a?, w), {xr, wr) and the path u.
(c) μG is a bisection.
(d) Let xoeFQeΦ'H(f) and x^F.eΦΉig). Then μG(F0) - F, if

jΓT

and only if there is a path c from x0 to xx such that c ~ Δ{G, c).

REMARK. Since the representation (2) of μG depends on the
pairs (x, w)f (x\ wf) and the path u, we may get a very simple
representation by choosing suitable pairs and path. We will fre-
quently use xf = x, wf = wGx (where Gx is the trace of G at x,
that is, the path defined by Gx(t) = G(x, t)), and u is the constant
path at x. Then Δ(G9 u) = Gx and (2) becomes

(2a) μG([(a)π]) - [<a}H] .

(Note that the [<£&>#] on the left hand side is in FH(f; x, w) and
the other one is in FH(g; x\ w').)

Let X, Y be spaces and let /: X->X, g: Y-> Y and h: X-> Y
be maps so that the diagram
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h\ \h

is commutative. Then we have h(Φ(f))aΦ(g). Furthermore, if H
and H' are normal subgroups of πx(X) and πλ(Y) respectively, and
fπ(H) c H, gπ(H') c H', hπ(H) c H', then we have

LEMMA 1.4. (a) // (x, w) is a reference pair for f, then (h(x),

how) is a reference pair for g. We can define a transformation

K: Pn(fl x> w) -* PH'(9'> h(x)9 how) by

Thus we get hF: FH(f) -> VH(g).
(b) hF is independent of the choice of {x, w).
(c) // x' e Fe Φ'H{f), then h{x') e hF(F) e Φ'H.{g).
(d) // Z is another space, H" is a normal subgroup of πx{Z),

and k: Y->Z, /: Z->Z are maps such that kog = /ok, k{Hf)aH",
S(H")(zH", then we have (koh)F = kFohF. •

COROLLARY 1.5. Let X, Y, H and Hf be as above. Suppose that
h:X->Y and h':Y-*X are maps such that hπ(H)aH', K(H')aH.
Let f — hf oh: X—>X and g = hoh': Y—> Y. (f,g are called a pair
of commuting maps.) Then the diagrams

ΐ ΐ
and h'\ \h'

are commutative, and hF: {VH{f), Φ'H(f)) -> (VH,(g), Φ'H(g)), h'v: (VH>(g),
ΦΉ'(9))-+(FH(f)tΦΉ(f)) are defined. Moreover h\ohv and hFoh'F are
both the identities, so hF is a bisection with inverse hF. •

COROLLARY 1.6. Let H, H' be two normal subgroups of
such that H' cH. Then for any map f.X-^X satisfying fπ{H)aH
and fπ(Hr)c:Hr, we have the transformation idΓ: (Ps>(f), ΦΉ>(f)) -*
(FH{f), Φ'H(f))f where id is the identity map of X. In particular,
we have idF: (F(/), Φ\f)) -> {VH{f\ Φ'H{f)). Π

Note that idF is surjective.

2* Fixed point classes of a fiber map* The transformation
2V From this section on, let λ be a regular lifting function of a
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fiber space (E, p, B) with E, B and all fibers path-connected. For
any path c in B from b to &', we define a map (translation) τ~e: p~\b)-+
p~\bf) by τ-c{%) = X(x, c)(l). Note that if c is a constant path, then
τd = id.

LEMMA 2.1. For any path d in p~\b), we have in E

τδod~ λ(d(0), cJ-'dλCdCl), c) .

Proof. We define a map H: I x I -> E hy

H(t, s) = X(d(t), e)(8) .

The restrictions of i ϊ to the four sides of the square I x I are
paths λ(eZ(O), c), λ(c£(l), c), d and τ~c°d. From this we get the con-
clusion of the lemma. •

For each beB and x^p~\b), let Kb(x) denote the kernel of the
homomorphism (ib)π: ^(jr^fc), x) —> î(JEf, »), where iδ: p

-1(δ) --+ E is the
inclusion. Then iΓδ(ίc) is a normal subgroup of π^p'Xb), x). For
any path / in p~\b) from α to x', it is easy to prove /^(Kh(x)) =
Kh{xr). Thus we get a normal subgroup of π1(p"1(&)) denoted by iί5

(or ίΓ briefly). Note that for two paths d and d' in jΓ^δ), d ~ d'
if and only if d C=L df in £/.

Let c be a path in B from & to 6', and let ^ep-^δ), a?' = τ~c(x).
It follows from Lemma 2.1 that the diagram

(TC) J U(*. C)*

is commutative. Since (r?)« and λ(&, c)^ are both isomorphisms, we
get (τd)π(Kb(x)) = ^ ( « 0 . Thus foMJKi) = JEj,.

Let f:E->E be a fiber map inducing f:B->B, let beΦ(f) and
let /6 be the restriction of / to p-^δ). For any xep~\b), the com-
mutative diagram

(Λ)J

implies (fb)z(Kb{x))(zKb(f(x)), so (fb)π(Kb) c Kb and Fκ(fb), Φ'κ(fb) are
defined.

Let F — {ft}: E x I-+Έ be a fiber homotopy from / to g, and
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let F = {/J: B x I-» B be the homotopy induced by F. LetJ> e Φ(/),
6' 6 $((/) and let w b e a path in I? from b to δ' such that J(F, w)~w.

LEMMA 2.2. TT&erβ is a bijection T& /rom Vκ{fb) to Vκ(gh*).

Proof. Define maps

h = Tj(^^)-i o gh, o T-: p-\b) • p~\b) ,

V = τΈ

The maps h and h' are a pair of commuting maps. Since (τ^)
Kv and (r J ( ^)-i o gh,)π(Kh.) c (^^,^-1)^^) = ίΓ&, by Corollary 1.5,
we have a bijection (τ^)Γ: F*(ft) -> Vκ(h').

