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ON THE DECOMPOSITION OF REDUCIBLE
PRINCIPAL SERIES REPRESENTATIONS
OF P-ADIC CHEVALLEY GROUPS

CHARLES DaviD KEYS

In this paper we study the decomposition of principal
series representations of p-adic Chevalley groups which are
induced from a minimal parabolic subgroup, and determine
the structure of the commuting algebras of these represen-
tations.
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Introduction. Let G be a split reductive p-adic group, T a
maximal split torus of G and B = TU a minimal parabolic subgroup
of G. A (unitary) character \ of T may be extended trivially across
U to define a character of B. The induced representation Ind$n is
called a (unitary) principal series representation of G.

Let W be the Weyl group of G and choose we W. Then the
representations Indé» and Ind§ w are equivalent. The problem of
constructing explicit intertwining operators a(w, \) between Ind§
and Ind§ wx has been studied for real semi-simple Lie groups by Kunze
and Stein [24, 25, 26] Schiffmann [30], Knapp [14, 15, 16] Knapp
and Stein [17, 18, 19, 20, 21, 22] Harish-Chandra [10] and others.
For groups defined over a p-adic filed , these operators were first
studied for SL(2) by Sally [28], and then for p-adic Chevalley groups
by Winarsky [36, 37], who used them to determine necessary and
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sufficient conditions for Ind§ » to be reducible. A more general study
of intertwining operators for p-adic groups has been carried out by
Harish-Chandra, Silberger and others.

Let W, = {we W|wx = \}. By Bruhat theory [32], the length
of the composition series of Ind$ A is bounded by |W;|. Thus Indg X
is irreducible if A\ is a nonsingular character of T, i.e., W, = {1}

Suppose that A is a singular character of T and that wx =,
1=+ weW. Then a(w, \)is an intertwining operator for Ind§ » which
may or may not be scalar. By an unpublished theorem of Harish-
Chandra, the operators {a(w, )| w € W;} span the commuting algebra
C(\) of Ind} n. However, these operators may not be distinct.

We determine a basis for C(\) consisting of a subgroup of these
operators. Following Knapp and Stein [14, 19], we write W, =
R x W’ as a semi-direct product, with W’ = {w e W,|a(w, \) is scalar}.
We show that, with appropriate normalizations, a cocycle condition
holds and that w+ a(w, ) is a homomorphism from W, to the group
of invertible intertwining operators for Ind$x. We then give an
elementary proof that the operators {a(w, \)|w e R} are linearly
independent. This is essentially Silberger’s theorem [33] for the
case of minimal parabolics. These facts combined with Harish-
Chandra’s theorem imply that {a(w, \)|w € R} is a basis of the com-
muting algebra C(\), and further, that C(\) is isomorphic to the
group algebra C[R].

For complex groups, Ind$ A\ is always irreducible.

Knapp, in collaboration with Stein, [15, 16] has shown that for
real groups, R = Z, X --- X Z, with the number of factors of Z,
bounded by the dimension of 7. Thus Indf )\ decomposes into |R)|
components, each occuring with multiplicity one.

For p-adic groups, Ind¢ does not always decompose simply.
We classify the nontrivial R-groups which occur.

Type A,. R is abelian and |R| divides n + 1. If the largest
cyclic subgroup of R has order m, then |R| divides [f*: (f*)"]. Any
Jfinite abelian group with these properties occurs as an R-group.

Type B,. R=Z,X:--XZ,and |R| divides both 2n and [F*: (£*)].

Type C,. R=2Z, % --- X Z, with the number of factors of Z,
bounded by n and [F*: (£*)*] — 1.

Type D,. R may be nonabelian. (This general fact was first
discovered by Knapp and Zuckerman.)

(a) Suppose n even. Then if R is abelian, R= Z, X -+ X Z,
with the number of factors bounded by » — 1 and by [F*: (¥*)*] — 1.
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If R is nonabelian, R =(Z, X -+ X Z) X (£, X Z, X --- X Z,) with
the order of the first factor dividing both 2% and [f*: (¥*)?] and the
number of factors of Z, in the normal subgroup an odd number
bounded by % — 1 and by [£*: (£*)*] — 1.

(b) Suppose % is odd. Then if R is abelian, R= Z, X --- X Z,
with the number of factors bounded by n — 1 and [f*: *)*] — 1, or
R = Z,. If Ris nonabelian, then R = Z, X (Z, X --- X Z,) with the
number of factors of Z, in the normal subgroup an even number
bounded by # — 3 and [f*: (¥*)*] — 2.

Type By. R=1, Z,, Z,, Z, X Z, or Z,. Further, Z, X Z, can
occur if and only if » = 38 or 3 divides ¢ — 1.

Type E,. R may be nonabelian. If so, R = dihedral group D
of order 8, or R=D X Z,, D X Z, can occur if and only if p = 2
or 4 divides g — 1.

If R is abelian, then R= Z: with 0 n <4, Z,, Z, or Z,. Z
will occur if and only if [k*: (k*)] = 2", 0 = n < 4. Z, occurs if and
only if »p =2. Z, and Z; occur if and only if »p =3 or 3 divides
qg—1.

Type BE;. R may be nonabelian. All nonabelian B are conju-
gate. The nonabelian R-group will occur if and only if [k*: (£*)*] =
16. It has order 128, has 65 conjugacy classes, and R mod {w,) is
abelian.

If R is abelian, then R=Z; with 0 n <4, Z, Z, X Z,, Z,,
Z,xZ,, or Z,. Z} occurs if and only if [F*: (k*)] =z 2™, 0 < n < 4.
Z, occurs if and only if p = 2 or 4 divides ¢ — 1. Z, X Z, occurs if
and only if p = 2. Zp occurs if and only if [k*: (k*)*] = 3", n =1
or 2. Z, occurs if and only if [k*: (£*)°] = 25.

Type F,., R =2Z, or Z,. Z, can occur as R-group if and only
if »p =8 or 3 divides ¢ — 1.

Type G,. R = Z,.

The order of R depends on % and on the arithmetic of the field
f, i.e., on the existence of enough multiplicative characters of order
2, or of order dividing » + 1 in the case of type A, and of order
3 in the case of type F.,.

We note that the methods in this paper also apply to Chevalley
groups defined over the reals R and the complex numbers C. Since
C* has no nontrivial characters of finite order, B = {1} and thus
Ind¢ )\ is irreducible for Chevalley groups over €. Since R* has only
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one nontrivial character of finite order, we can recover the Knapp-
Stein result for Chevalley groups over R. Further R = Z, or {1}
except in the case of D,, n even, for which R = Z, X Z, can occur
[19].

The organization of this paper is as follows. We establish nota-
tion and definitions in a preliminary section. In §1 of Chapter 1
we study the normalization and analytic continuation of the inter-
twining operators A(w, A) and a(w, \) for Macdonald’s “groups of
p-adic type.” In §2 we show that with appropriate normalizations
the operators a(w, \) are well-defined and establish a cocycle relation
for these operators with no condition on the lengths of the Weyl
group elements. In §3 we follow Knapp [14, 15] to develop the
theory of the R-group for p-adic Chevalley groups, and show that
C(\) = C|R].

Chapter 2 is devoted to the classification of R-groups. In each
section, we explicitly determine all B which occur for one type of
root system, by constructing a list of A and R and showing that
every nontrivial R-group is conjugate to one on the list.

In Chapter 3 we use the intertwining operators to study the
problem of decomposing Ind§ into irreducible components in a
“Fourier transform realization” on L*(V), where V is the unipotent
radical of the Borel subgroup opposed to B. A class of functions is
found on which a(w, ) acts as multiplication by a function M(w, \)
and we show that the operators {a(w, \)|w e R} are linearly inde-
pendent.

Most of these results appeared in the author’s thesis. I would
like to express my gratitude and thanks to my advisor, Professor
Paul J. Sally, Jr., for his help and guidance.

With some restrictions on the residual characteristic of k, inde-
pendent work of Miiller gives partial results describing the R-groups
which occur for the classical Chevalley groups. See “Integrales
d’entrelacement pour un groupe de Chevalley sur un corps p-adique”
in the Springer Lecture Notes 739.

Preliminaries and definitions. Let f be a nonArchimedean local
field. We will be concerned mainly with Chevalley groups G defined
over f, although some of our results will apply to the f-rational points
of any reductive algebraic group defined over f.

Let dx be Haar measure on f and | | the absolute value on f
defined by d(azx) = |a|dzx.

Let &2 = {zet||x| < 1} be the ring of integers of £, I7 a prime
element of ¢, and p = {x € ¥f||x| < 1} the unique nonzero prime ideal
of ©&. Then Z7/p is a finite field with ¢ elements, where ¢ is a prime
power.
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Normalize Haar measure on f so that volume (&) =1. Then
p* = {wet||x| < ¢ "} has volume ¢~'. The collection p*, » € Z, forms
a fundamental system of neighborhoods at 0 for the topology on f,
which are both open and compact. Thus ¥ is totally disconnected.

Haar measure on t* is d*x = |x|'dx.

Let U, = U= 2* ={xe||x| = 1} be the units in &. For each
positive integer n, set U, = 1 + p*. Then the collection U, forms a
fundamental system of neighborhoods at 1 for £* consisting of com-
pact and open subgroups.

The additive group of f is self-dual. Fix a nontrivial additive
character X of f. Then any character of f is of the form X, () =
X(axz). Define the conductor cond (X) of X to be n if X is trivial on
p~ and nontrivial on p~.

Since any xe€f* may be written as v = II"u, ne Z, ne U, we
see that t* = Z x U. Thus (f*)" = Z~ X U” and any character of
£* is given by NIT™u) = |II"|"A*(u) where s€C, Res = 0, and \* is
the restriction of )\ to the compact group U. We obtain quasi-
characters of * by AII™w) = |II"|*N*(u) where s€C. Define Rex =
Re(s). » is unramified if A* = 1. Otherwise ) is ramified. Define
deg (\) = » if \ is trivial on U, but nontrivial on U,_,.

A gamma function I"(A) is associated to each nontrivial multi-

plicative quasi-character » [29, 35]. If X\ = |-|\* is ramified of
degree h, then I'(\) = P-V~S Y@@ 2| de = ¢..q" " ®, where
lex] = 1 and cpepy, = N*(—1). If A = |- [° is unramified, then I'(\)=

P-V-S 7@ @ 'de = (L — ¢/ — ¢~ if Rex > 0, and is the analy-
tic continuation of this funection into the left half-plane for Rex < 0,
s = 0.

