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ON SEMISIMPLE RINGS THAT ARE CENTRALIZER
NEAR-RINGS

CARLTON J. MAXSON, MARTIN R. PETTET AND

KIRBY C. SMITH

Let G be a finite group with identity 0 and let ̂  be a
group of automorphisms of G. The set C(J^; G) = {/: G ->
G|/(0) - 0 , f(γv) = γf(v) for every γes^f veG} is the cen-
tralizer near-ring determined by *s>f and G. In this paper
we consider the following "representation" questions: (I)
Which finite semisimple near-rings are of G(^\ G)-type? and
(II) Which finite rings are of C(J^; G)-type?

!• Introduction* Let G be a finite group and let Γ denote a
semigroup of endomorphisms of G. The set of functions C(Γ; G) —
{f:G-*G\/(0) = 0 and f(yv) = Ίf(y) for every jeΓ,veG} forms a
zero-symmetric near-ring under function addition and function com-
position. (Since all near-rings in this paper will be zero-symmetric
this adjective will henceforth be omitted.) Such "centralizer near-
rings" are indeed general, for it is shown in [7] that if N is any
near-ring (with identity) then there exists a group G and a semi-
group of endomorphisms Γ such that N = C(Γ; G).

The structure of centralizer near-rings has been studied for
various G's and Γ's, e.g. when Γ = Ssf is a group of automorphisms
of a finite group G ([5]), or when Γ is a finite ring with 1 and G is
a faithful, unital /"-module ([6]). From a structure theorem due to
Betsch [1] we have that a finite near-ring N, which is not a ring,
is simple if and only ifN= C(J^; G) where j y is a fixed point
free group of automorphisms of a finite group G. (A group Jϊf of
automorphisms is fixed point free if the identity map in J>/ is the
only element of J$? that fixes a nonidentity element of G.)

Since every finite simple nonring is of "C(Jϊf; G)-type" it is
natural to ask for which finite near-rings does there exist a finite
group G and a group of automorphisms j^f such that N ~ C(J%f; G),
i.e. which finite near-rings are of C(J^; G)-type? In this paper we
restrict our attention to the following more specific questions.

I. Which finite semisimple near-rings are of C(J^; G)-type?
II. Which finite rings are of C(^f; G)-type?

It will become clear in this paper that the "centralizer representation'*
problems I and II give rise to nontrivial group-theoretic, combinatoric
problems.

In providing partial solutions to problems I and II we show that
certain semisimple near-rings are not of C(J^f; G)-type. Moreover
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it is proven that the only possible rings of C(J^; G)-type are those
that are direct sums of fields, but this is only a necessary condition.
Information is obtained on which direct sums of fields are of C(Jzf; G)-
type.

For definitions and basic results on near-rings the reader is
referred to the book by Pilz [8]. A near-ring with 1 is simple if it
has no nontrivial ideals. Since we are dealing exclusively with finite
near-rings, we will regard a semi-simple near-ring as being one which
is a direct sum of simple near-rings. For connections between our
definition of semi-simplicity and near-ring radicals see [8], Chapters
4 and 5.

2* Rings of C(J^; G)-tyρe* In this section we present results
that characterize semisimple C(j*f; G) near-rings. We also show that
if a finite ring has a centralizer representation then this ring must be
a direct sum of fields, a result that has been established independently
by Zeller [10].

We begin by setting our notation and terminology. G will denote
a finite group (normally written additively with identity 0) and Szf a
group of automorphisms of G. For vQ e G, let C^(vQ) —{ae Jϊf \avQ= v0},
a subgroup of jy; and let N(C^(v0)) denote the normalizer of C^(v0)
in jy; Also let CG(C^(v0)) = {veG\av = v for all α e C ^ W ) , a sub-
group of G. Finally for v e G* = G - {0} let θ(v) = {av \ a e Jx?}, the
orbit of G* determined by v under Jάf.

The set Sf — {C^(v) \v eG*} is partially ordered by inclusion,
and we say C^(v) is maximal if it is maximal in Sf. The following
theorem appears in [5], but since it and its proof are basic to this
paper we include it here for completeness.

THEOREM 1. Let όzf be a group of automorphisms of a finite
group G. The following are equivalent.

1. C{j^f) G) is semi-simple.
2. Every element in S^ is maximal.
3. The collection, {CG(C^(v))\veG*}9 of subgroups partitions G.