For a path 0, let cj(r, s e I) denote the subpath of c defined by
o;(ί) = e(r + (β - r)ί).

Let D = {dj: ̂  cί J(F, w). We construct homotopies H: p~\b) x
I->p~ι(b) and H',H":p~\V) x J - ^ φ ' ) by

ff'V, *) - τΔΓF^\{X{gΛxr\ Δ{F, wΓ)(l - t)) .

Then H is from fb to Λ, J ϊ ' is from h' to Λ/' and H" is from Λ/; to
gh>. By Lemma 1.3, we have bisections μH, μH> and μHn. Let

T^ = μH>> ° i"j' ° (TW)Γ ° ̂ : FZ(Λ) > Vκ(gh.) ,

then T^ is a bijection. Π

In calculation we always use a representation of Tw. We can
indeed get an extremely simple representation by a special choice
of reference pairs. Thus let (x, r) be a pair for fb. The special
choice for h is (x, rHx) (cf. the remark following Lemma 1.3); the
special choice for h! is {x\ τ^ o (rHx))9 where xf = τs(aj) (cf. Lemma
1.4); the special choice for h" is (a?', (^©(rf f j )^), and the special
choice for gv is (a?', {τ^o{rHx))Hl,H'x'), where ϋ , , ̂ , JSΓ*5 are traces.
Let r' ^{τΈo(rHx))H'x,H">. Then (α?f, r') is called the induced pair
from (x, r) and w. By (2a) and (3), T^\ Fκ(fb; x, r)-*Fκ(gb,; x', rr) is
given by

(4) Γβ([<α>J) = [<r5 ?oα>J.

LEMMA 2.3. Lβί (x, r) be a reference pair for fb, and let (x\ rr)
be the induced pair for g[ from (x, r) and w. Let w = X(x, w), then
in E
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( 5) r' ^ w-WA(F, w) .

Proof. We construct maps Gt: I x I -> E, ί = 1, 2, 3, by

Gx(ί, s) -

G&, s) - λ(Λ(»), dt)(s) ,

G,(ί, β) =

Calculating the paths defined by restricting the Gt to the four sides
of I x I, we get in E

Hx = Δ{F, w)X(gb,(x'), Δ{F, wD ,
H'x, a X(h(x), wy'XiHx), Δ(F, w)) ,

By Lemma 2.1, we have in E

τ~w o (rHx) ~ w^rHnMhix), id) .

Applying the four formulas to the definition of r', we get (5). •

Note that w~1rJ(F9 w) does not depend on D, so (r')κ does not
depend on D. Moreover, the representation of ΓB in (a?, r) and
(x\ rf) does not depend on D either. By (c) of Lemma 1.2, we get:

COROLLARY 2.4. The function T^ does not depend on the choice
of the homotopy D used in its construction. Π

LEMMA 2.5. The diagram

«Ί I'
is commutative.

Proof. We need only to prove the diagram

(7(/; x, r) —^U p(g; χ\ r')

is commutative, where (x, r) is a reference pair for fb and (x\ rf)
is induced from (x, r) and iD. For any [<α>π] eFκ(fb; x, r),



FIXED POINT CLASSES OF A FIBER MAP 225

(V)r O Γβ([<α> J ) = ( V ) F ( [ < ^ o α> J ) (by (4))

= [<τ*°α>] (by (3))

= [(w^aw)] (Lemma 2.1).

On the other hand, since w is a path from x to x',

μF o (i»)r([<α> J ) - /*,([<<*>]) (by (3))

= [(w-'arAiF, w)r'-1)] (by (2))

= [(w-'aw)] (by (5)). Q

We will often apply 2.2-2.5 in a special case, namely when F
is a constant homotopy ft = f. In this case, b, br are in the same
class of / , A{F, w) = /° w, A{F, w) = /© w, (5) becomes

(5a) r' ^ w~ιr(fow)

and the diagram in Lemma 2.5 becomes

We now add two properties of T^ in this special case. Before
this, we first prove

LEMMA 2.6. Let v be a path in E such that v(Q), v(l) e p~\b)
and ζpov) is the unit of π^B, δ). Then there is a path /in p~ι(b)
from v(0) to v(l) such that /C=L v in E.

Proof. We first take an arbitrary path /' in p"\b) from v(0)
to v(ϊ). Then v/''1 is a loop based at v(0), and pκ((y/f~'Ly) is the
unit. By the exactness of the sequence

^(p-\b\ v(fi)) Ά> πλ{E, v(0)) -^-> πλ(Bf b)

we can find an element 7 of πx{p~ι{b)9 v(0)) such that (ib)π(rY) = (vs'~1).
Let ueΎ. Then, in E, u~v/'~\ and the path /^u/f meets the
need of the lemma. •

LEMMA 2.7. If wr ~ w, then T& = Tw.

Proof. Let (x, r) be a reference pair for fb, let (x\ rf) be the
induced pair for fh, from (x, r) and w, and let (x'\ r") be the induced
pair for fh, from (x, r) and w\ Let w — λ(α?, w), w' = λ(a?, w') We
need only to prove that the diagram
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VK{U; x", r")

is commutative. Since (po^-'w')) is the unit of πx(β,V), we can
find a path / in p~x(b') from *' to x" such that / a w~ιw' (Lemma
2.6). For any [(a)κ]eFκ(fb; x, r), we have

y o ΓB([<α>J) = y([<τ5 o α >J) (by (4))

= [</-'(r5 o o)r'(/o /)r"-%] (by (1)) .