Let G be a Chevalley group over f [34]. Let L be the semi-
simple Lie algebra over C which determines G and h a Cartan sub-
algebra. Then L = h & >+ L, where a is a root. Denote the set
of roots by @.

Let w, denote the reflection in the hyperplane orthogonal to «
in the Euclidean space Z[®] ® R and let the Weyl group W be the
group generated by the w,, ac®.

G is generated by subgroups U, = {z,(t)|t€f}, acd. U, carries
a natural valuation U,,, = {x.(t)|t € p"}.

Let w,(t) = 2,(t)0_o(—t )z (t) and h,(t) = w,(E)w,1)™"* for tef*.
Let T be the subgroup generated by all h,(t), a€®. Then W =
N(T)/T and w,(t) is a coset representative in N(T') for the reflec-
tion w,.

Fix an ordering on the root system @. This determines a set
of positive roots and a set of simple roots which forms a base for
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@. Let U be the subgroup generated by all U,, where a is a posi-
tive root.

Then T is a maximal torus of G and B = TU is a Borel subgroup
of G with unipotent radical U.

For each root «, there is a canonical homomorphism @, from
SL (2, f) into the subgroup of G generated by U, and U_, such that

%(1 t)=wa(t), %(

1
01 >='wa(1)1

-1 0
t

1o (t), and <
¢a 1> - x—tx ’ 1 q)a 0

°\_n t)
¢ t“>—“( )

The kernel of @, is either trivial or {+I}.

If A is a character of T, we define for each root a a character
Mo Of £F by no(8) = MR (t)). The Weyl group W acts on T and thus
on characters of 7. We note that wi, () = wh(h.(t)) = Mw ™ h ()W) =
APw-14E)) = Np—1,(t). The one-parameter subgroups h.(t) form a root
system @~ dual to @ in Hom (f*, T) ® R. w acts on ), as w acts on
o, as w' acts on a. We use this observation to simplify notation
and calculations in Chapter 2.

Let K be the subgroup of G generated by {z.(t)|a€®, tc}.
Then K is a good maximal compact subgroup of G [4. 27], and there
is an Iwasawa decomposition G = KB = KTU, nonuniquely.

More generally, suppose G is the group of f-rational points of a
reductive algebraic group defined over f. A Borel subgroup B is a
maximal connected solvable subgroup of G. A parabolic subgroup
P is a subgroup of G containing a Borel subgroup. Let N be the
unipotent radical of P, A a maximal f-split torus in the radical of
P and M = Zy(A). Then P has a Levi decomposition P = MN.

B has Levi decomposition TU where T is the centralizer in G
of a maximal f-split torus 4 of G. W = N(A)/Z(A) acts on A and
thus on Hom (A4, £*), which is dually paired over Z with Hom (t*, A).
If G is semi-simple, the root system @ = @(G, A) spans Hom (4, £*) ®
R, and we have the dual root system @° in Hom (*, A) ® R [1].

Bruhat-Tits theory gives a generating set of valuated root data
and the existence of good maximal compact subgroups of G, for
which Iwasawa and Cartan decompositions hold [4, 27].

A topological group G is said to be totally disconmnected (t.d.) if
there exists a neighborhood basis at 1 for the topology on G con-
sisting of open compact subgroups. A function on a t.d. group is
smooth, or C=, if it is locally constant.

Let G be a t.d. group and V a vector space over C. A represen-
tation (II, V) of G is a mapping II: G — End (V) such that 77(1) =1
and II(zy) = I(x)lI(y) for all 2, yeG. A vector veV is smooth if
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x> II(x)v is a smooth function on G. We say that I7 is smooth if
every v<€V is smooth.

If H is a subgroup of G, define V” = {ve V|II(h)v = v for all
he H}. A representation (II, V) of G is admaissible if I is smooth
and dim V¥ < « for any open subgroup H of G.

A subspace W of V is invariant if II(x)W = W for all zeG.
The representation (17, V') is (algebraically) irreducible if V has no
nontrivial invariant subspaces.

(II, V) is a pre-unitary representation if there is a positive-
definite hermitian form on V which is preserved by all II(x), x€G.
We may take the completion of V with respect to the inner product
defined by this form to obtain a unitary representation of G on a
Hilbert space =27, of which V is the subspace of smooth vectors.

We also require that «+ II(x) be continuous for unitary repre-
sentations. (1, o7°) is irreducible if there are no nontrivial closed
invariant subspaces.

Let (I1I, V) and (II', V') be representations of G. An inter-
twining operator between I and II' is a linear map A: V— V'’ with
the property that All(x) = II'(x)A for all x€G. II is equivalent to
II'" if A can be chosen to be a bijection.

Define the commuting algebra of (II, V) to be {A: V - V | All(x) =
II(x) A for all xe€G}.

If n, ' are unitary, we require an intertwining operator A to
be a bounded linear operator. = and @’ are (unitarily) equivalent if
A can be chosen to be a unitary operator.

We will use the following criterion for reducibility.

THEOREM. Suppose (w, V) 1is a unitary representation of G.
Then 7 1s irreducible if and only if its commuting algebra is one-
dimensional [32].

More detailed introductions to the representation theory of t.d.
groups may be found in [6, 11, 13, 32].

CHAPTER I
INTERTWINING OPERATORS AND THE COMMUTING ALGEBRA

1. The intertwining operators A(w, A) and a(w, \). Let P =
MN be a parabolic subgroup of G and (o, V) an admissible represen-
tation of M, extended trivially across N. Define the representation
Ind¢ o to be left translation in the space of functions H, = {f: G —
V|f is locally constant and f(gmn) = 607 (m)f(g) for all geG,
m e M, and ne N}. Since G=KP with K compact, Ind¢ ¢ is an admis-
sible representation of G. The factor 65** is used so that unitary
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representations induce to unitary representations. One could also
take functions which are square integrable mod P.

From Bruhat theory, one knows that Indf o and Ind% o, have
no composition factors in common if P and P, are not conjugate in
G. Further, Ind¢ ¢ and Ind¢ o, have a composition factor in common
only if there exists a we W normalizing M such that wo is equiva-
lent to ¢,. In this case, Ind¢ ¢ is equivalent to Ind¢ wo.

Jacquet’s theorem states that any irreducible representation of
a reductive p-adic group G is a subrepresentation of Indf ¢ for some
parabolic subgroup P, where ¢ is a supercuspidal representation of
M [13, 32].

Thus to give a complete list of the irreducible representations
of G, one needs to decompose all Indf o, with equivalent factors
arising only in the case of the equivalent representations Indf o and
Ind§ wo.

We study the problem of decomposing the representations Ind$ x,
where G is a Chevalley group over £, B= TU is a Borel subgroup,
and \ is a (unitary) character of T.

Let W, ={we W|wx =2} for A a quasi-character of 7. By
Bruhat theory, the length of the composition series of Ind§ is
bounded by |W,| if A is unitary.

Suppose w e W. Intertwining operators A(w, \) between Ind$
and Ind§ win are defined initially for certain nonunitary \. These
operators are normalized to define operators a(w, ) which can be
extended by analytic continuation to meromorphic functions in M.

Fix a coset representative @ in N(T) for w. Define [30, 37]

[A(w, M) f9) = Smww_lf(guw)du for feH,.

We remark that if we choose a different coset representative
@' for w, then @w'w'eT and the operators differ by a scalar
AT ().

N. Winarsky has shown that A(@, \)f(g) converges absolutely for
quasi-characters A in the domain D(w) = {A|Rer, > 0 for a e R(w)},
where R(w) = {e¢e®@|a >0 and wa < 0}, and that A(w, \): H, — H,;
intertwines Indg A and Ind§ wx. Further, if the condition l(w'w”) =
w4+ U{w'") on lengths holds, then the coeycle condition A(w'@w", \) =
A(w’, w'N) o A(@"”, A) holds [37].

These results are true for G a reductive p-adic group. The
proofs are as in [30, 37] once we have the following.

LEMMA 1. Let G be a reductive p-adic group. Let Rex = |\|
and let Xz., be the K-fixed vector im Hy., defined by Xg.(ktu) =
Re (W)07'(t). Suppose Ren, > 0. Then
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SU Lo (U@ ) < oo .

Proof. By Bruhat-Tits theory, the derived group of G possesses
a system of valuated root data, with properties which Macdonald has
taken as axioms for a “group of p-adic type” [4, 27].

B = TU is a minimal parabolic, where T is now the centralizer
of a maximal f-split torus 4 in G. There is a homomorphism v with
kernel TN K from N(A) to the affine Weyl group of G, which is the
group generated by reflections in the hyperplanes determined by the
set of affine roots {a +r|ac®,reZ}. Let Y, =U__/U_,_,,,. Then

S ) Xre z(uu_)a)du = SU Xre z(w,;v)dv

‘o

= gx J(v)dv

= S dv + f} S Lre(v)dw .
U—a+o r=1JY,
We may write ve U_,_, as v = u,nu,, where u,, u,€ U,,,cUNK
(r is a positive interger) and v(n) = w,_,. If n,e K with v(n,) = w,,
then nmeT and v(n,n) = t, where ¢, is the translation z— 2 + o
in the affine Weyl group. Let q, = (U,_;: U,) and q,, = ¢,..92"
Thus

1y, s = | Tneswman) = | Anestm) = | L smem)

r r

= Rexp7'(ty)-vol (Y,)
= Re N7U(¢,) qzr"ax"[a% g — qba g™ .

Thus the sum over r is a geometric series with common ratio
Re A\(t,)%, which converges if and only if s = Rex, > 0.

The value of the sum is then given by Harish-Chandra’s ¢-func-
tion ey, s) = ¢(/2, s)e(e, s). The reader is referred to Macdonald
[27].

Let V Dbe the unipotent radical of the Borel opposed to B. Since
G = VB up to a set of Haar measure zero, functions in H, are deter-
mined by their values on V and we may realize Indj» on L*V).
Assume that Re), > 0. If G is a Chevalley group, then U_, is one-
dimensional, and a calculation realizing the representation on LAV)
via the Fourier transform in U_,, as in the X-realization of Gelfand,
Graev and Pyatetskii-Shapiro [7] or Sally [28] for SL(2), shows that
A(,, \) acts as multiplication by A;'I"(A,), where &, = w,(1). We
may then use the analytic continuation of the gamma function to
define the intertwining operator A(w,, ») for any quasi-character X\
such that I'(\,) is defined, i.e., for A, = 1.
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If we normalize A(w, ») by [I'(A,) by setting a(@, ) =
A/rin)A(w,, »), then by analytic continuation a(w,, A) defines an
intertwining operator between Indj» and Ind§ w,\ for all .

