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ON THE DECOMPOSITION OF REDUCIBLE
PRINCIPAL SERIES REPRESENTATIONS

OF P-ADIC CHEVALLEY GROUPS

CHARLES DAVID KEYS

In this paper we study the decomposition of principal
series representations of p-adic Chevalley groups which are
induced from a minimal parabolic subgroup, and determine
the structure of the commuting algebras of these represen-
tations.
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Introduction* Let G be a split reductive #>-adic group, T a
maximal split torus of G and B = TV a minimal parabolic subgroup
of G. A (unitary) character λ of T may be extended trivially across
U to define a character of B. The induced representation Indf λ is
called a (unitary) principal series representation of G.

Let W be the Weyl group of G and choose weW. Then the
representations Indf λ and Indf ^λ are equivalent. The problem of
constructing explicit intertwining operators a(w, λ) between Indf λ
and Indl wX has been studied for real semi-simple Lie groups by Kunze
and Stein [24, 25, 26] Schiffmann [30], Knapp [14, 15, 16] Knapp
and Stein [17, 18, 19, 20, 21, 22] Harish-Chandra [10] and others.
For groups defined over a p-adic filed ϊ, these operators were first
studied for SL(2) by Sally [28], and then for p-adic Chevalley groups
by Winarsky [36, 37], who used them to determine necessary and
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sufficient conditions for Indg X to be reducible. A more general study
of intertwining operators for p-adic groups has been carried out by
Harish-Chandra, Silberger and others.

Let Wλ = {we W\wX = λ}. By Bruhat theory [32], the length
of the composition series of Indf λ is bounded by \Wχ\. Thus Indf λ
is irreducible if λ is a nonsingular character of T, i.e., Wλ = {1}.

Suppose that λ is a singular character of T and that wX = λ,
1 φ w 6 W. Then a(w, X) is an intertwining operator for Indl X which
may or may not be scalar. By an unpublished theorem of Harish-
Chandra, the operators {a(w, X) | w e Wλ} span the commuting algebra
C(X) of Indgλ. However, these operators may not be distinct.

We determine a basis for C(λ) consisting of a subgroup of these
operators. Following Knapp and Stein [14, 19], we write Wx =
R tx W as a semi-direct product, with W = {w e Wx\a(w, X) is scalar}.
We show that, with appropriate normalizations, a cocycle condition
holds and that w i—> a(w, X) is a homomorphism from Wλ to the group
of invertible intertwining operators for Indiλ. We then give an
elementary proof that the operators {a(w, X) \ w e R) are linearly
independent. This is essentially Silberger's theorem [33] for the
case of minimal parabolics. These facts combined with Harish-
Chandra's theorem imply that {a(w, X)\weR} is a basis of the com-
muting algebra C(λ), and further, that C(X) is isomorphic to the
group algebra C[R].

For complex groups, Ind^λ is always irreducible.
Knapp, in collaboration with Stein, [15, 16] has shown that for

real groups, R = Z2 x x Z2 with the number of factors of Z2

bounded by the dimension of T. Thus Indf λ decomposes into \R\
components, each occur ing with multiplicity one.

For p-adic groups, Indlλ does not always decompose simply.
We classify the nontrivial jβ-groups which occur.

Type An. R is abelian and |jβ| divides n + 1. If the largest
cyclic subgroup of R has order m, then \R\ divides [ϊ*: (ϊ*)m]. Any
finite abelian group with these properties occurs as an R-group.

Type Bn. R^Z2 x x Z2 and \R\ divides both 2n and [ΐ*: (ΐ*)2].

Type Gn. R = Z2 x x Z2 with the number of factors of Z2

bounded by n and [ϊ*: (ϊ*)2] - 1.

Type Όn. R may be nonabelian. (This general fact was first
discovered by Knapp and Zuckerman.)

(a) Suppose n even. Then if R is abelian, R = Z2 x x Z2

with the number of factors bounded by n — 1 and by [!*: (ϊ*)2] — 1.
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If R is nonabelian, R ~ (Z2 x x Z2) K (Z2 X Z2 X x Z9) with
the order of the first factor dividing both 2n and [ϊ*: (ϊ*)2] and the
number of factors of Z2 in the normal subgroup an odd number
bounded by n - 1 and by [!*: (f*)2] - 1.