Since in E (by (5a) and Lemma 2.1)

/-'(τ^ o a)r'(f° s)r"~x ~ w'^ww^aww-Wifo w)(f° w^w'^fo w'-ι)r~ιw'

so

and

«° Γs([<α> J ) = [<τs. o α>x] = Γδ.([<α> J ) . D

Similarly, we can prove

LEMMA 2.8. Let b, b', b" e Φ( f) be in the same class, and w' be
a path from b to b\ w" from bf to b" such that w' czfow* and
w" ^ fow". Let w - w'w". Then

3* The structure of fixed point classes of a fiber map* Let
(E9 p, B) be a fiber space with E, B and all fibers path-connected,
and let /: E-^E be a fiber map. Since p°f=f°P and ih°fhj= f<>ibf

by Lemma 1.4, we can define p9:{V(J),Φ'(j))-+{y(f),Φ'{f)) and
(U-: (F*(/»), <W»)) - (TO, Φ'(/)) (for any 6eΦ(/))._ Note that for
any FeΦ'κ(fh), the fixed point class pF°(ib)F(F) eΦ'(f) contains 6.

THEOREM 3.1. Let 6, 6' e Φ(/), αwd Fo e Vκ{fb), Fo' e Fκ(fb>). Then
(ib)F(F0) — (ίb,)p(Fό) if and only if there is a path w in B from b to
V such that ϊό ~ fow and T^(FQ) = Fo\

Proof "If" is implied by Lemma 2.5. We now prove "only if".
Let (x, r) and (x\ rr) be reference pairs for fb and fb>, respec-

tively. Suppose [<α>J is the representation of Fo in (a?, r) and
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[<α'>J is the representation of Fό in (x\ r') Since (ib)y(F0) = (ίb>). (Fό) e
F(/), its representation is [<α>] in {x, r) and is [<α'>] in (x\ rf). Let
v' be a path in E from a; to x\ then by (1), [<α/>] = [<ι;/-1αr(/oi;')r'-1>].
Thus we can find (u) e π1(Ef xf) such that in E

Let v = v'u'1 and w = p ° v. Then the above formula implies w ~
f°w.

It remains to prove TW(FO) = Fo\ To do it, we calculate the
representation of TW(FO) in (V, r'). Suppose (&", r") is the pair for
/6/ induced from (cc, r) and w. By (4), the representation of T^(F0)
in (x", r") is [<r^oii>J. Let w = X(x, w). Since ( p o f r ^ ) ) is the
unit of π^B, 6'), we can find a path / in p'^δ') from x" to a;' such
that /~w~ιv in £7 (Lemma 2.6). Then by (1), the representation
of TW{FQ) in (xr,rr) is \{/~\τwoa)rf\fo/)rf-^κ\. By Lemma 2.1 and
(5a), in E

^fΌw)(f o/)r'~ι

~ v~ιar(f o v)r'~ι a ar

so {s-\τwoa)r'\fo/)r'-^κ = (a')κ and ΓW(FO) = [<α%] - Fo'. D

Let X be a compact connected ANR, if be a normal subgroup
of πx(X)f and let / : I - > I b e a map such that fπ(H)<zH. Then
for any FeVH(f) we define its iwdea? i/(F) as follows: if FeΦ'H(f),
then i/(F) is the usual fixed point index (as in [3]), otherwise,
if(F) = 0. A fixed point class FeFH(f) is said to be essential if
if(F) Φ 0. The number of essential fixed point iϊ-classes of / is
called the H-Nielsen number, denoted by NH(f).

Let G: f ~ g: X -> X, where / has the property fπ{H) c H. Then
adopting the method used in [3] (cf. p. 98, Theorem 3), we can
prove that if FeΦ'H(f), then

ig(μσ(F))9 if μG(F)eΦ'H(9),
0 otherwise.

Thus μG preserves index.
Let X, Y be compact connected ANR's, let H and Hf be normal

subgroups of πx{X) and πλ(Y), respectively, and let maps h:X-+Y,
h':Y-*X be such that hx(H)<zH'9 K(H')aH. Let / = ΛΌfc, g =
Koh'. Then by Corollary 1.5, hF: (FΉ(f), Φ'H{f)) - , (F/r(^), Φ^Q/)) is a
bisection. By the commutativity of the fixed point index (cf. [3],
p. 82), if FeΦ'H(f), then if(F) = ig(hF(F)). If F$Φ'H(f), then hF(F) $
Φ'H'{g), and if(F) = 0 = ig(hF(F)). Thus we conclude that h7 preserves
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index.
From now on in this paper, let (E, p, B) be a fiber space with

E, B and all fibers compact connected ANR's, and let /: E -> E be
a fiber map. From the above discussion, we get

LEMMA 3.2. The bisection T^ defined in Lemma 2.2 is index-
preserving. •

COROLLARY 3.3. If b, br e Φ(f) are in the same class, then
Nκ{fh) = Nκ{fv).

Proof. Let w be a path from 6 to V such that w ~ f°w. Then
we have T^: Pκ(fb) -+ Pκ(fb>), which preserves index (by Lemma 3.2).
Thus Nκ(fb) = NK(U). •

From Theorem 3.1 and Lemma 3.2, we get some corollaries.
Let #£ denote the cardinality of a set S.

COROLLARY 3.4. Let FeP(f) so that p,(F)eΦ\f). Then for
any bepF(F) the number §(ih)~\F) (i.e., the number of elements in
(ib)r\F)) is a constant, and for any bepF(F), any Foe(ib)^\F), the
index i/b(FQ) is also a constant.