Suppose we W has length I and w =w,, -+ w, is a reduced
product of basic reflections, a; simple. The appropriate normalizing
factor for A(w, N) = A(W,, W,, -+ WeN)o -+ o A(W,, ) i

L .
;;l;'[l F(wai+1 e wal)"ai) = a Hu-) F()\:a) .

eR(

Denote this product by I',(\) and define

1

o0 A(w, \) .

a(w, N) =

An argument similar to that in Winarsky [37] gives the analytic
continuation of A(w, \) and a(w, \) in the case of a semi-simple p-adic
algebraic group.

THEOREM 1. Let G be a connected semi-simple p-adic group and
suppose f € H, is locally constant. The map »+— (A(w, N)f)&) of D(w)
into C is analytic for ke K. It extends to C* as a meromorphic
function. When N is mot a pole of the extension, the operators
A(w, \) intertwine the representations Indgn and Ind§ wx.

Proof. The unramified part of A\ is determined by » unramified
characters |- |+, a simple, each of which is identified with the com-
plex number s,. Multiply this by a representation A* of kerw.
Considering A* fixed and letting the unramified part of A vary, we
identify ) with a point in C™.

It is enough to prove the theorem in the case w = w, is a simple
reflection. Again, we follow Macdonald [27]. Choose a coset repre-
sentative n, € K for w, with »(n,) = w,. WriteveY,=U_,_\U_,_,,
as v = u,n;'thu,, with w, u,€ U,,, and v(¢,) translation by a*. Sup-
pose that f is constant on cosets of U_,,, in K.

Then

A, N7 = | flknp)do

—a

SU—«—(»m—l

fkm v)dv + i SY F(len sty
=\, S+ S snuane )

But numzte U_,
over r is thus

. and f is assumed constant on this. The sum
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@5 |, o)
0 if A, is ramified
= 4F(6) 3} ME) O e (@ — @ V)
if A, is unramified .

For A, unramified, this is a geometric series with common ratio
Mt,) % which converges if and only in Rex, > 0. In this case the
sum is given by

L= G+ ME)gEIME) ™
£k Ty :

We note that if G is split, then ¢, = ¢ and ¢,, = 1 and the above
sum agrees with Winarsky’s.

Thus »+— A(n, M) f(k) extends to a meromorphic function of s,
with simple poles at A(¢,) = =1 for ¢,,=* 1 and at \{,) =1 for
q.. =1, if |-|*« is unramified, and extends to an analytic function
if A, is ramified. By analytic continuation, the intertwining relation
holds if A\ is not a pole of the extension.

If we normalize A(i,, ») by Harish-Chandra’s ¢-function ¢,(a, \,)
and A(@, M) by ¢,(V) = Tlerw (@, N,) then Ni—a(w, N) = (1/e,(\) A(®, )
extends to a meromorphic function on C™ which is holomorphic in a
neighborhood of {(¢, ---,¢,)eC"|Ree¢; =10, 1 =1, ---, n} and defines
an intertwining operator between Ind% )\ and Indf wx if ) is not a
pole.

An argument similar to that of [37] shows that Ind$ A is reducible
if there exists a we W, w #= 1 with wx =\ such that )\ is not a
pole of ¢,(\).

2. The cocycle condition for a(w, A). We now choose certain
coset representatives for each we W. Fix any coset representatives
n, for the basic reflections w,, a simple. Suppose we€ W has length
! and w = w,, w,, -*- w,, is a reduced product of basic reflections.
We take n,, n,, - - - n,, as the coset representative of w and define

A(w, N) = ANy Ny + * + Ngyy N)  and
a(wy >\’) = a(nle naz o ndl’ 7\') M

This is well-defined by the following.
THEOREM 1. Fix coset representatives m, € N(T) for the basic

reflections w,, « stmple. Suppose w s expressed as a reduced pro-
duct w, w,, -+ w,, of basic reflections, l(w)=1. Then the coset
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representative M, N, -+ N, of w 18 independent of the expression
Wy Wy *** W

Proof. For Chevalley groups, see page 242 of [34]. For con-
nected reductive p-adic groups, see page 112 of [4].

We now fix a set of coset representatives as above and write
A(w, N) instead of A(w, )). For the calculations in Chapter 3, we
have taken %, = w, (1) as the coset representative for the basic re-
flection w,, a simple.

Recall the cocycle condition A(w'w”, \) = A(w', w'\) o A(w"”, \) if
{w'w”) = l(w) + l(w”). In this case we also have I, (\) =
I, (w'™\)C,.(\) since Rw'w') = Rw") Uw"*R(w'). Thus a(w'w", \) =
a(w’, w'N)oa(w”, N) if l(w'w”) = lw') + Ww").

We will show that with the above choice of coset representatives,
the cocycle condition holds for the normalized operators a(w, A) with
no condition on the lengths of w’ and w”.

We have seen that under the X-realization in U_,, A(w,, \) acts
as multiplication by A;*I"(A,). Thus A(w,, w,\)° A(w,, M) = (M) (M)
is scalar and a(w,, w,\)oa(w, A) = I is the identity.

Thus a(w,, w,) is the inverse of a(w,, \), i.e., the cocycle con-
dition holds in this case.

THEOREM 2. The cocycle condition a(w'w”, N)=a(w’, w''\)ca(w', \)
holds with mo condition on the lengths of w' and w".

Proof. We first recall that with our choice of coset representa-
tives the operators are well-defined. This is in fact equivalent to the
cocycle condition.

The proof is by induction on the length of w'. Suppose I(w') = 1,
say w' = w,, « simple. If l(w,w") = l(w") + 1, then we are done.
Otherwise l(w,w"”)= l(w") — 1. Suppose w" = ws Wy, --- w;s, is a
reduced expression for w" as a product of simple reflections. Then
by Coxeter’s exchange condition [2], w'w"” = w, ws ws, -+ - ws, =
Wp, *++ Wy, -+ Wp, Where B; is omitted.

Since w, has order 2, w"” = w;, - Ws, = W, W, * -+ Wy; -+ Wp,, and
these are both reduced expressions for w”. Then since a(w”, \) does
not depend on the reduced expression chosen for w"”, we get

a(w,, w'N)oalw”, \)
= a(w,, W’'N)oa(w, ws, -+ Ws; *++ Wsy, \)
= AW,y WN) AWy W, +++ Wp, ++ WeN) oUW, * - Wy, + -+ Wgy, N)
= Toa(wg, «++ Wp; *++ Ws, N)
= a(w,w", \) ,



THE DECOMPOSITION OF REDUCIBLE PRINCIPAL SERIES 363

since l(w, wp, « -+ W cwg,) = 1+ Ww,, -- Ap- <o awp) and  wg -
Ws; »++ Ws, 18 2 reduced expression for w,w"

Thus the theorem is true if w’ has length 1. Suppose w’ has
length > 1 and write w' = w,w, with «a simple and l(w,) = l(w') — 1.

Then

a(w'w”, N) = a(www"”, N) = alw,, ww’ N)al(w,w"”, N)
= a(w,, ww N)alw,, wn)a(w”, \)
by the induction hypothesis ,
= a(w,w,, w'n)a(w"”, ) since l(w, =1,
= a(w’, w'n)a(w"”, N) .

Thus the cocycle condition is true with no condition on the
lengths of w’ and w”. We remark that one could also use the rela-
tions (w, wg)"*# = 1 defining W as a Coxeter group to prove the
cocycle condition.

We note that to prove the theorem, we need only normalize the
operators so that a(w,, w,\) is the inverse of a(w,, N). For Chevalley
groups we may do this with either gamma functions or ¢-functions.

For Macdonald’s “groups of p-adic type” we may use the ¢-func-
tions to do this, at least for unramified . In any case, a(w™, wx)a(w, \)
is scalar. If ) is unramified and f; is the K-fixed vector in H, with
file) =1, then A(w, N)f; = c,(W)f.: and  A(w™, wh)A(w, N)f; =
C o1 (WN)C,(N) 2 So if a(w, N) = /e, N)A(w, ), we see that
a(w™, wrn)a(w, N) = 1.

Thus the cocycle relation holds with no condition on lengths for
“groups of p-adic type” and unramified characters \.

Finally, we note that the cocycle condition implies that w — a(w, \)
is a representation of W, = {we W|wx = \}.

3. The Knapp-Stein R-group.” We define a subgroup R of W,
such that the commuting algebra of Indj )\ is given as the group
algebra C[R]. The theory of the R-group was developed by Knapp
and Stein for real semi-simple Lie groups. The following p-adic
analogue is another illustration of Harish-Chandra’s “Lefschetz prin-
ciple,” which says that whatever is true for real reductive groups
is also true for p-adic groups.

Let 4'={a > 0|rn, =1}. Then *4" is a sub-root system of the
root system Q.

Let

R={we W, a >0 and », =1 imply that wa > 0}
={we W;lwd") = 4}%.

* Suppose that G is a Chevalley group.
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Let W' be the reflection group associated to +-4', i.e., the group
generated by the reflections {w,|a € 4}.

THEOREM 1. W, can be written as a semi-direct product W, =
R x W', where R and W' are defined above. Further, W' is the
group {we W,|a(w, N) s scalar}.

Proof. First we show that W’ < W,. Let ae 4’ and show that
wehs = Np for all roots B. But since N, =1, w; =\l =
Nﬁx;(a",ﬁ”) — )\'ﬁ-

Now suppose w € W; has length [ and write w = w,, --- w,, as
a reduced product of basic reflections. If we R then we are done.
Otherwise there exists a € 4 with wa < 0. Then a = w,, --- w,, (a;)
for some 4, 1<¢=<1l. Let r=w, ---®, ---w, Where w,, is
omitted. Then

w:walc..wai...walwal ...wai-..walwal...wal
= TWyy w0t Wy Wey Weyyy ~ " Wy
= rw

Wey " We o (d)

= rw, .

Then w,e W’ since ae4’. Since l(r) < l(w) we may use induction
on l(w) to complete the proof that W, = R x W'.