Proof. Suppose C( j^ ; G) is semisimple and there exist elements
u, α eG* with Csr{u) properly contained in C^{v). Let

M = {/ e C(S^\ G) I Cs/(v) S CUfW) and / is zero off θ(u)} .

Then M is a nonzero nilpotent C(£>/\ G)-subgroup and C(J^; G) is
not semi-simple.

Suppose condition 2 holds, then if u§ CG{C^{v))9 CG{C^{v)) Π
CG(C^(u)) = {0}. So G is partitioned by the desired subgroups.
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Assume now that condition 3 holds. For i eG* let T{v) = U
{θ{w) I C^(w) = C^v))}, and let M{v) = {fe C(J^; G)\f is zero off Γ(v)}.
M(y) is an ideal of C(j^f; G). We may select elements vlf , vt e G*
such that G = TOO U U TO*) U {0}, a disjoint union. We have
C( j ^ ; (?) = M(vx) φ 0 M(vt), a direct sum of ideals M(vt). It
remains to show that each Mζvt) is simple. For each i let J^l —
N^{C^(Vi))/C^(Vi). Then J^ can be regarded as a group of auto-
morphisms on Hi = CG(C^(v%)) by defining ySw = /3w for all w 6 jffo

β e J ^ . Moreover Λf(^) = C(J^<; Jϊi), and since J ^ acts fixed point
free on Hi9 C(J^; Jϊi) is a simple near-ring. So C(J^; G) is semi-
simple.

When C(J&; G) is semi-simple the proof of Theorem 1 establishes
that C(j*f; G) is a direct sum of simple near-rings of C(J^; G)-type.
We record this in the following corollary.

COROLLARY 1. C(j*f; G) is semi-simple if and only if there
exist elements vu v2, *,vt in <?* with corresponding subgroups Hi Ξ
CG(C^(Vi)) of G such that for every i, ί e J^ = N{C^{v%))jC^{v%) acts
fixed point free on Ht and

C(^f; G) ~ C(j£; H,) φ φ C ( j ^ ; Ht) .

PROPOSITION 1. Assume C(J*f; G) is simple. Then C(Jϊf; G) is
a ring if and only if it is a field. Moreover every field is a near-
ring of G{^f\ G)-type.

Proof. Assume C(J^; (?) is a ring and suppose θ1 and θ9 are
distinct orbits in (?*. Since C(J^; G) is simple there exist elements
Vi e θi such that C^{v^) — Cj^(v2). Let eiS: G —> (?, i, j = 1, 2 be defined
by

3 = δikavt . α

eid(x) = 0 a <£ 0t U 02

Then ^ 6 C ( J / ; G). But eu(e12 + e22) Φ ene12 + ene22 and C(*S$f; G) is
not a ring. So G* is an orbit and C(J^; G) is a field.

If JP is a finite field, let G = (F, + ) and let j ^ = ί7*, regarded
as acting on G by left multiplication. Then F = C(j*f; G).

THEOREM 2. C(J^; G) is α r % i/ and only if C(J*f; G) is a
direct sum of fields.

Proof. Assume C(J^f; G) is a ring. We show first that C(J^; G)
is semisimple. Assume not; then there exist orbits 0i(v1), 02(#2) of G*
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such that C^OJ g C^(v2). If ei5, i = 1, 2, j = 1, 2 are defined as above
t h e n en, e22, e21 e C(J^f; G)* and β22(e21 + en) Φ e22e21 + e22en.

So C(J^; G) is semi-simple and C(j*f; (?) = C(J^; H,) φ - 0
C(J^; ίίj) as in the corollary to Theorem 1. This means each C(J^; H^
is a ring, and by Proposition 1 must be a field.

As a result of the arguments above we have the following
structural result.

COROLLARY 2. If N is a finite semi-simple near-ring with
N — Sj. φ φ St where each St is simple, and if for some j , Sd is
a ring which is not a field, then N is not of C(J%f; G)-type.