Proof. By Theorem 3.1, for any b,b' epv{F), and for any Foe
(ib)j\F), F{_e (iy)-\F), we can find a path w in B from 6 to δ' such
that w~fow and T^(F0) = Fo\ Since T^ preserves index, then
ifb(FQ) = ΐ/6,(F0'). Again by Theorem 3.1, T*{(ib)?{F)) = ( v ^ W , so

•
DEFINITION 3.5. For each FeF(f) satisfying pψ(F)cΦ'(f), we

define j(F) = ifb(F0) and k(F) = %(ib)j\F), where bep?(F) and Foe

COROLLARY 3.6. If FeΦ'(f) with j(F) Φ 0, then
(a) k(F) is a positive integer,
(b) as a set, p,(F) =

Proo/. (a) Since FeΦ'(f), we know that p{F) Φ <Z>. We take
bep(F). Then p - ^ n F ^ 0 , so (ib)j\F) is nonempty. It follows
that k(F) > 0. Since j(F) Φ 0, the elements of (ib)ϊ\F) are all
essential, so k(F) is finite.

(b) By Lemma 1.4, one can easily see that p(F)apF(F), and
we need only prove pv(F)ap(F). Let bep,(F), then F contains
k(F) essential fixed point Z-classes of fb, so F Π ίΓ f̂e) ^ 0 and & 6
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p{F). Thus p(F)Z)pr(F). •

4* The essential fixed point classes of /• In this section we
prove

THEOREM 4.1. Suppose FeΦ'(f). Then if(F) Φ 0 if and only
if J(F) Φ 0 and ij(pv{F)) Φ 0.

To prove it, we first give several lemmas.

LEMMA 4.2. Let F:f~g:ExI->E be a fiber homotopy, and
let FeΦ'(f), F'= μF{F). Then ίj(pF(F)) = i~g(pv(F')). Suppose
further that pv(F')eΦ'{g). Then j(F) = j(F') and k(F) = k(F').

Proof. Let F: f zz g: B x I —> B be the homotopy induced by
F. It is easy to check that the diagram

is commutative. Then μp{Vp{F)) = Pp(μF(F)) = pp(Fr), so ij(pp(F)) =
ig(pv{Fr)) (because μF preserves index).

If pv{F')eΦr(g), we take bepp(F) and b'epp(F'). By (d) of
Lemma 1.3, there is a path id in B from b to bf such that w~Δ(F, w).
By Lemma 2.5, T^(ib)~XF)) = (ίb,)-\F'). Since Γ¥ is a bisection
and preserves index, we get j(F) — j(Ff) and k(F) = fc(F'). Π

LEMMA 4.3. Lei (j&, p, S) and (E', p\ B') be fiber spaces with
E, E\ B, Bf and all fibers compact connected ANR's. Let h: E -^Ef

and hf:E' -*E be fiber maps, and set f — h'oh, g = hohf. Suppose
FeΦ'(f), F' = hp(F). Then i(F) = i(F'), k(F) = k(F') and ij(pp(F)) =

Proof. Let maps h:B->B' and h'\B' -+B be those induced by
h and h', then / = h'°h and g = hohf. Since h is a fiber map, by
Lemma 1.4, p'v°hp — (proh)p — {hop)p — hpopp. Since hp preserves
index,

- i9(hpopp(F))

Let δ 6 pF(F). Then V = λ(6) e p (F') and fe'(δ') = /(6) = 6. Let
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hb = h\p-\b):p-\b) >p'-\b')9

K = h'\v'-\VYP'-\V) >p-\b) .

Then fb = hyohb and gb> = hb°h'b'. Let K be the kernel of (ib)π:
π^p-'φ)) -> π,{E) and let K' be the kernel of (ib,)κ; π^p'-ψ^π^E').
The equations ihtohb = h°ib and ibotib> = h'°iy imply (hb)κ(K)cKr

and (h'b>)π{K')(zK. By Corollary 1.5, we get the bijection (fe6)Γ:
> ^κ'{ΰb) which preserves index. By Lemma 1.4, the diagram

is commutative. It follows that j(F) = j(F') and k(F) = k(F'). •

A space X dominates a space Y by maps Y ~^> X -> Y if ξoη ~
id: F ^ y. We say that a fiber space (£", p', 5') ,/ϊδer dominates a

fiber space (2£, p, B) by fiber maps E^> E' -* E it ζoη is fiber homo-
topic to the identity of E.

The following Lemmas 4.4, 4.5 and 4.6 are due to Boju Jiang.

LEMMA 4.4. Let (E, p, B) be a fiber space with E, B and all
fibers compact connected ANR's, let Bf be a compact connected ANR,
and let f: Bτ -> B be a map. Let (E\p\B') be the fiber space
induced from p by ξ. Then E' and all the fibers of (E'9 p\ B') are
compact connected ANR's.

Proof. By definition (cf. [10], p. 98), E' is the closed subspace
{(&', β) I £(&') = P(e)} of B' xJΞ. For any &'e£' , the fiber p'~\V) is
{&'} x p~\ξ(br)). Since p~\ξ(b')) is a compact connected ANR, so is
p'-\br). From the connectedness of B' and all fibers of (£", p\ Bf)
we can easily see that E' is also connected.

It remains to show that Ef is a compact ANR. Since Br and
E are compact ANR's, so is Br x E. The closed subspace Er of
Bf x £7 is certainly compact. To show 12' is an ANR, we need only
prove that Er is a neighborhood retract of B' x E.

According to the uniform local contractibility of the ANR B
(cf. [3], p. 39), there exists δ > 0 and for every pair (δ0, bλ) of
points of B with d(b0, 6X) < δ there exists a path 7(&0, &i) from 60 to
&! such that 7(&0, &J depends continuously on δ0 and δ l f and 7(δ0, δx)
is the constant path if δ0 = δx. Now define
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by

r{b\ e) = (6', τr(p(e),i(6Ί)(e)) .

It is easy to check that r is a retraction and {(6', e)\d(ξ(V), p(e))<d)
is open in Bf x E. Hence E' is a neighborhood retract of B' x E,
and therefore it is an ANR. Π

LEMMA 4.5. Let (E, p, B) be a fiber space with E, B and all
fibers compact connected ANR's. Then (E, p,B) is fiber dominated
by another such fiber space with polyhedral base space.