Finally, we show that W' = {we W;|a(w, N) is scalar}. In the
X-realization, a(w, \) acts as multiplication by A;?, if we use w, (1)
as coset representative for w, and normalize the operator by the
gamma function. Thus a(w, ») = I if and only if ae4’. Then
a(w, ) = I for all we W’'. The cocycle condition shows that w —
a(w, ») is a homomorphism from W, into the group of invertible
intertwining operators for Indjx, and Winarsky [37] shows that
a(w, A) is nonscalar if we R, w +# 1. These observations complete
the proof of the theorem.

We note that Winarsky’s condition for reducibility is essentially
that R is nontrivial.

By an unpublished theorem of Harish-Chandra, the commuting
algebra C(\) of Ind§ )\ is spanned by {a(w, \)|w e W;}. By the above,
it is spanned by {a(w, A)|w € R}. But these operators are linearly
independent, by our calculations in Chapter 3, or by an appeal te
Silberger’s theorem [33], which states that

dim C(\) = |WL|/| W] .

Thus the operators {a(w, \)|w € R} form a basis for C(A). Finally,
since a(w'w"”, N) = a(w’, M)a(w”, A) for w’ and w” in R £ W,, we have
the following
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THEOREM 2. The commuting algebra C(\) of the (unitary) prin-

cipal series representation Indé\ is isomorphic to the group algebra
C[R].

COROLLARY 1.

(a) dim C(\) = |R|.

(b) The number of inequivalent irreducible components of Ind§ »
18 equal to the dimension of the center of C[R], which equals the
number of conjugacy classes in R.

(¢) Ind§ N decomposes with multiplicities equal to 1 if and only
if R is abelian.

(d If CIRl=M,(C)D --- D M,(C), then n, ---,n, are the
multiplicities of the irreducible components of Ind§ a.

CHAPTER II
CLASSIFICATION OF THE R-GROUPS

The R-groups which occur for Chevalley groups of each type
A, B, C,D,E,E,E,;,F, and G,, are determined. They are
abelian except in the cases of D,, for which non-abelian R occur for
every n = 4, and in the cases E, and E,.

The orders of the R-groups which can occur depend on % and
on the arithmetic of the field . Further, the existence of the non-
abelian E; R-group depends on the arithmetic of f.

Let A be a character of T and let

4" = {a > 0|, = 1}
= {a > 0|a(w,, ») is scalar} .
Then
R={we W, aa >0 and », =1 imply that wa > 0}
= {we W lwd") = 4} .

We note that the second definition of R shows that it is a group.

Identify A, with @’ in the root system @° dual to @ and let
L =F=Z> ,mya | [ Nee =1, m,c€Z]. Then we W, if and
only if a' — wa®e & for all simple roots a’. & contains the set
{a’|a € 4"} = positive elements in &N @°, which we sometimes denote
by 4.

w acts on ), as w acts on a’, as w™* acts on a. Since weR if
and only if w'eR,

R={weW,|a'e®, a'e & and a’ > 0 imply that wa® > 0} .

We do the calculations to classify R in the root system @° dual
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to @. Note that not all of wi(a” — wa®), 0 < 7 < ord w, can be posi-
tive, since their sum is zero. Thus, if @’ — wa’e NP, for some
root «, then w¢R,. Note that this condition is invariant under
conjugation, replacing A by wx, although R,; may not be equal to
"R, = wRw™.

We use this observation to determine which elements of W can
form an R-group for some L€ T”. Once we have a possible B, we
look for a character » with R < W, as R-group. The existence of
such a A depends on the arithmetic of f. Our proof explicitly con-
structs a list of » and R and shows that any nontrivial R-group is
conjugate under W to one on the list.

We proceed according to the classification of types of root
systems [2].

1. Type A,. @=0"={e,—e;]1=<i++j=mn-+1} is self-dual
and the Weyl group W = S,,, acts as permutations of the e,.

THEOREM A,. R is abelian and |R| divides n + 1. If the largest
cyclic subgroup of R has order m, then |R| divides [£*: (£*)™] = order
of the subgroup of (t*) consisting of characters of order dividing m.

Conventions. We identify e; — e¢;€@” with the character .,_.;
and consider Z[?']/<” as a subgroup of (f*)" by the map >\ m,a" —
T e

LEMMA 1. wi—e; — e,; 18 an injective homomorphism from R
into (¥*)", independent of i.

Proof. Let we W, Then e; —e; = w(e; — e;) = e,; — e,; implies
that ¢, — e,; = ¢; — e,;, so that the map is independent of i. Note
that = means congruence mod & and that we have used the fact
that we W, if and only if a®° — wa" e & for all a’ e @".

Let w,w' e W,. Then e, — €uui = € — €uri + €uis — €y = €; —
€.: + e; — e,; shows that the map is a homomorphism.

If w=1 then we may replace everything by a conjugate to
assume that wl % 1. Then if ¢, — ¢,, €<, We have ¢, — ¢,, € 4’ and
w e, — e,) <0, so that we¢ R. Thus the map is injective on R.

Thus R is isomorphic to a subgroup of (¥f*)” and is abelian.
Further, if the largest cyclic subgroup of R has order m, then any
element of R has order dividing m and the image of R is contained
in the subgroup of characters of t* of order dividing m. Thus |R|
divides [t*: (£*)"].

Since R is abelian, Ind§ )\ decomposes simply. This is shown for
G = SL(n, t) by Howe and Silberger [12].
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We note that if f = R, then the image of R is a finite subgroup
of (R*)", so has order 1 or 2 [17].

LEMMA 2. The stabilizer of any e; in R is trivial. Thus |R|
divides m + 1.

Proof. Suppose w e R fixes some i. Then ¢; —e,; = 0 and the
image of w under the above map is trivial. Thus w = 1. So the
action of R partitions {1, 2, ---, » + 1} into orbits of cardinality |R|
and |R| divides » + 1.

Note that any finite subgroup of (¥*)” with order dividing » + 1
is the image of some R-group.

REMARK. The homomorphism wit— e, — e,; is suggested by the
following. In Chapter 8 we realize Indj » and a(w, \) on LXV). We
exhibit a class of functions in L*(V) on which a(w,, \) acts as multi-
plication by M(w,, ») = A;* in the U_, coordinate, a simple. Then
a(w, N) = a(w,, -+ w,, M) acts as maultiplication by the function
Mw, N) = MWy, Wy, + =+ Weyh) =+ M(w,,, V).

Then w+ M(w, \) is a homomorphism, as is w+— M(w, \) evalu-
ated at some U_,, « simple. The above map M(w,\) is evaluated
at U_,, a =e¢, — e..

We note that the linear independence of distinet characters of
£* implies that the M(w, \) evaluated at U_, are linearly independent
for we R, and therefore the operators {a(w, A)|w € R} are linearly
independent.

2. TypeB,. @ ={xe,*e;, *e|]l=Zi<j=z=n,1=Zk=n}. The
dual root system @° = {+e, +¢;, +2¢,|1 <1< j=<nm,1 Zk=<n}istype
C,. The Weyl group W = S, X Z acts on @ and ¢ by permutations
and sign changes on the e,.

THEOREM B,. R=Z, X --- X Z, with |R| dividing both 2n and
[E*: (¥%)Y].

Suppose w = sce W, with s€ S, and ¢c€ Z?. We may replace w
by a conjugate under S, to assume the cycles in s consist of con-
secutive integers, and then by a conjugate by a sign change to
assume that ¢ changes the sign of at most one e; in each orbit of s.

LEMMA 1. If w = sce R, then a montrivial cycle of s can not
have only one sign change associated to it.

Proof. We may assume the cycleis (kb +1:--n —1n), kb <mn,
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and that the sign change is on 2¢,. Repeated application of w
sends ¢,_; — ¢, to e, — e,,,, which w™* then sends to —e, — ¢,. Thus
(7% + €n1 € g

If k=n—1, then 2¢,,€6N®. But then 2¢,, >0 and
w(2e,,) = —2¢, < 0 contradicts w e R.

Otherwise s < » — lande, + ¢,_,€ < NP". Butthene, +e¢,, >0
and we, + €,_,) = wlepy, + €,) = e,y — €, < 0 contradicts w e R.

LEMMA 2. Any montrivial cycle of s€ S, must be a transposi-
tion if w = sceR.

Proof. We may assume that the cycle is (k--- n — 1n), and by
the above lemma, that there are no sign changes associated to this
cycle, i.e., ¢(2¢,) = 2¢, for k <1 < n.

Then w(e,_,+e,) =e¢,+ e, implies that ¢, —e,_,€6 & If k<n—1,
then ¢,—e, € ¥ NP, with ¢,—e,_, >0 and w(e,—e,_,) =e,—e, <0,
contradicting we R. Thus k=% —1 and the cycle is a transposition.

By the two lemmas, any w = sc€ R is conjugate to a product
of disjoint transpositions and sign changes, so w*=1 and R =
Z, X -+- X Z, Further, no such w # 1 can fix an e¢;. This follows
by the argument for type A, if s# 1. If s=1, w = c¢ # 1 changes
the sign of some ¢;. Then if w(e,) = ¢, we have e; — ¢, — w(e; — ;) =
2¢;€ £ N0°. But then 2¢; > 0 and w(2¢;) < 0 contradicts w € R.

Thus R permutes {*e;|1 < ¢ < n} with stabp(xe,) = {1}, so |R]|
divides 2n.

We now have that any weR is conjugate to one of 1,
12)@d4)---(n—1mn), 12) --- (k — 1l k)cyy, -+ - €,y OF €, Cy -+ - C,, Where
¢; is the sign change on e;.

If we evaluate M(w,\) at U_,, a = ¢, — ¢,, we get the homo-
morphism ¢, --- ¢, — 2¢, (i.e., ne;) and wre; — we, if w = s¢ with
s(3) # 4. We note that none of these characters can be trivial if
weR, so wr e, — we; is an injective homomorphism from R into
the group of characters of I* generated by those of order 2. Thus
|R| divides [E*: (£*)%].

Of course, one may directly check that w — e, — we; is independent
of ¢ and is an injective homomorphism from R into the subgroup
Z[9°]/Z of (t*)" without reference to M(w, \).

We note that if f = R, then |R| =1 or 2, and that if f is non-
Archimedean with odd residual characteristic, then |R| =1, 2, or 4.

3. Type C,. @ = {*e,*e; +2¢|1=1<j=n,1=k=n}. The
dual root system @" = {te;+¢;, e, |11 <j=<n,1<k=<n}is type
B,. The Weyl group W = S, x Z? acts on @ and 9" by permutations
and sign changes on the e,.
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THEOREM C,. R=Z, X Z, X --- X Z, with the number of factors
of Z, bounded by n and by [£*: (£*)] — 1.