3* Centralizer representations of direct sums of fields* From
Theorem 2 the only time C(J*f', G) is a ring is when it is a direct
sum of fields. Thus, it is natural to investigate the problem of when
a direct sum of fields has a centralizer representation. We shall
show that not all direct sums of fields are near-rings of C(J^; G)-
type. For notation, let GF(q) denote the finite field with q elements
where q — pι for some prime p. If C(j^f; G) is direct sum of fields
then from Corollary 1 we have

C(^f; G) = C(M\ #i) Φ Φ C(J^; Ht)

where each C(J^l; Ht) is a finite field. From Theorem 1 and its proof,
and from Corollary 1, we have the following necessary and sufficient
conditions for GF(qλ) φ φ GF(qt), qt = pj* to be a near-ring of

) G)-type:
( i ) There exists a finite group G and a group of automorphisms
such that any one of the conditions of Theorem 1 is satisfied.
(ii) G* has exactly t orbits under Jzf.
(iii) Every nonzero element in G has prime order.
(iv) If v, vf 6 G* belong to different orbits then C^(v) and C^{v')

are not conjugate subgroups of J%f.
(v) There exist elements vl9 •• ,v ί eG*, no two in the same

orbit, such that for each i, NiG^i^/G^iv,) ^ GFfa)*.
The following group theoretic result indicates that property (iii)

places a rather strong restriction on the structure of the group G.
The theorem is certainly known but we are not aware of any explicit
reference in the literature so, for the reader's convenience, we have
included a proof that is, for the most part, elementary.

THEOREM 3. Let G be a finite group such that every non-identity
element of G has prime order. Then one of the following holds:

(a) G is a p-group of exponent p for some prime p,
(b) G is a Frobenius group with kernel of order pa and com-



ON SEMISIMPLE RINGS THAT ARE CENTRALIZER NEAR-RINGS 455

plement of order q, where p and q are distinct primes,
(c) G is isomorphic to Ab, the alternating group on five elements.

Proof Case 1. Assume G is solvable and not a p-group. Then
every minimal normal subgroup of G is abelian ([4], page 23), so
the Fitting subgroup F(G) is nontrivial. The nilpotent group F(G)
must be a p-group for some prime p, for otherwise if x and y
in F(G) have distinct prime orders, xy = yx has composite order.
Let G = G/F(G), and let V == F(G)/Φ(F(G)), the Frattini factor group
of F(G). _V is a vector space over GF{p) ([4], page 174, Theorem
1.3) and G acts faithfully by conjugation as a group of linear trans-
foamations on V ([4], page 229, Theorem 3.4).

Let N = N/F(G) be a minimal normal subgroup of G, so JV is
an elementary abelian g-group for some prime q Φ p. Since all
elements of G have prime order, JV" acts fixed point freely on V.
By Theorem 3.3, page 69 of [4] we have \N\ — q. It suffices now
to prove G = N.

Suppose G Φ N and let MjN be a subgroup of prime order r in
G/N. Now r Φ q for if so, then M would be elementary abelian
of order q2, which is not allowed by Theorem 3.3 of [4]. M must
be a Frobenius group, so let M = N(x}, where x has order r.

Regarding M as a set of linear transformations on V, we see
that ΣneF n maps V into Cr(N) = 1, so Σ ^ = 0 Similarly, Σmeί* w = 0.
Since it?* is partitioned by J\Γ* and the ^conjugates of <#>* then

fi

[r - 1 ηjr

i=0 J

Therefore Σ S a;' ^ 0.
Let v e F* such that ^ 9̂  1 where y = ΣΓ=o »*• If r = p then

^ = w . . . v**-1 = v(x"1vx)(x'2vm?) - (α?-^-1^^"1) = (w~1)p ^ 1. So
w 1 has order at least p2 in the p-group <a?>F, impossible. On the
other hand, if r Φ p, the fact that x does not satisfy the polynomial
1 + a + + ar~x = (ar — l)/(α — 1), but does satisfy α r — 1 means
that 1 is an eigenvalue for x on V. Then x~ιwx — wx ~ w for some
w e F*, so wo? has order pr, also impossible. Hence G — N.