Proof. There is a compact connected polyhedron Bf which

dominates B by B^B'^B. Let {E\p\B') be the fiber space
induced by I from p. The map ξ lifts to a fiber map ξ .E' -+E.
Lemma 4.4 shows that E' and all fibers of (£", p\ Br) are also com-
pact connected ANR's. It remains to show (Ef, p', B') fiber domi-
nates (E, p, B).

Let (£"', p", B) be the fiber space induced by rj from pf and
lift η to η\ E" -> E'. Then {E",p",B) is the fiber space induced
by ζoη from p. But f o ^ ~ i d , so (cf. [10], p. 102) ζoη:E"-*E is
a fiber homotopy equivalence with a fiber homotopy inverse ζ: E —>
E". Now E^E'-^E is a domination of E by E'. Π

LEMMA 4.6. Let (E, p, B) be a fiber space with E, B and all
fibers compact connected ANR's, and let f: E —>E be a fiber map.
Suppose B is a polyhedron, and f:B-±B has an isolated fixed point
b which lies in some maximal open simplex σ c B. Let A c Φ(fb)
be both closed and open in Φ(fb), then

if(A) = i7(b) ifb(A).

Proof. For any two points 6̂  b2 e σ, let τ(blf b2): p'^bj) -> p~\b2)
stand for the translation determined by the linear path from δx to
62. Note that τ(bu 62) - id, if b, = δ2.

Pick a Euclidean neighborhood U of b such that U{Jf(U)(zσ
and 6 is the only fixed point of / on U. Define maps

c: σ x p-\b) > E by e(V, y) - τ(6, b')(y) ,

and

φ:p-\U) >σ x p~\b) by <p(e) = (fop(e), foτ(p(e),b)(e)) .

There are homotopies {ht}: c°φ ~ f. p~\U) -> E and {kt}: f x fh ~ φor.
U x p~\b) —> σ, defined by
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ht(e) = r(/((l - t)b + tp(e)), fop(e))ofoT(p(e), (1 - t)b + tp(e))(e)

and

**(&', y) = (/(&'), /or((l - ί)δ + Λ', δ)or(6, (1 - <)6 + W)(y)) .

Then Φ(/O = Φ(fb) and Φ(fct) = b x Φ(/6), for all t.
Now take a neighborhood T Γ c p ^ ϊ J ) of A in £7, such that

Wf]Φ(f) = A. Let T76 = Wnp~\b). Then by definition we have
if {A) = i(/, TΓ), and i/6(A) = ΐ(/6> Wb)t where i denotes the fixed
index of a map on an open set. We have

i(ff W) = ί(c o φy w) (homotopy invariance of the index)

= i(φ ° c, Γ\w)) (commutativity of the index)

= i(Φ °c, U x Wb) (both sets contain the same fixed points)

= i(f x fbt U x Wb) (homotopy invariance of the index)

= <(/, U).i(fb, Wb).

The last equation is by Exercise V. 3 of [3].
The conclusion of the lemma now follows, because ij{b) —

<(/, U). •

Proof of Theorem 4.1. By Lemma 4.5, we get a fiber space
(£", p\ Bf) with E' and all fibers compact connected ANR's, and B'
a compact connected polyhedron, which fiber dominates (E, p9B) by

fiber maps E^Er ^E. We define fx = ξoΎ]of:E->E and / ' = rjo
foξ:E'->E'. By Hopf's Approximation Theorem (cf. [3], p. 118),
/ ' is homotopic to a map / " : J5' ->2?' such that / " has only a finite
number of fixed points each lying in a maximal simplex of some
triangulation of J3\ By the homotopy lifting property of (E'9 p', B'),
f" lifts to a fiber map /" : E' -> E' which is fiber homotopic to / ' .
The proof is in four steps.

Step 1. The theorem holds for / " .
Let FeΦ\f"), and p'p(F) = {b[, , «}. Then

= Σ,iMb'i) if"iP"Hφ(Ff\p'-\b'i)) (Lemma 4.6)

= j(F) k(F) Σ,iτ..(b't) (Definition 3.5)
ί l
ί = l

It follows that ir,{F) Φ 0 «• i(F) ^ o and ij»(p^(F)) ^ 0.
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Step 2. The theorem holds for /' .
Let F be a fiber homotopy from / ' to / " . For each FeΦ'(jf'),

let F* = μr(F). If if,(F) Φ 0, then %,..{?') = if>{F) Φ 0. By Step 1,
Q(F") Φ 0 and ij,,(p'v{F')) Φ 0. Then, by Lemma 4.2, j(F) Φ 0 and
iAPr(F)) φ ° Conversely, if j(F) Φ 0 and ij/(p^(F)) Φ 0, then by
Lemma 4.2 again, j(F') =£ 0 and ij»(p'(F')) Φ 0. By Step 1, if,(F) =
if,,(F') Φ 0.

Step 3. The theorem holds for /x.
To prove it, one can adopt the method of Step 2, using Lemma

4.3 instead of 4.2.

Step 4. The theorem holds for /.
The proof is similar to Step 2. •

5* The Nielsen number of a fiber map /• Let Fί9 , F n be
the essential fixed point classes of /, where n = N(f). By Theorem
4.1, if FeF(f) is essential, then pp(f) is also essential, so for some

Fί. Let

et = #{FeF(/)|v(F) * 0, pF(F) = FJ , 1 ^ i ^ n ,

then

(6)

Thus to calculate N(f), we need only calculate the C£.