Suppose w = sce W;, s€ S, and ce Z”. We may replace w by a
conjugate under a sign change to assume that ¢ changes the sign
of at most one ¢; in each orbit of s.

LEMMA 1. Suppose w =sceR, s€8S,, ceZ’. Then s=1.

Proof. If s has a nontrivial cycle, by conjugation we may assume
it is (k ---n — 1 %) and that ¢ changes the sign of at most one e,
in the corresponding orbit.

Suppose ¢le,) = e, for k < ¢ < n and ¢(e,) = —e,. Then w'(e,) =
e,_, implies that ¢, , — e, € £ N®°". But repeated application of w™
sends e,_, — e, to e, — e,,,, which w™ sends to —e, — ¢, < 0, contra-
dicting w e R.

Now suppose cle;)) = ¢; for k <41 <n. Then w'(e,) = e,, and
,1 — e, € X NP. But then wle,_, —e,) = e, — e, <0 contradicts
w € R.

Thus s =1 if w=sccR, and R is contained in the group of
sign changes in W. Hence R= Z, X --- X Z, with the number of
factors bounded by n.

Let we R. By conjugation we may assume that w = ¢, ¢y, -+ - €,

LEMMA 2. If ¢,Chyy - C,ER, then ;e R, k <1 < m.

Proof. e; and e, —e;, k<1 + j = mn, correspond to characters
of order 2, and & contains Z[2¢ |k <41 < n]. Then a —cae ¥
for all simple a, so c;e W, k<1 =<mn. Since R(c;) S R(c, --- ¢,)
does not intersect 4’, we have that ¢;e R. (Recall that R(w) =
{a > 0|wa < 0}.)

Thus any R is conjugate to {c;, ¢4ss, - -, ¢,» for some k, 1 <k < n,
taking ¢, --- ¢, above with as many sign changes as possible.

Note that each ¢; corresponds to a character of order 2, k < 1 < »,
and that these characters must be distinct, since ¢, — ¢; does not
correspond to the trivial character, k¥ < i#Jj < n. Conversely, we
may define a character A with R-group {¢, €441, * -+, ¢,» by assigning
a distinct character of order 2 to each ¢, k < 1 < .

Thus the number of factors of Z, in R is bounded by
[E*: (8] — 1.

Note that there can be more reducibility in the case of type C,
than in the case of type B,.

B,:|R| divides 2% and [f*: (£*).

C,: |R| divides 2" and 201,
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If t= R, we again get |R| =1 or 2.

4. Type D,. @ = 0" = {*e, £ ¢;|1 <1< j = n}is self-dual and
the Weyl group W = S, X Z* acts as permutations and even sign
changes on the e,.

THEOREM D,.

(a) Suppose n 1is even. Then if R s abelian, R =1Z, X
Z, X -+ X Z, with the number of factors bounded by n — 1 and by
[t*: (#*)?*] — 1. If R s monabelian, then R =(Z, X --+ X Z,) X
(Z, X Z, X --- X Z,) with the order of the first factor dividing both
2n and [t*: (t*)*], and the number of factors of Z, in the mormal
subgroup an odd number bounded by n — 1 and [¥*: (£*)*] — 1.

(b) Suppose n is odd. Then if R is abelian, R = Z, X --+ X Z,
with the number of factors of Z, bounded by n — 1 and [f*: ¥*)] — 1,
or R=Z,. If R is nonabelian, R = Z, X (Z, X -+ X Z,) with the
number of factors of Z, in the normal subgroup an even number
bounded by n — 3 and [£*: (F*)*] — 2.

The actions on the normal factors of the semi-direct products
are described explicitly in the course of the proof.

LEMMA 1. Suppose w =sceR, s€8S, and ce Z'. Then s = 1.

Proof. Suppose s has a cycle of length = 3. Replacing w by a
conjugate under S,, we may assume the cycle is (kk+1:--mn),
k<mn—1. Then by conjugating w by a sign change, we may
assume that ¢ changes the sign of at most 2 of the e; in each orbit
of s.

If ¢ involves no sign changes on ¢, ---, e,, then w™(e,_, + ¢,) =
¢,» + e,_, implies that e, , —e,e4’. But then w(e,_, —e,) < 0 con-
tradicts we R.

If ¢ involves only one sign change one¢,, ---, ¢,, We may suppose
it is on e,. Then w(e,_, + ¢,) = ¢, — ¢, implies ¢, + ¢, ,€4. But
then we, + e,_.) = €442 — &, < 0 contradicts we R.

Finally, if there are two sign changes involved, we may suppose
they are on e¢,_, and e,. Then w(e,_, —¢,) = —e, + ¢, implies that
e, — e,,€4". But then w(e, — e,_,) = —e, — e,_., contradicts w € R.

Note that w = sce R, s* = 1 implies that w* = (ses™")c is a sign
change in R and thus w*=1. If we let R’ be the group of sign
changes in R, then R"<{R and R/IR' = Z, X --- X Z,.

LEMMA 2. Suppose ¢,Cpyy - €, € R with k> 1. Then R contains
all even sign chamges on {ey, €y, =+, €.}
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Proof. 1If k> 1, then ¢, ¢y, -+ - ¢, € R if and only if ¢, — ¢; cor-
responds to a character of order 2 for k<i< j<m, and ¢,_, +e,
correspond to the same character. Then ¢;¢,., € W, and R(c;c;y,) &
R(e, ¢pyy -+ + ¢,) imply that ¢; ¢, e R, for k< i < mn.

Thus R’ consists of all even sign changes on {e, -, e,}, and
|R'] < 20,

Further, since the characters corresponding to e; — e¢; are non-
trivial for ¥ < 1 < j < m, the characters corresponding to ¢; — ¢, are
distinet, ¥ < ¢ < n. Thus |R'| £ 2M@0-1,

Now, suppose w = sce B with s 1. By conjugation we may
assume s = (12)(34) --- (k — 1k%k) with # < n. Then c¢(e;) = —e; for
k <1 = n; first, we may assume c(e,) = +e, by conjugation by c,ec,
if necessary. Then if c(e;) = e; for some k<1 =<n, wle, —e) =
¢, — e; would imply e,_, — e, €4’. But then w(e,_, — ¢,) < 0 contra-
dicts we R. Thus we have shown

LEMMA 3. stabp(+e;) < R'.

Further, any element of order 2 in R is conjugate to one of
ceZr, 12)(84) --- (m — 1n), (12)(34) --- (w — 1L n)c,_, ¢,, or (12) - --
(k — 1k)eyy, -+ - ¢, for some k. Any element of order 4 in R is con-
jugate to (12)(34) --- (m — 1 M)C, Crps ** * Cm Crps Cmss * =+ €, fOr Some
m, k with 2 <k < m =< n, where the sign change changes the sign
of the e¢;, m <7 < n and of the ¢;, j even, k < 7 < m.

If R has no elements of order 4, then R=Z, X --- X Z, is
abelian. Suppose there is an element of order 4. We distinguish
the cases » even and n odd.

Case 1. Suppose 7 is even.

Then any element of R of order 4 is conjugate to w =
(12)(84) -+ (M — 1 M) Copz *** Co*Cruyy = - C, With & < m — 2. Suppose
for a moment that m = n. Then since we W, if and only if a —
wa € ¥, the A, must satisfy relations corresponding to e, — e, =
e—e=--=¢_,—¢=e¢,,+e, 2e—e)=0, and 2(e —e;) =0
mod ¥ for k <1 < j <n. Further, if weR then £ N{e; — e;|k —
1<i<j=<an}=0, and thus ) is given by

sgne

Sghe Sgne Sgne S8ng S8ng ‘/////,
.- Py ﬁ

SgNne sgngd Sgno2

Sgne

where k= n — 2d.
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Since w*=¢;_,¢, - c,€ R, by Lemma 2, R contains the group
Z3** of all even sign changes on {e,_, e, -+, ¢,}. Then (12)(84) ---
(m—1n)eR and R = {(12)(84) - (n — 1n)) X {CuCns, CaciCrmss ***»
€,y 1S nonabelian.

If there are other sign changes in R, we may assume they
involve e, €44, * -+, €,_s, Where [ is odd. Then the group R’ of all
sign changes in R consists all even sign changes on {e, e;yy, -+, €.}
and each ¢; —¢;, I <7 < j < n corresponds to a character of order 2.

Now, if m<n, w=>12) - (M — 1M)C;Chys *** Cne  Cmy1 *** Ca
acts on D, ={te +te¢;|]l1<i<j=<=m}c® as the above. Then
6 — e =0 — €=+ =€y, — Cpn = €y, + ¢, mod &, and e, — e; cor-
responds to a character of order 2 for ¥ — 1 <4< j < m and for
m+l1si<jsn.

Thus e, — €, = (6,1 — €,) + (€,1 + ¢,) 0 and 2(e, — pyy) =
en_; — €, mod &, and \ is given by

sgne

all order 2
sgne sgne sgne sgne sgne 0

Sgno,  SgNs, sghe,

Sgne sgny’

with ?* = sgn,.

Again, R contains s¢c = (12) -+« (m — 1L m)€py, - - - ¢, and we may
assume by conjugation the R’ consists of all even sign changes on
{es, - *y €m}-

Then R = {s¢) X R’ is nonabelian, as before. Suppose there are
other s’¢’ in R. If 8’ = s then s¢’ is in the subgroup (s¢) x R'. If
s’ #s then R = (s¢,s'¢’y) x R'. We keep adding new elements of
R until

LEMMA 4. R ={1,sec, s'¢’, ---} X R with the permutations s'?
distinct.

Further, the order of the first subgroup divides 2n by Lemma
3, and also R’ £ Z?™*. Thus |R| divides n-2".

Formally define a character corresponding to 2¢, to be —(¢,_, —
e,) + (e,_. + e,) and then use 2¢; = 2(e; — e,) + 2¢, to define a character
corresponding to 2¢;,. If w =sceR, ceZ " with s 1, then e; — we;
is a character of order 2 and wt e, — we;, is an injective homo-
morphism on the first (nonnormal) factor of E. Thus the order of
this factor divides [£*: (£*)%].