(b) Suppose n is odd. Then if R is abelian, R ~ Z2 x x Z2

with the number of factors bounded by n — 1 and [ϊ*: (ϊ*)2] — 1, or
R = Z4. If R is nonabelian, then R = Z4 ix (Z2 X . x Z2) with the
number of factors of Z2 in the normal subgroup an even number
bounded by n - 3 and [I*: (ϊ*)2] - 2.

Type E6. jβ = 1, Z2, Z3, Z3 x Z3 or Zβ. Further, Z3 x Z3 can
occur if and only if p = 3 or 3 divides g — 1.

Tfypβ E7. R may be nonabelian. If so, R = dihedral group .D
of order 8, or R ~ D x Z2. D x Z2 can occur if and only if p = 2
or 4 divides qr — 1.

If R is abelian, then R = Z2

n with 0 ^ ^ ^ 4, Z3, Z4, or Zβ. Z2

n

will occur if and only if [k*: (fc*)2] ^ 2n, 0 ^ n ^ 4. Z4 occurs if and

only if p = 2. Z3 and Z6 occur if and only if p = 3 or 3 divides

flf-1.

Type E8. R may be nonabelian. All nonabelian R are conju-
gate. The nonabelian iϋ-group will occur if and only if [&*: (ά*)2] ^
16. It has order 128, has 65 conjugacy classes, and R mod <w0) is
abelian.

If R is abelian, then R^Z2

n with 0 ^ n ^ 4, Z4, Z4 x Z2, Z8,
Z 3 x Z 3 , or Z5. Z2

n occurs if and only if [fc*: (fc*)2] ^ 2W+1, 0 ^ n ^ 4.
Z4 occurs if and only if p = 2 or 4 divides g — 1. Z± x Z2 occurs if
and only if p = 2. Z3

n occurs if and only if [&*: (&*)3] ^ 3n + 1, % = 1
or 2. Z 5 occurs if and only if [k*: (&*)5] ^ 25.

Type F4. i2 = Z2 or Z3. Z3 can occur as jβ-group if and only
if p = 3 or 3 divides q — 1.

G2. i? ^ Z2.

The order of R depends on n and on the arithmetic of the field
ϊ, i.e., on the existence of enough multiplicative characters of order
2, or of order dividing n + 1 in the case of type An and of order
3 in the case of type F4.

We note that the methods in this paper also apply to Chevalley
groups defined over the reals R and the complex numbers C. Since
C* has no nontrivial characters of finite order, R — {1} and thus
Indi λ is irreducible for Chevalley groups over C. Since J?* has only
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one nontrivial character of finite order, we can recover the Knapp-
Stein result for Chevalley groups over R. Further R ^ Z2 or {1}
except in the case of Dn, n even, for which R ~ Z2 x Z2 can occur
[19].

The organization of this paper is as follows. We establish nota-
tion and definitions in a preliminary section. In § 1 of Chapter 1
we study the normalization and analytic continuation of the inter-
twining operators A(w, λ) and a(w, λ) for Macdonald's "groups of
p-adic type." In § 2 we show that with appropriate normalizations
the operators a(w9 λ) are well-defined and establish a cocycle relation
for these operators with no condition on the lengths of the Weyl
group elements. In § 3 we follow Knapp [14, 15] to develop the
theory of the iϋ-group for p-adic Chevalley groups, and show that
C(λ) = C[R].

Chapter 2 is devoted to the classification of 72-groups. In each
section, we explicitly determine all R which occur for one type of
root system, by constructing a list of λ and R and showing that
every nontrivial i?-group is conjugate to one on the list.

In Chapter 3 we use the intertwining operators to study the
problem of decomposing Ind^λ into irreducible components in a
"Fourier transform realization" on L2(V), where V is the unipotent
radical of the Borel subgroup opposed to B. A class of functions is
found on which a(w, λ) acts as multiplication by a function M(w, λ)
and we show that the operators {a(w, λ) | w e R} are linearly inde-
pendent.

Most of these results appeared in the author's thesis. I would
like to express my gratitude and thanks to my advisor, Professor
Paul J. Sally, Jr., for his help and guidance.

With some restrictions on the residual characteristic of k, inde-
pendent work of Mϋller gives partial results describing the J?-groups
which occur for the classical Chevalley groups. See "Integrates
d'entrelacement pour un groupe de Chevalley sur un corps p-adique"
in the Springer Lecture Notes 739.

Preliminaries and definitions* Let ϊ be a nonArchimedean local
field. We will be concerned mainly with Chevalley groups G defined
over I, although some of our results will apply to the ϊ-rational points
of any reductive algebraic group defined over ϊ.