DEFINITION 5.1. Let X be a space and let h: X-^ X be a map.
If x eΦ(h), then ft*: π^X, x) ->TΓ^X, a?). We define

Fix (hπ)x = {ae πλ(X9 x) \ hπ(a) = a) ,

which is a subgroup of πx(X, x).
Let beΦ(f). Then we have Fix(Λ)6. If a = (id) e Fix (fπ)b,

then w CΪ fow. Lemma 2.7 permits us to define Ta = T^:Fκ(fb)-^
PAfb)^ If «, α' 6 Fix (Λ)6, then by Lemma 2.8 Γαα, = Ta, o Γα. Thus
Fix (/ff)6 is a transformation group acting on Fκ(fb) on the right.
Since Ta preserves index, all elements of an orbit of Fix (/x)δ have
the same index. An orbit is called essential if it consists of essen-
tial elements.

LEMMA 5.2. For any beΦ(f) and any Felm((ib)p), the set
(ib^iF) is exactly an orbit of Fix (fπ)b acting on Vκ(fh). Moreover,
if beFif then the number of essential orbits is equal to Ct.
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Proof. By Theorem 3.1, two classes F0,FιeVκ{fb) are in the
same orbit if and only if (ib)F(FQ) = (iδ)p(F1). Then the first conclu-
sion follows.

Now let beFi. By Theorem 4.1, FeIm((i6)Γ) is essential if and
only if (ib)j\F) is an essential orbit. Then (ib)p induces an injection
from the collection of the essential orbits to {FeP(f)\if(F) Φ 0,
pF(F) = FJ. It is also surjective, because any Fe{FeF(f)\if(F)Φθ,
Pr(F) = FJ contains k(F) essential elements of Fκ(fb). Hence we
get the second conclusion. •

LEMMA 5.3. Let beΦ(f), FoeΦ'κ(fb) and aeFix(fπ)b. Then
Ta(F0) = Fo if and only if for any xeF0,ae pπ(Fix

Proof "If." We take x e Fo. Let (v) e Fix (/,). make px((v)) =
a. Then v ~fov and w = povea, so Ta = Γ s. Take a reference
pair (a?, ex) for fb (ex denotes the constant path at x). Then the
representation of Fo in (x9 ex) is [(ex)κ] (Lemma 1.1). Let (x\ rf) be
the induced pair for fb from (x, ex) and w, then the representation
of Ta(F0) in (x\ rr) is [<<v>J (by (4)). Let w = λ(a?, w), which is a
path from sc to xf. Since ( j ) o ( r t ) ) is the unit of nx{B9 δ), by
Lemma 2.6, there is a path / in p~ι(b) from cc' to sc such that /~
w~ιv in .&. Then by (1), the representation of Ta(F0) in (a?, eβ) is
[</-V(/o/)>J. By (5), in S

~ ex

so (/-V^/o/)^ = (ex}κ and Tα(F0) - FQ.
"Only if." For any x e Fo, we take a reference pair (a?, e j for

fh. Let we« and (x\ r') be the induced pair from (x, ex) and w.
Then the representation of Fo in (sc, eβ) is [(ex)κ], and the represen-
tation of Ta(FQ) in («', r') is [ < O J (by (4)). Since Tα(F0) = Fo, by
Lemma 1.1, we can find a path c in jΓ^δ) from x to #' such that
( ^ ( / o φ ' - 1 ) , = <e^> .̂ Then in E

Let w = \(x, w). Then r' a w~\fow) in E (by (5)), so in E

we'1 ~ fo (wc~ι) .

Thus ( ^ c - ^ e F i x ^ . a n d ^ ^ c - 1 ) ) ^ ^ ) - ^ , so a ep,(Fix (/,).). D

For any # e Φ(/), one can easily check that ^(Fix (fπ)x) c Fix (Λ)δ,
where δ = p(α). Lemma 5.3 shows that the isotropy group of Fo is
p*(Fix (Λ)J, for any a; e Fo.
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COROLLARY 5.4. Let beΦ(f) and FoeΦ'κ(fb), then the length of
the orbit of Fo is equal to the index of pπ(Fix(fπ)x) in Fix(fπ)b,
written [Fix (fπ)b: pπ(F'ιx (fπ)x)], where xeF0. •

We now discuss the product formula of the Nielsen number of
a fiber map. Its original form is

(7) N(f) = N(f) N(fb).

It does not always hold. Now we discuss the conditions which
imply (7), and improve (7).

THEOREM 5.5. The formula (7) holdsf if one of the following
conditions is satisfied:

( i) W ) = o,
(ii) N(fb) = 0, for any beFu i = 1, --., n,

(iii) N(fb) = 1, for any beFi9 i = 1, . . . , n.

Proof. According to Theorem 4.1, N(f) = 0 implies N(f) = 0.
Thus if (i) is satisfied, then N(f) = 0 and (7) holds. If (ii) or (iii)
is satisfied, then JV(/6) = Nκ(fb) = C, for all b e Fi9 and (7) follows
from (6). •

In general, N(fb) depends on 6. But if (E, p, B) is orientable
in the sense that for any loop w in B based at 6 the translation
Xΰ ~ id: p~\b) —• p~\b), then both N(fb) and Nκ(fb) are independent
of the choice of beΦ(f).

THEOREM 5.6. Let (E, p, B) be orientable, and f:E->E be a
fiber map such that N(f) Φ 0. Then (7) holds if and only if

(a) Nκ(fb) - N(fh); and
(b) for any x e Φ(f) belonging to an essential class, ^(Fix (fπ)x) =

Fix (fπ)b, where b = p(x).

Proof By Corollary 5.4, (b) is equivalent to the condition that
for any b e Fif the length of every essential orbit of Fix (fπ)b is equal
to 1, for i = 1, "-,n. Then by Lemma 5.2, it is equivalent to
Ct = Nκ(fb), i = 1, •••, n. Then from (6), (b) is a necessary and
sufficient condition for the formula

(8) N(f) = N(f) Nx(fh)

to hold. The conclusion of the theorem now follows. •

Theorems 5.5 and 5.6 show that, for an orientable fiber space,
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when conditions (a) and (b) are satisfied, the formula (7) always
holds.