We have already seen that the number of factors of Z, in R’
is bounded by » — 1 and [£*: (£*)*] — 1.
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Finally, if # is even and R is abelian, we may write
R=1{1,sc s8¢, -} XR =Z,X --- XZ, as in Lemma 4, with the s?
distinct. We show that the number of factors of Z, is bounded by
n — 1 and [£*: (£*)*] — 1. If R = R', this is true. If R’ = {1}, then
|R| divides 2n by Lemma 38 and divides [£*: (£*))] by the above.
Suppose that both factors are nontrivial and that R is abelian. We
may assume that (12)(34) ---(n —1n) or (12) --- (b — 1k)Ccyyr -+ Cn
is in R.

Suppose that (12) --- (k — 1k)eypy -+ - ¢, and e, - -+ ¢, € R, kB < .
Then also ¢,_,c,€ R. Then if s'¢’eR, s~ 1, (12).---(k — 1k), we
may assume that c¢'(e;) =¢;, 1=k —1,k. Then s'(k)+*k—1 by
Lemma 3 and s’¢’ does not commute with ¢,_, ¢,, contradicting the
assumption that R is abelian. Thus no other s’¢’ are in R. Further,
if l <k —1, then ¢, ,c,_, € R, contradicting R abelian, and ¢,_, ¢, is
the only sign change in R. Thus |[R| = 4.

Suppose that (12)(84) --- (w —1m) and ¢, -+- ¢,_.¢, € R. Then if
1<i<n—1, ¢,,¢,_,€R, contradicting the assumption R is abelian.
Thusi=1lorn—1. Ifs=1,the R ={1,¢,¢,---¢,} and |R| divides
2n and 2[f*: (¥*)*]. If ¢+ =« — 1, then |R| = 4, as above.

We note that if f = R, then one can have |[R|=1,2, or 4 in
the case of D,, n even.

Case 2. Suppose n is odd.

In this case any element of order 4 in R is conjugate to w =
(12) -« (m — 1Mm). CLChiz*"* Cu*Cmsr = * Cpy With &k < m < n.

If m=n—-—1and w=012)---(n —2n — 1)¢,_,¢,, then A is
given by

'
sgng sgne  sgne sgne /
. - o . sgne

. . R . - — g
sgne, sgno,_, sgne, \

with ¥* = sgn,.

Then w* = ¢,_,¢; --- ¢,_,€ R and thus R contains all even sign
changes on {e, ., e, -, e,_,}. Thus each ¢ —e¢;, k—1<i1<j=
n — 1 corresponds to a character of order 2 and also sc = (12) ---
(n—2n—1c,,c,eR. We have R = {s¢) X {€4_1Cp CCpis, ***»
CosCroy = L, X Z0 1,

Ifm<n—landw=(12)- - (M — 1 M)C,CLss *** CCpmes *** C,ER,
then )\ is given by
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sgny'

sghe sgne sgn, sgne all order 2

sgnsl Sgne

Sgng Sgnp 3

Sghe Sgne’

with ¥ = sgn,.

In this case, w* = ¢;_ ¢, - - ¢, € R and R contains all even sign
changes on {¢,_,, - -+, €n}. Thensc= (12)--- (M — 1 M)Cp Csr -+ C. ER
and each ¢, —¢;, k—1<i<j=m, and m+1=1<J=n, cor-
responds to a character of order 2. Also 2(e, — €ni1) = €not — €n =
(€n—y — €,) + (e,_1 + ¢,) mod &

R = (s¢) X {C4_yChy CpCpisy ***» CmsCmry = Zy X Z"*. Let R” be
the group of the even sign changes on {e, e, - -, e,_,} Which occur
in R. Then R = {s¢) x R"” by

LEMMA 5. If s'c’eR, then s =1 or s =s=(12)--- (m — 1 m).

Proof. If sc and s’c’ are in R, then s’s = ss’ by Lemma 1, so
that s’ permutes the odd number of fixed points m + 1, ---, n of s.
s’ must permute them faithfully by Lemma 3. But this contradicts
Lemma 1, which implies that s’ must be a product of transpositions.

Thus R = {s¢) X R" = Z, x R".

Since R” < Zr* < Z2%, the number of factors of Z, in R" is
bounded by » — 3. It is also bounded by [t*: (£*)*] — 2, since the
number of factors of Z, in R’ = {¢n_.Cny X R"” is bounded by
[£*: (£*)1] — 1.

Finally, suppose that R is abelian and 7 is odd. Then either
there are no factors of Z, above, i.e., k= m, R" = {1} and R = Z,
or R is contained in the group Z;' of even sign changes.

5. Type E,.

THEOREM E,, R =1, Z, Z,, Z, X Z; or Z, Further, Z; X Z,
oceurs as a reducibility group if and only if p =3 or 3 divides
qg— 1.

Arrange the simple roots in the traditional Dynkin diagram

a, a; ay ag ag

- - o

@,
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The roots spanned by {a,, a,, a,, o, o} form a subsystem of type
D,, giving an inclusion of Weyl groups W(D,) < W(%,). Comparing
orders, 27-8-5 and 27-8*-5 respectively, we see that a 2-Sylow sub-
group of W(D,) is also a 2-Sylow subgroup of W(ZX,). By conjuga-
tion, we may assume that a 2-Sylow subgroup of W, is contained
in W(Dy).

Let ay=¢, — ey -+, 3= e, —¢; and a, = ¢, + ¢;. Then by our
D, results, potential candidates in RN W(D;) are conjugate to c.c.c.c;,
e, (12) eeqeies, or (12) (34) e,c;.  Adding the condition wa, = a,, only
CoCiCiCs = W Wyttt Wa;Way CAN bE in an K, R-group.

If c,ceic€ R, then \ is given by

sgne sgne sgne

sgne

with sgn, # sgn,. There can be no other elements of order 2 in R
with c,cqe,c,; if there were another, by conjugation we could assume
it is e,c.eic,. But the product c,c; cannot be in an R-group.

Thus, if there is an element with order a power of 2 in R, it
has order 2 and is unique, hence is in the center of R. '

Note that the longest Weyl element w, and the character
¥ X sgne ! ¥

sgne

are conjugate to the above.

There is only one conjugacy class of elements of order 5 in W(&,)
and none of its elements can be in an R-group. Thus, R is the direct
product of a 2-Sylow subgroup (1 or Z,) and a 3-Sylow subgroup.
Examining conjugacy classes of elements of order 3 or 9, [5], any
element in R with order a power of 3 is conjugate to one of
W W gW oWy OF W, W W, W, W, w1, Where 3 represents the root
a, + 2a, + 2a, + 3a, + 2a5 + «.

For w,w,w,w, €R, \ is given by

¥ f . P! P!
with « of order 3, giving R = Z,. Further, if \,, = 4 and \,, # *'

have order 3, then R = (W, W, WW,5 WoWeyWa, W2y = Zy X Zy.  1f
instead \,, # \,, have order 2, then R = (W, W,,W, W, Wo) = Z,.
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For w,w,w,w,w,ws2 € R, N is given by

¥ ¥ X 4

]

Yo

b

with each character having order 3, « = @ and X ¢ {y, #). Then
R = Z,, or there is also an element of type 2A, [5] in R= Z, X Z,,
and we are in one of the above cases.

Note that if G is a Chevalley group over k= R, then R=1
and Ind§\ is irreducible.

6. Type E..

THEOREM E,. R may be nonabelian. If so, R = dihedral group
D of order 8, or R=D X Z,. D X Z, can occur if and only if
P =2 or 4 divides q — 1.

If R is abelian, then R = Z} with 0w <4, Z,, Z, or Z,. Z;}
and Z, occur if and only if »=2. Z} occurs if and only if
[6*: (6*)] = 16. Z, and Z; occur if and only if p = 8 or 8 divides
q— 1.

Arrange the simple roots in the diagram

a, a3 ay as A ay

[ _

a,

The roots {a,, a;, a,, a;, o, @;} span a subsystem of type D,, giving
an inclusion of Weyl groups W(D,) < W(E,). Let w,= —1 be the
longest Weyl element in W(X,). Comparing orders, 2°-3*-5 and
219.34.5.-7, (wyyxr a 2-Sylow subgroup of W(D, will be a 2-Sylow
subgroup of W(E,). We first classify 2-Sylow subgroups of R-groups.

Let a;,=e, — ¢, -+, az=¢;,— ¢, and a,= e; + ¢,. Using our
W (D,) notation and grouping by W(E,)-conjugacy classes, elements
in R with order a power of 2 are conjugate to:

8A,;: (12) (34) (56)cscs, WiCsCLCsCs

4A;: cecqe5, w(12) (34) (56)cs¢,

5A,: (12)cseie565, wo(34) (56), wyesCq

BA,: €,6:6,,65C;, Wy(56)

TA;:w, = —1

Dy(a;) + 2A;: (12) (84)c,ci05¢5, wi(12) (34) (56)c.c;

24; + A w,(12) (34)cqcs.
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Suppose there is an element or order 4 in R. If it has type
D,(a,) + 24,, we may assume it is (12) (84)c,c,ci¢, and \ is given by

sgny P sgne Sgne SgNe  S8Ng

SgNe SgNy
with o* = sgn, # sgn,. Then R = {(13) (24) (66)c.c,) X {(12) (34)c.c.c:6s) =
dihedral group D,.

If A, is “generic”, then R = D is nonabelian with order 8. If
R is larger, a consideration of other possible elements shows that
we may assume, by conjugation, that R contains one of wcsc.sCe,
WoC:CiCsCay OF WiCiCCsCe. Iach of these three cases occurs, giving
R = D X Z, nonabelian of order 16.

In the first case, A} = sgn,sgn,, which can occur if, and only if
[E*: (E*)Y] = 16, i.e., p = 2 or 4 divides ¢ — 1.

In the second case, \,, # sgny, sgn,, sgn, sgn, has order 2, which
can occur if, and only if p = 2.

In the third case, A} = sgny, and \, ' # sghy, SgN,, SN, SEN,
has order 2, which occurs if, and only if p = 2.

We may now suppose that R contains no elements of type
Dya,) + 2A,.

Suppose that R contains wy(12) (84)c.c,. Then A is given by

X sgne ¥ sgne x? sgne

SgNe SENg
with ¥? = sgn, # sgn,, X of order 4 and X+ sgny, sgn,. If X*=
sgn, sgn,, then we are in one of the above cases with (12) (34)c.c.c.c, € R.
Otherwise, X*¢ {sgn,, sgn,y, so p = 2, and then R = Z,.