Case 2. Assume G is not solvable. Then G has even order by
the Feit-Thompson theorem. Let S be a Sylow 2-subgroup of G.
Every element of S* has order 2 so S is abelian. This means for
every XGS* we have SζzC(x) where C(x) is the centralizer of x.
On the other hand C(x) is a 2-group if cceS*, otherwise G has
elements of composite order. Hence C(x) = S for every xeX*.
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If | S | = 2 then G has a normal 2-complement (see e.g. [4],
Theorem 7.6.1, page 257) which implies G is solvable. Hence we
may assume \S\ > 2. By a result of Brauer-Suzuki-Wall ([2], or for
a more elementary reference see [3]), either S is a normal subgroup
of G or else G isomorphic to SL(2, 2n) where \S\ = 2\ In the former
situation, G/S has odd order so it is solvable. Then G is solvable,
contradiction. Thus G is isomorphic to SL(2, 2n) for some n ^ 2.
Since SL(2y 2n) contains cyclic subgroups of order 2n — 1 and 2n + 1
([4], Theorem 8.3 page 42) then 2n — 1 and 2n + 1 must be primes.
But 2n — 1 prime implies % is prime, and 2n + 1 prime implies w is
a power of 2. Hence w = 2 and G is isomorphic to SL(2, 4) ̂  A5.

REMARK. By invoking a deep result of Suzuki on partitioned
groups [9], the following stronger result can be proved: If the
near-ring C{Jtf\ G) is semi-simple and F(fi) = 1, then G s SL(2, 2n)
for some n.

COROLLARY 3. Assume C(j%f; G) is a direct sum of fields Fu i =
1, , n. Let S = {Pi\pt is the characteristic of Ft}. Then

( i ) | S | ^ 3 ,
(ii) if\S\ = Z then C(J^; G) = GF{2) φ GF(3) φ GFQS) where

G~Aδ and J ^ = Aut(G),
(iii) if I S\ = 2, ί̂ e-jt /or some g 6 S, all components Ft of C(S*f; G)

with characteristic q are isomorphic to GF(q).

Proof. Part (i) is immediate from Theorem 3. For part (ii) we
have G ~ A5 due to Theorem 3 and the remarks preceding it. If
J ^ = Aut(Aβ) then Φ e J ^ has the form Φ(x) = yxy'1 where y is a
fixed element in S5. Hence A5 has three nontrivial orbits, one for
each type of cycle structure. We have

)> ^

= <(12345)> =

Computations show that

= Z2,

and i\Γ(C^(12345))/C^(12345) ^ Z4. Hence C(J^; G) s
GFQS).

It remains to show that no other group Szf of automorphisms
of G = A5 gives rise to a near-ring which is a direct sum of fields.
We may assume J^SZS5 where J*r acts on A5 by conjugation. If
x is a 5-cycle then xeAδ and C^(x) is a subgroup of <#>. Since
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; Ab) is semisimple we must have G^{x) = (x). Thus J*f con-
tains all 5-cycles in S5. Since the set of 5-cycles generates a normal
subgroup of A5, and Aδ is simple, we have Aδ Q J^I Thus Jtf = Aβ.
The near ring C(A>; A5) is semi-simple but is not a direct sum of
fields. So we have J^ = S5.

Part (iii) follows from the fact that in part b) of Theorem 3, a
Sylow (/-subgroup of G has order q.

The preceding theorem places a restriction on which direct sums
of fields can be realized as a centralizer near-ring. The following
two theorems give more information about when a direct sum of
two fields with different characteristics is a centralizer near-ring.

THEOREM 4. Let G be a finite group and Jzf a subgroup of
Aut G such that j y h a s exactly two orbits in G*. If G does not
have prime power order, then for distinct primes p and q

( i ) G is a Frobenius group [V]Q, with Van elementary abelian
normal subgroup of order pn and Q a cyclic group of order q, and

(ii) p is a generator of GF{q)*.

Proof Since G is not a p-group there exist distinct primes p
and q such that the two orbits consist of the elements of order p
and the elements of order q respectively. By Theorem 3, G is a
Frobenius group with a p-group V as kernel and with a complement
Q of order q. Since V is characteristic in (?, the center of V is
J^-invariant so the transitivity of *$/ on elements of order p implies
that V is abelian. This proves (i).

If a e Jϊζ Qa is a Sylow g-subgroup of G so Qa = g~xQg for
some g e G. Since G = VQ = Q V, g can be selected to be in V so
Qa = v~xQv — Qiυ where iΌ is the inner automorphism of G induced
by v. So aiς1 e NAxλtG(Q) Ξ= j\Γ and aeNiυ. We now have <s*fςzNIv

where Iv is the group of inner automorphisms of G induced by
elements of V. Since V is a characteristic subgroup of G then Iυ is
normal in Aut G so JVI, = IVN.