COROLLARY 5.7 (Fadell [4]). Let (E, p, B) be orientable, and
let f.E-^E be a fiber map. Suppose (E, p, B) admits a natural
fiber splitting with respect to f. That is, for each xeE the follow-
ing conditions are satisfied:

( i ) the sequence

0 > ^{p~\b\ x) Ά πx(E, x) -£-> πx(B, b) > 0

is exact, where b = p(x);
(ii) pπ admits a right inverse σ such that Im σ is normal in

7Γ1(J5
r) and /r(Im σ) c w*(Im σ) for any path w in E from x to f(x)

(in fact, w*(Lmσ) is independent of the choice of w). Then (7) holds.

Proof. Condition (i) implies K is trivial and (a) of Theorem 5.6
is satisfied.

For any xeΦ(f), let b=p(x). For any aeFix(fπ)b, let β = σ(a).
By (ii), we have fπ(β) e Im σ. Let fπ(β) = σ(a'), then

a' = P*°Mβ) = f*°P«(β) = Λ(α) = a ,

so fπ(β) = σ(a) = β. Thus aepπ(Fix(fπ)x). Hence (b) of Theorem
5.6 is also satisfied, and (7) holds. •

COROLLARY 5.8 (Fadell [4]). Let (E, p, B) be orientable and let
f: E ->E be a fiber map such that for any b e Φ(f) which belongs
to an essential class and for any x e p~\b)

(%)*: ^i(P"\b)f x) • πx(E, x)

is injective, and Fix (fπ)b is trivial. Then (7) holds.

Proof. Since (ih)π is injective, then (a) of Theorem 5.6 is satisfied.
Since Fix(/π)6 is trivial, then (b) of Theorem 5.6 is satisfied. •

EXAMPLE 1. Let (E, p, B) be orientable and B=Tn, the w-torus,
then (7) always holds for any fiber map /: E —> E.

Proof. Since π2(Tn) = 0, then (ib)π: π^p'^b)) -> πx(E) is injective.
It follows that (a) of Theorem 5.6 is satisfied.

The group π^T71) is free abelian with n generators. When the
generators are given, then each element aeπ^T71) can be denoted
by (fci, ••-,&«), where the kt are integers, and /*: πx(Tn) -> πr(Tn)
can be represented by an n x n matrix A with integer elements:
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fπ{a) = Aa .

By [1], N(f) = |det(A — I)\ where I denotes the identity matrix.
If fπ fixed only the unit, then by Corollary 5.8, (7) holds. Other-
wise, there is an aeπt(B) such that a is not the unit and fπ(a) — a.
It follows that (A - I)a = 0, and thus N(f) = | det (A - I ) | = 0.
By Theorem 5.5, (7) still holds. •

EXAMPLE 2. Let Si denote the unit circle in the complex plane
C, that is Si = {zeC\\z\ = 1}, and let Si = {zeC\\z~2\ = 1}. Let
B = SiΌ Si, E = B x Si and p: E -> B be the projection. Then
(E, p, B) is a trivial fiber space, so it is orientable and (a) of
Theorem 5.6 is satisfied. We define a fiber map f:E->E by

y> *'»"), iίbeSi,

where /, m are integers. Then Φ(/) = Si and iV(/) = 1. The group
πχ(B) is free with two generators. For any be Si, let c be the loop
in B based at b which goes around Si once. Then Fix (fπ)b is ex-
actly the free cyclic group generated by <c>. Let (6, y) e Φ(/), and
let a path (c, ey) be defined by (c, ey)(t) = (c(ί), 2/) Then (c, βj is a
loop in E base_d at (6, y) and <(c, βy)> e Fix(fπ){b,y). But p*«(c, βy)» =
<c>, so Fix (/s)6 = ^π(Fix (Λ)(δ>2/)). Thus (b) of Theorem 5.6 is satisfied
and (7) holds for /. •

Note that Example 2 does not satisfy the conditions of Corollary
5.8, and if (2 — m) \ / it does not satisfy the conditions of Corollary
5.7.

When (E, p, B) is orientable, Ct ^ Nκ(fb) ^ N(fb), so from (6),

N(f) ^ N(f)Nκ(fb) ^ N(f) N(fb) .

If N(f) Φ 0, define rational numbers

(9 ) Pκ{f) - ( W ) Nκ(fb))/N(f) ,

(10) P(f) = (N(f) N(fb))/N(f).

Note that P(f) ^ Pκ{f) ^ 1. We must calculate Pκ{f) and P(/).

THEOREM 5.9. Let (E, p, B) be orientable and let f:E->E be
eventually commutative, that is, (fq)π(πx(E)) is abelian for some
positive integer q (cf. [7], p. 61). If N(f) Φ 0, then for any xeΦ(f)
and b = p(x),

Pκ(f) = [Fix (Λ)6: ^(Fix (/,).)] ,
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and Pκ{f) is a factor of Nκ(fh).

Proof. First, we prove that [Fix (fπ)b: pπ(Fix (fπ)x)] is indepen-
dent of the choice of x in Φ(/).

Let q be a positive integer such that (/9)π(7Γ1(£/)) is abelian.
For any x, x' eΦ(f), let v be a path in E from x to x', and let w =
f«oV. Set β - (vifov-1)) eπλ(Ef x), then (f%(β) = ^ ( / o ^ " 1 ) ) . If
a 6 Fix (/,)., then a = (/«)*(«) e Im ((/«%). Since Im ((/9),) is abelian,
then

Then

Thus ^(Fixί/^JcPixCΛ),/. Similarly we have w ^Fix
Fix (/*),.. Hence w*: Fix ( /^ -^Fix (fκ)9, is an isomorphism.