If R contains no elements of order 4, then a 2-Sylow subgroup
of R is a product of copies of Z, An explicit list shows that Z,
occurs for any k, even the reals R; that Z; occurs for any non-
Archimedean % (we will need 2 characters of order 2); that Z; occurs
if, and only if p = 2; and Z} occurs if, and only if [k*: (k*)’] = 16.

An easy calculation shows that R can contain no elements of
order 5 or 7. Of elements of order a power of 3, only conjugates
OF W W W W, W, w20(34,) can be in an R-group. If this element
is in R, then A is given by

¥ ¥ X ¥ ¥
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with « # X*' of order 3. There are no other elements of order 3
in B with this one, besides its inverse. Since we may specify only
one character of order 2, there can be at most one element of order
2 in this R. Thus, R = Z,. This does occur, with R generated by
an element of type A, + A,.

7. Type E,.

THEOREM E,. A nonabelian R-group will occur if and only if
[B*: (k*)] = 16. All nonabelian R are conjugate to {(12)(34)(56)(78)C,Cs,
(18)(24)(57)(68)C,C;, (15)(26)(87)(48)C,Csy x {C,C,C,C,, C,C,C:Cs, C.C,C,C,,
C,C.C.C.

If R is abelian, then R = Z} with 0= n <4, Z, Z, X Z,, Z,
Z, X Z,, or Z,.

Z; occurs if and only if [k*: (B*)] =2, 0<n < 4. Z, occurs
if and only if p =2 or 4 divides ¢ — 1. Z, X Z, occurs if and only
of p= 2. Z,occurs if and only if [k*: (k*)P°]1 =9 and Z, X Z, occurs
if and only if [k*: (B*)] = 27. Z; occurs if and only if [k*: (k*)*] =
25, i.e., p =5 or 5 divides q — 1.

Arrange the simple roots in the diagram

Qg

Letting g8 = —(*#), @ contains a subsystem of type D, spanned
by

a, a, a, a; a; a, a,
o

B

giving an inclusion of Weyl groups W(D,) < W(E,). Comparing orders,
2*.3*.5.7 and 2"-3°-5°-7, we see that a 2-Sylow subgroup of W(D,)
is also a 2-Sylow subgroup of W(E;). Thus we may assume that a
2-Sylow subgroup of R is contained in W(D;); we first classify these
groups.

In this realization, the orderings determined by the positive roots
are not compatible between the D, and E;, root systems. However,
easy modifications of the proofs show that Lemmas 1 and 3 of §D,
hold. Adding the condition wa, = a, in E,, we see that possible
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elements in W(D,)N R, grouped by W(E,)-conjugacy classes, are con-
jugate to

44,: GGG, (12) (34) (56) (78)C.C,

6A,: C,C,C,C,C.C;, (12) (34)C;C,C.Cs,

TA,: (12)C,C,C,C,C.Cs,

8A4,: w, = —1,

2D (a,): (12) (34) (56) (78)C.C.CC,

Da,) + 3A,: (12) (34) (66)C,C,C,C;, or

DJa,) + 4A4,: (12) (34)C,C,C,C,C.C;.

Suppose there is an element of order 4 in R. If there is one
of type 2D,(a,), we may assume it is (12) (34) (56) (78)C,C.C,C,. Then
A\ is given by

sgng sgne sgny sgng sgng sgn. sgng

Sgne

with |(sgn,, sgn,, sgn,, sgn.y| = 16. This can occur if and only if
[£*: (k*)"] = 16, and in this case, 4’ = g¢.
Then

R = Wz
= ((12) (34) (56) (78)C,C;, (13) (24) (57) (68)C,C;, (15) (26) (37) (48)C.Cs)
X <Clcscsc7, C?C4CGCS’ C1020304; Csc4csce>

is nonabelian of order 128 and has 65 conjugacy classes. R odm
{w,y is abelian of order 64.

Now suppose that R does not contain an element of type 2D,(a,),
but does contain (12) (84) (66)C,C,C,C; of type D,a,) + 34,. Then )\
is given by

b 0%
)

sgne sgne A, Sgne

s$gNne sgn, A, s

A,

with A} = sgn, and A2\? = sgn,sgn,. This can occur if and only if
p=2 or 4 divides ¢ — 1. An examination of other possible elements
in R with this one shows that R = Z, if \, and A, satisfy no addi-
tional conditions. If )\, has order 2, A\, & {(sgn,, sgn,y, then C,C,C;C, €
R=Z,xZ, If instead \=sgn,, M\;* has order 2, M\;* € {sgn,, sgn,),
then (12)(85) (46) (78)C.C,e R = Z, X Z,. These two cases occur if
and only if p = 2.

Next, assume that R does not contain elements of types 2D,(a,)
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or D,a,) + 84,, but does contain (12) (834)C,C,C,C,C,C;s of type D a,) +
4A,. Then X is given by

SgNe SENe sgny, sgne As sgne sgne sgng

[ S

A,

with A2 = sgny and A\ = sgn,sgn,., and R = Z,. This case occurs if
and only if [k*: (5*)*] = 16.

Now assume that R contains no elements of order 4. An explicit
list shows that a 2-Sylow subgroup of R is then Z with 0 < n < 4.
Further, Z occurs if and only if [k*: (k*)*] = 2", 0 = n < 4.

Using the fact that no elements of order 6 can be in an E; R-
group, it is easy to see that the other R-groups which occur are
isomorphic to Z;, Z; X Z, or Z,.

R = Z, may be generated by an element of type 34, or 4A4,.

To construct R=Z,X Z,, note that @ contains a subsystem of type
A, spanned by {a, a,, as, a,, as, a;, o, o}, Where a, = *%*. Letting
Oy =€ — €, O =2¢—e,- ", 0;=e—e R=}{123) (456) (789),
(147) (258) (869)) occurs for the character

v X v vz ¥ ¥

4

with 4, X and @ of order 3 and |{y, X, @)| = 2T.

Z, will occur as an R-group, generated by an element of type
24,, if and only if [k*: (k*)"] = 25.

8. Type F,. @' = {*2¢, *+e te;, te,te,te;tell=k=4,
1<i<j=<4}isof typeF,. A base for @' is given by a, = ¢, — ¢,
o, = e, — e, 0= 2, and a, = ¢, — €, — €; — ¢,.

@' ={te tej|]l<i<j=4} forms a sub-root system of type
D, with Weyl group W(®') = S, x Z; acting as permutations and

.even sign changes on the ¢;, The Weyl group for @ and @' of type
"F, is S;x W(@') = S, x (S, x Z7), where S, acts as permutations of
e, — e, e; — e, and e; + e,.

If wsa =a — n(a, B) B, the Cartan matrix [n(a, B)] of @° is

2 -1 0 0
-1 2 -1 0
0 -2 2 -1
0 0 -1 2
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The reader is referred to Bourbaki [2] for more details.

THEOREM F,. R=1, Z, or Z;,. Z, can occur as an R-group if
and only if p =3 or 3 divides q¢ — 1.

LEMMA 1. Suppose w = sde R withseS,and d€S, x Z;. Then
s has order 1 or 3.

Proof. seS; has order 1, 2, or 3, so that w = sd, w? or w® is
in the normal subgroup S, X Z?. Further, this element must be able
to give reducibility for D,, so that w, w? or w® is conjugate to one
of 1, esc,, ciecse,, (12)cse,, (12)(34), or (12) (34)c,c,.

But of these, only 1, c¢,c.c,ci, and (12)c,e, can be in an R-group
for @ of type F,. Thus w, w? or w® is conjugate to one of 1, c¢,cc.c,,
or (12)esc,.

Suppose that s has order 2, so that w® =1, ¢c.cieq, or (12)cue,.
We may assume that s = w,, = ¢, = (e; — e, e; + e). Then if d = g¢c
with oe8S, and ce Z;, w* = ¢ ocec,o™) (0%co™%)o®. Since (12) # o* for
any o, we must have ¢> = 1 and thus ce,(gcc,o™) = w* = 1 or ¢,c.c.c,.

By conjugation we may assume that ¢ = 1, (12), (34), or (12) (34).
But then w? # c,c.c,c, for any ce Z;, so we have w*=1. But o =
(12) (84) will not give w* = 1 for any c.

Thus ¢ =1 and w =e¢e, c€Z}, or ¢ = (12) and ¢ = 1, ¢, ¢,y
Or ¢,¢,6:¢,, or o = (34) and ¢ is conjugate to c,c; or c.c,. Then w = oee
is conjugate to one of ¢,, c.cie,, or (12)c,. But none of these can be
in an R-group for @ of type F,. Thus s can not have order 2.

If s=1, then w = sd € W(?).

LEMMA 2. Suppose R < W(@'). Then R = Z,.

Proof. Any element of RN W(Q') is conjugate to one of 1,
€1C,C:Cs, OF (12)cse,.  ¢,c,c:¢, can not be in an R-group with any conju-
gate of (12)csc,, so if c.ceie,€ R, then R = {cc.es¢) = Z,.

Suppose (12)¢,c,€ B. Then \ is given by

Sgne sgng' sgng
e ems— e

where sgn, + sgny, are of order 2. If there is another nontrivial
element of R, we may assume by conjugation that it is ¢, (84). We
then would need «, to correspond to a character ¥ with 7* =
sgny sgn,. But then 2a;, + 2a, + @, + a,€ ' NO° and c¢,c,(84) sends
this to a negative root, so it is not in an R-group with (12)c.c,.
Thus R = {(12)e,c) = Z,.

Now suppose there exists an element w =sde€R with s =1,
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seS; and de€ W(®'). Then s has order 3 by Lemma 1, and w® e W(®’)
must be conjugate to 1, ¢,c.c.c,, Or (12)cie,. Thus w has order 3 or 6.

Consider the elements w,W,,, W, W (WayWeWo) = Wonyta;Wasta,s
and (w,w,w,w,) of order 3. The first 3 elements can not give
reducibility. The last gives reducibility if A is given by

A2, A, A, A%As
O
where N\, #= Ai! are characters of order 3.

The above 4 elements are pairwise nonconjugate. Further, none
is conjugate to the inverse of another. Since the order of the Weyl
group W is 32-2", we see that any 3-Sylow subgroup of W consists
of 1 and conjugates of the above four elements and their inverses.
Thus there is a unique subgroup of order 3 in any 3-Sylow subgroup
which can be part of an R-group.

Thus any element of order 3 in R is conjugate to (w,w,,w,w,,)"
or its inverse. In this case all a correspond to characters of order
3, and thus R can not contain an element of order 2, which would
have to be conjugate to c¢,c,cic, or (12)cie,. Thus an element of order
6 can not occur, and we have shown that R = {1}, Z,, or Z,.