Since J ^ acts transitively on F* so does N. We claim iSΓ is also
transitive on Q*. For if x9 yeQ* then #α = y for some α e j ^
Writing a — ivn where v 6 V, n e N, we have xiv7t = 2/, so α?* = 2/71"16
Q71"1 = Q. Hence x~ιvγxv — αrV v€Q. On the other hand, since V
is normal in G, x~ιvιxve V, so a r 1 ? ; " 1 ^ e Q i l F = {1}. Therefore
x*v = x and xn — x*vn = y.

Q acts faithfully on V so we may let Q = <Γ> where Γ is a
linear transformation on F regarded as a vector space over GF(p).
Suppose W is an irreducible Q-submodule of V. Since Q is invariant
under N, Wn is an irreducible Q-submodule for every neN. The
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transitivity of N on F* implies that every element of F* belongs
to some irreducible Q-submodule V and hence for every ve V* there
exists an irreducible polynomial (over GF{p)), fv(x), such that fv(T)v—
0. If v, w e F* then fv(T)fw(T)(v + w) = 0 so fv+w(x) divides fv(x)fw(x).
Hence we may assume fυ+w(x) = fυ(x), implying fυ(T)w = 0 so fv(x) =
fw(x). Hence fυ(x) = fw(x) for all v, w eV* and the minimal polynomial
f(x) of T on V is irreducible.

Since Tq = I, /(a) divides #* — 1 = (x — ΐ)e(x) where c(a) = xq~ι +
• + x + 1. Since Γ fixes no element of V*9 fix) divides c(x). On
the other hand if a is an eigenvalue of T in some extension field of
GF{p) then the transitivity of N on Q* implies T is similar in GL(V)
to Tfc for every k with 1 ^ & <Ξ g — 1, so ak is an eigenvalue for T
for every such k. Hence, all qth roots of 1 (except 1) are eigenvalues
for T and thus roots of f(x). It follows that f(x) = xq'1+ •••+» + ! =
c(a?) and e(x) is irreducible over GF{p). Therefore any extension of
GF(p) containing a gth root of 1 has degree at least q — 1. Since
GF{pk) contains a gth root of 1 precisely when q divides \GF(pk)*\ —
pk — 1, this means that p9'1 is the smallest power of p which is
congruent to 1 modulo q. In other words, p generates GF(q)*.

As an application of this group theoretic property we obtain the
following centralizer representation result, the "if" part being
established by Theorem 5 below.

COROLLARY 4. Let p and q be distinct primes. There is a group
G and a subgroup J^ of Aut G such that C{sf\ G) = GF(p) 0 GF(q)
if and only if either p generates GF(q)* or q generates GF{p)*.

Corollary 4 partially generalizes to the case in which pn generates
GF(q)*. This is given in the next theorem.

THEOREM 5. Suppose p and q are distinct prime such that pn

is a generator of GF(q)*. Then there exists a group G and a sub-
group j ^ of Aut G such that C(JT; G) = GF(pn) 0 GF(q).

Proof. Let m be any integer divisible by n(q — 1) and let V =
GF{pm) considered as a vector space over GF{p). Since n divides m
we have GF(pn) £ GF(pm) and the Galois group B = Gal (GF(pm)/GF(pn))
is cyclic, generated by the automorphism θ: a~> ap%, aeGF(pm).

For every aeGF(pm)* and σeB define the GjP(pn)-linear trans-
formation Tσ,a of V by vTo,a = av°. Let T = {Tσ>a \ a e GF{pm)*, σeB}
and ΛΓ= {2\,β | a e GF(pm)*}. The set T forms a group where Tc>aTτyβ =
TσTtaτβ, and M^ T with M s GF{pm)* which is cyclic. Also, let H=
{Tϋtί\σeB}, a subgroup of T isomorphic to B. We have i l £ n i ϊ =
{1} and T = MH.
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Since q — 1 divides m then q divides pm — 1. But M is cyclic
of order pm — 1 so M contains a characteristic subgroup Q of order
q. Also Q is normal in Γ. Let G be the semidirect product [V]Q,
so G is a Frobenius group and is a normal subgroup of the semidirect
product A = [F]Γ. We have C (̂(?) £ CA( V) = {1}, so A acts faith-
fully on G by conjugation as a group of automorphisms.