Since pπ is surjective, (f^π^B)) = vπ{{f%{π^E))) is also abelian.
We can similarly prove that w*: Fix (/π)δ-^Fix (fx)b> is an isomor-
phism, where b — p(x), V — p(xr) and ίd = pow. Obviously, the
diagram

Fix ( Λ ) * - ^ Fix (/Λ

is commutative. It follows that

[Fix (Λ)6: p.(Pix (/,).)] = [Fix (ΛV: P.(Pix (Λ).Ί -

Thus [Fix (Λ)6: pff(Pix (/»)«)] is a constant, denoted by m.
Then, from Corollary 5.4, forany&GjF , i = l , * ,^, the length

of each essential orbit of Fix (fx)b is equal to m. Hence Nκ(fb) =
m Ci and m is a factor of Nκ(fb). Then (6) implies

Since iV(/) ^ 0, comparing this equation with (9), we get Pκ(f) =
m. •

For a space X, a map f: X-+X and a point #0 e X, let J(/, α?0)
denote the Jiang subgroup of πx(X, f(xQ)) consisting of the traces
of xQ under cyclic homotopies / ~ /. Let J(X, x0) denote e7(idx, x0) c
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7Γi(-Σ, cc0). The group J(X9 x0) is contained in the center of πλ(X, x0),
hence it is a normal subgroup, so we may omit the base point and
talk about J(X) c πλ(X). In general J(f, x0) is not necessarily a
normal subgroup of π^X, f(x0)). However, given a normal subgroup
Haπ^X), we shall use the statement HaJ(f) to express the con-
dition that for some (hence all) x0 e X, H(f(x0)) is contained in
/(/, x0). For example, we always have J(X) c J(f). (Cf. [3], p. 101.)

LEMMA 5.10. Let X be a compact connected ANR and H be a
normal subgroup of TU^X). Let f:X—*X be a map such that Ha
J{f) and f(H) c H. Suppose F, Ff e F(f) make idΓ(F) - idΓ(F')
(idΓ: V(f) -> FH(f) is induced by id:X->X, cf. Corollary 1.6). Then

= if{Ff).

Proof. Let (x, w) be a reference pair for /. We need only to
prove the lemma by use of representations in (x, w). Take <α),
<6> e π^X, x) such that <α> e F, <δ> e F'. Since idF(F) = idF(F'), then
[(a)H] — [<6>j/], and we can find an element <r> of πλ(Xf x) such that

<a)H - <r}H<jbyHfH«r}?) = (rbw(f o r'^w'1^ .

Let 6' - rbw{foτ~ι)w-\ then <&'>€[<&>] - F' and <α"1δ'> efΓ. Since
HaJ(f) by assumption, i.e., H(f(x))c:J(f,x), so ( α ' ^ e ί ί ^ c
w;V(/, a?). Now F ' = [<6'>] = [<α><α-ψ>] differs from F by an
element of w?J(f, x) so v(F) = v(F'). (Cf. [6].) Π

THEOREM 5.11. Let (E,p,B) be orientable and let f:E-^E be
a fiber map with N(f) Φ 0. Suppose 7tx{E) and π^p^φ)) are abelian.
Then P(f) equals the order of the kernel of the following homomor-
phism induced by ib: p~x(b) —» E

- (fb)π) > ^(E)/Im (1 - fπ) .

Proof. Take x e Φ(f), b = p(x), and use (x, ex) as reference pair
for /, so that fπ = fπ. Consider the diagram

Since πλ(E) is abelian, F(f; x, ex) = π^E, x)/ϊm (1 — fπ) is an abelian
group. Similarly F(/δ; x, ex) = π1(p-\b), x)βm (l-(/ 6) x) and F^(/6; x, eβ) =
(πi(p~\b), x)/K)/Im (1 — (/6)x) are also abelian groups. Then, (ίb)'Γ is
just the homomorphism specified in the theorem, and (ib)p and idΓ
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are also homomorphisms. By Lemma 1.4, (%)'? = (ih)p°idp. But idF

is surjective (Corollary 1.6), so we get

#Ker(i6); = (#Ker(i>),) (#Ker(idΓ)) .

According to Lemma 5.2, Ker (ίh)F is exactly an orbit of Fix (fπ)b.
Then by Corollary 5.4 and Theorem 5.9, we have

#Ker (ΐt)r = Pκ(f) •

According to [5], Corollary 1 on p. 50, KhcJ(p-\b)). But J{p-\b))c:
J(fb), so, by Lemma 5.10, for any FeFκ(fb), all elements of id-\F)
have the same index. It follows that N(fb) = Nκ(fb) • (#Ker (id)F)
(because (id)F is surjective). Then

#Ker (ί,)^(/) = (#Ker(id)Γ) (#Ker(i4)r) i^(/)

= (#Ker (id)p)Pκ(f)N(f) (Theorem 5.9)

= (#Ker (id),)N(f)Nκ(fb) (by (9))

It follows that #Ker (ib)'F - P(f) (because N(f) Φ 0). D

COROLLARY 5.12 (Pak [9]). Let (E, p, B) be orientable and
f:E—>E be a fiber map such that N(f) Φ 0. Suppose that πx(E) is
abelian and the fiber satisfies the Jiang condition Jr(ί>"1(&)) = 7Γi(2>'"1(ί>))
Then P(f)N(f) = N(f)N(fb), where P(f) is the order of the kernel
of (ib%. •

REMARK. If we assume that / and fb are both eventually com-
mutative instead of that πλ(E) and π^p^φ)) are abelian, then
Theorem 5.11 still holds. We can prove that the condition "fb is
eventually commutative" is independent of the choice of 6, that is,
if for some beΦ(f) the condition is satisfied, then for any other
b e Φ(f) it is also satisfied.
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