Explicitly, if R =+ {1}, then R is conjugate to one of {¢c,c.c.c) = Z,
with all n, of order 2, or {((12)c;c,y = Z;, with A given by

sgne sgne’ sgne
— ey e

with sgny # sgng, or (W, W,Ww,Ww,)"» = Z, with A given by

AA, A, A3 A%,

where \, #= Aif! are of order 3.
We note that if f = R, then R = {1}, and thus Ind§\ is irre-
ducible if G is a Chevalley group of type F, over the reals.

9. Type G,. Let {a, B} be a base for @ with Cartan matrix

_g _%:l The positive roots in @ are a, B, @ + B, 2a + B, 3a + B,

and 3a + 28. The Weyl group W is a dihedral group of order 12.

THEOREM G,. R = {1} or R = {w,y = Z,, where w, is the Weyl
group element of maximal length.

One checks that the element w, of maximal length is the only
Weyl group element giving reducibility. R = {w,y if and only if «
and B correspond to distinct characters of order 2.

If £ is nonArchimedean, [£*: (£*)’] = 4, and such characters exist.
If t= R, then R = {1} and Ind¢ A will be irreducible.
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CHAPTER III
ON THE DECOMPOSITION OF Ind§a

1. Multiplicities of the irreducible components. If R is
abelian, then there are |R| irreducible components, each occuring
with multiplicity 1.

Write C[R]= M, (C)D --- & M, (C). Then m, m, ---, m, are
the multiplicities of the % inequivalent irreducible components of
Ind4 . k% is equal to the dimension of the center of C[R], which
equals the number of conjugacy classes in B. Further, the m, are
the degress of the irreducible representations of the group R. We
note that if R has a normal abelian subgroup R’, then the degrees
m; divide the index of R’ in R, by Ito’s Theorem.

Suppose R is non-abelian. Then G is of type D,, E, or E,.
Suppose G is type D,, with n odd. Then R = Z, X R” contains a
normal abelian subgroop R’ of index 2, so m; =1 or 2. If p is odd,
then R=Z, X (Z, X Z,) has order 16 and there are 10 conjugacy
classes in B. Thus we have the decomposition 16 = 2-2* + 8-1%, and
Ind§ N decomposes into 2 irreducible components of multiplicity 2,
and 8 irreducible components of multiplicity 1.

If p = 2, there may be more factors of Z, in R. We note that
R = Z, x (Z) has 28 conjugacy classes, giving the decomposition
64 = 12:2° + 16-1%, and R = Z, X (Z;) has 88 conjugacy classes, giving
the decomposition 256 = 56-2 + 32-12.

Suppose G is type D, with » even. Then any non-abelian R is
isomorphic to (Z, X --- X Z,) X R'. If p is odd, R’ is the group of
even sign changes on {e,, €, €, ¢,_s} and the first factor is
{(12)(34)---(m—1n)) or {(12)(84)---(n — 1m), (13)(24)---(n — 2m)).

In the first case, m;=1 or 2, |R|= 16 and there are 10
conjugacy classes in R. 16 = 2-2* + 8-1* gives the decomposition
into 2 irreducible components of multiplicity 2, and 8 of multiplicity
1.

In the second case, |R| = 32 and there are 17 conjugacy classes.
The two possible decompositions are 32 = 4* + 16-1* = 5.2 + 12.1%.
But since R/{c.¢,_.¢._.¢,_,) is abelian, there are at least 16 one-dimen-
sional representations of R, so the decomposition must be 32 = 4* +
16-1°. Thus Ind% A\ decomposes into 16 irreducible components of
multiplicity 1, and 1 component of multiplicity 4.

If G is type E,, the nonabelian R-groups are the dihedral
group D of order 8 and D X Z,, R = D gives the decomposition
8=1-2"+4-1*and R =D X Z, gives the decomposition 16 =2.22 4 8-12,

If G is type E;, the nonabelian R-group has order 128, 65 con-
jugacy classes, and R/{w,y is abelian of order 64. This gives the
decomposition 128 = 1-8* + 64-1%, so Ind% )\ decomposes into 1 irre-
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ducible components with multiplicity 8, and 64 irreducible components
each with multiplicity 1.

2. Some analysis on L*V). In this section we realize the
operators a(w, A) on L¥V) via a Fourier transform, where V is the
unipotent radical of the Borel subgroup opposed to B. We find a
class of functions in L*V) on which d(w, \) acts as multiplication
by a bounded function M(w, »). This class has nonzero intersection
with each invariant subspace for groups of type A, and B,.

Write @,(y) for @, (% g) in U; and let =, = ¢,,<__(1) (1)) for «

simple, where @;: SL(2) — G is the canonical homomorphism corre-
sponding to the root 9.

Write V = II;. U, in some fixed order. Since each U, is isomor-
phic to £, this gives a topological isomorphism of V with the product
of |®~| copies of £. We then define a Fourier transform on LXV)

by AL Pile) = | F(ILco PuU)ASsco o) T1 dys, Where L is a fixed

additive character of ¥ with conductor the ring of integers.
Fix a simple root @« > 0. Then

A(wa, NF(9) = Alng, M) f(9)

=, omllo D2 o] e
={s <g¢“<1/1u ‘;)¢(";‘ —11/u>>d“
=Sf(g¢“<1/1u 1)7“;1 ~ U Tul

10
o} it
uw 1

Let geV, g = ILiow®:(y;). Then
10
99.(), 1) = T2 = I 2w + Py )

where the P; = P, are polynomials arising from Chevalley’s commu-
tation relations. Make the change of variables y_,—y_, —u to
define polynomials Q,(y,;, «). Then @, = 0 if ¢ is simple.

Consider the operator A(w,, A) under the Fourier transform. Let

9 = II ®s(c;). Then

Aw, W) = || 70T 20 + Plp, w0 e TL s,
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= || AL 2w + Qs (U0 )2

|l
X X1 esys) 11 dys -

We define a funection feCo(V) as follows. For 6 < 0, ¢ simple,
let 7, be any function in C>(f*), i.e., such that the support of f
avoids zero. Let S; be the support of f;. If 6 <0 is nonsimple
with @; = 0, take any f; e C>(U;), and let S; be its support.

Define the other S, inductively from right to left in the product
;. Us. If S; is defined for all 8 to the right of ¢ in the product,
let S; be the fractional ideal generated by {@Q;.(¥s uczi)|ys€S,,
we 2 if A, is unramified and |u| = ¢" if A, is ramified of degree h,
and c¢_, €supp fA_,x for a simple}. Define f; to be the characteristic
funection of S;.

For root systems of type A,, B, C,, D, and G,, we may arrange
the negative roots such that @, ,(y;, u)#0 implies @;,, =0, Q;,,(ys, u) #0
implies 8 % —a, and Q;,(¥s %) = @s,.(yp)u. Then if f =TI f,

Aw, 07@) = ([§ T TS e T At QWS o)

Qﬁ

X Ng(—w)x(— c_au)l ldeaHd?/ﬂ_O

unless y;€8S; for all 8 with @; = 0. Fix y;€S; and consider

10 JL, s — Quw TS cau o) fot T s
This will be zero unless ¥, — Q;(y,)u €S; for all 6. Thus we need
only integrate w over the intersection (), (1/Q:(¥s))(y; — S;) =
1/Qs,(y5)(ys, — Ss,), for some 9,, and integrate y, over the coset

Qs(Ys) S; .
Qv T

L=l +=)

0

Write

where the sum is over shells & consisting of nonzero cosets of S;,.
The above integral becomes

Lo Vo LA — QU o) 1T dys

l l

+ 3 ([, T £ — QuawaS e (e Tl dus

In each term in the sum, we are integrating M (u)Y(c_,u) over
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a shell (1/Q,(y:)<” which is disjoint from S;/Q,(y;). Thus we are
integrating A, (w)Y(u) over a shell disjoint from (1/@;(y;))c_.S;,, Which
gives zero, by the definition of S; and properties of the gamma
function [29, 35].

We are left with only the first term. Note that

du

= Na'(e_) (N, -
lu |

| N(Te_ )
(1/Q5(y )85

We get that

Aw i@ = | | I Az 1A — Quwaw)

LU 53%5 Ssao

X U c,,yaxa(u)ﬂc_au)% I dy, T1 dus -
This is zero unless y;€S;, ¢_, €supp /., and welje_, X (p~H\p~"+)
for A, ramified of degree h, or uelle_, X & for A, unramiﬁedl. But
then Q,(y,)ueS; and f(y; — @:(¥s)u) = f(y;). Thus for such f,

AQwy, MAG) = 1 e-IT () IT files) = NaX(e_ )T M)F ) -

Thus d(w,, M) = (1/'(M)A(w,, \) acts on such f as multiplication
by MA(wa, ) = Ng'(e_,). Then if w= w, w,, -+ w,, 4w, ) acts on
such fas multiplication by the function M(w, N)=M(w,,, w,, - We\) -+
M(w,,, N), by the cocycle condition.

We note that w+— M(w, \) is a homomorphism, and further, that
we may evaluate M(w, ) at V_, for any simple root a to obtain a
homomorphism from W, into (¥*)”. If this homomorphism is injec-
tive on R for some «, then the linear independence of distinet charac-
ters of f* implies that the operators {a(w, N)|we R} are linearly
independent. Further, we may write |R| nonzero projections giving
f as above in each invariant subspace.

The homomorphism is injective on R for groups of type A, and
B,, but is not necessarily injective for groups of type C, and D,.
We may show the linear independence of the operators {a(w, \)|w € R}
for these groups as follows.

As in [37], let f; = f;: be the function in H, whose restriction
to K is supported on the Iwahori I and is constant on INV. Then
a(w, M)f{(w') = 0 if and only if ww’ == 1, provided that I(w') = I(w),
that I',(\) and I",.(\) are defined, and the characters A, are ramified
for all e R(w). (The proof is by induction on the length of w.
Write w = w,® with (@) = l(w) — 1 and use the fact that \;-i.
is ramified.)

To show that {a(w, \)|w e R} are linearly independent, it is
enough to find a w,e€ R such that a{w, \)f(w,) = 0 if and only if
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ww, = 1. If all A, are ramified, use the above. Otherwise, since
we know what groups R can occur, we may check that w,€ R con-
sisting of as many sign changes as possible will work for groups
of type C, and D,.
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