Since 0: α -> apn generates B, the fact that pn is a generator of
GF(q)* implies that the powers 1, pn, p2n, of p71 are congruent
modulo q to the integers 1, 2, 3, , q — 1 (in some order) and hence,
that H is transitive on Q*. Since G j 4 and since all Sylow q-
subgroups of G are conjugate in G, it follows A is transitive on
elements of order q. A is also transitive on elements of order p in
G (i.e., on V*), since Mis. G is a Frobenius group so all its elements
have order p or q (otherwise some nontrivial element of order q
would centralize an element of order p). Thus, A has precisely two
orbits in G, of sizes | F * | = ί p m - l and \G\ - \V\ == pmq - pm =
pm(q - 1).

If v o e 7 * and xoeQ*t then F £ CΛ(v0), Cv(xQ) = {0}, Q S CA(O
and CQ(V0) = {1}. Hence, stabilizers in A of elements of G are in-
comparable and C(A; G) is semi-simple by Theorem 1. Also, if
H1 = {xeG\CA(x) = CA(Xo)} = CG(CA(Xo)) and H2 = Cβ{CA{v,)), then
C(A; G) s C(Λ; Bi) θ C(Λ; H2) where Λ - NA(CA(x0))/CA(x0) and Λ =
NA(CAv0))/CA(v0).

Since #0 6 JEZΊ and the Sylow g-subgroups of G have order q, Hx —
Q. Since A is transitive on ζ)*, so also is At. Since Aut Q is
abelian, A1 is abelian and C(AX; fli) = GF(q).

It remains to show that C(A2; fl"2) = GF(pn).. First we claim fl"2

is an ^-dimensional subspace of V. For this we may assume v0 e
GF{pn) £ GF(pm) = V (since A is transitive on F*), so H £ C4(O,
and H2^CG(CA(v0))QCG(H) = GF(pn). On the other hand, the
stabilizer in A of any element of GF(pn)* is VH since no element of
ilf* fixes an element of V*. So G.F(pn) £ iϊ2. Hence H2 = GF(pn)
if vQ 6 GF{pn) proving the claim.

Now A2 is transitive on H2 since A is, so C(A2; H2) is a near-field
of order pn. But if voeGF(pn) we have C^(vo)=Fjff so A2 =
NA(VH)/VH = VHNM(VH)/VH = NM(VH) using the facts that A =

and F f f ί l l = {1}. Since If is abelian, A2 is abelian and
O s GF(p%

Note that, by Corollary 3, (iii), a proof of the converse of
Theorem 5 would completely classify those near-rings of C{sf\ G)-type
which are a direct sum of two fields of different characteristic.

In our final representation theorem we show that a direct sum
of a tower of finite fields can be obtained as a centralizer near-
ring.
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THEOREM 6. Let FXQ F 2 £ £ Ft be fields. Then there exists
a vector space V over i*\ and a group Jtf of linear tr an formations
on V such that C(j*f; V) ~ F, φ F2 φ φ Ft.

Proof. Let F* = GF(pnή, i = 1, 2, - , t. Then nt divides nt+1.
We construct the vector space V as follows. Let Wt be a (finite di-
mensional) vector space over Ft, let Wt_x be any vector space over
Ft-χ that contains Wt as a proper subspace, let Wt_2 be any vector
space over Ft_2 that contains Wt_λ as a proper subspace, etc. Hence
Wtd Wί-iC c W2czW1 = V, where each containment is proper and
Wi is a vector space over Ft. Let j*f be the set of invertible Fr

linear transformations on V defined as follows: A e s/ if and only
if for each i, Wi is A-invariant and A restricted to Wi is i^-linear.

We claim that C( j^ ; V) = Fx φ φ Ft. It is clear that F
has t orbits under J ^ namely Wi*, Wi^ —Wu , TPi — W2. If vt e
Wi-Wi+1 then Cr(PAvt)) = Ftvt. Let J ^ = iV^(CU^)). If
and AeCj,(vt) then S " 1 ^ ^ = vo that is ASvt = St?,. Hence

meaning Svt — aVi for some aeF*. This implies
is isomorphic to i*7*. This implies

; V) = C(Ff; Ftvt) φ .

*

We conclude this section (and the paper) with a couple of open
problems relative to representing C(j^; G) as the direct sum of two
fields. The first question concerns the converse of Theorem 5 while
the second question deals with the theorem above.

Problem 1. If O χ G) = GF(pn) φ GF(q), is pn a generator of
GF{q)*Ί

Problem 2. If C(J^ G) s GF(pa) φ GF(p&) and α < 6, does a
divide 6?
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