Let dx be Haar measure on ϊ and | | the absolute value on ϊ
defined by d(ax) = \a\dx.

Let <? = { # e ϊ | | # | <Ξ 1} be the ring of integers of !, 77 a prime
element of ^ , and p = {x e ϊ \ \ x \ < 1} the unique nonzero prime ideal
of ^1 Then #jp is a finite field with q elements, where q is a prime
power.
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Normalize Haar measure on ϊ so that volume (^) = 1. Then
pn = {x e ϊ 11 x I <; q-n} has volume q~\ The collection pn, neZ, forms
a fundamental system of neighborhoods at 0 for the topology on ϊ,
which are both open and compact. Thus ϊ is totally disconnected.

Haar measure on ϊ* is d*x — \x[~1dx.
Let Uo = U = &* = {# 6 ^ 11 x I = 1} be the units in ^ . For each

positive inte'ger n, set Un = 1 + ί>n. Then the collection Ϊ7n forms a
fundamental system of neighborhoods at 1 for ϊ* consisting of com-
pact and open subgroups.

The additive group of ϊ is self-dual. Fix a nontrivial additive
character X of ϊ. Then any character of f is of the form Xa(x) =
X(ax). Define the conductor cond(Z) of X to be n if X is trivial on
pn and nontrivial on pn~\

Since any xeϊ* may be written as x = Πnu, neZ, neU, we
see that !* = Z x Ϊ7. Thus (I*)" = Z~ x 17" and any character of
I* is given by X(Πnu) = |/7n|sλ*(u) where seC, Res = 0, and λ* is
the restriction of λ to the compact group U. We obtain quasi-
characters of ϊ* by X(Πnu) = \Πn\8X*(u) where seC. Define Reλ =
Re (s). λ is unramified if λ* = 1. Otherwise λ is ramified. Define
deg (λ) = n if λ is trivial on Un but nontrivial on Un_x.

A gamma function -Γ(λ) is associated to each nontrivial multi-
plicative quasi-character λ [29, 35]. If λ = | |sλ* is ramified of

degree fc, then Γ(λ) = P F J χ(α)λ(a?)| a?l̂ da? = cλ*qUs~m, where

|c^*| = 1 and Ca*Cj*_i = λ*(—1). If λ = | |8 is unramified, then Γ(X) =

P T̂  ( χ^laJl 8 " 1 ^ = (1 - α8"1)^! - Q~s) if Re λ > 0, and is the analy-

tic continuation of this function into the left half-plane for Re λ ^ 0,
8 Φ 0.

Let G be a Che valley group over ϊ [34]. Let L be the semi-
simple Lie algebra over C which determines G and h a Cartan sub-
algebra. Then L — /z, 0 Σ^o La where a is a root. Denote the set
of roots by Φ.

Let wa denote the reflection in the hyperplane orthogonal to a
in the Euclidean space Z[Φ] 0 R and let the Wey.l group W be the
group generated by the waf aeΦ.

G is generated by subgroups Ua = {xa(t)\tet}, aeΦ. Ua carries
a natural valuation Ua+n — {xa(t)\t epn}.

Let wa(t) = Xatfix-ai-t-^XaQ) sniά ha{t) = wJβwJXY1 for t e ί * .
Let Γ be the subgroup generated by all ha(t), aeΦ. Then W =
N(T)/T and wβ(t) is a coset representative in iV(Γ) for the reflec-
tion M?β

Fix an ordering on the root system Φ. This determines a set
of positive roots and a set of simple roots which forms a base for
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Φ. Let U be the subgroup generated by all Ua, where a is a posi-
tive root.

Then T is a maximal torus of G and B = TU is a Borel subgroup
of G with unipotent radical U.

For each root a, there is a canonical homomorphism φa from
SL (2, ϊ) into the subgroup of G generated by Ua and U_a such that

in / o i

J * - ( * ) . and (

The kernel of <pα is either trivial or {±1}.
If λ is a character of ϊ\ we define for each root a a character

Xa of !* by Xa(t) = X(K(t)). The Weyl group TF acts on Γ and thus
on characters of T. We note that wXa(t) = wX(ha(t)) = XCMΓ^OOW) =
X(hw-ia(t)) = Xw-icc(t). The one-parameter subgroups Λα(t) form a root
system Φ^ dual to Φ in Horn (ϊ*, T)(x) R. w acts on λα as w acts on
α% as w~x acts on α. We use this observation to simplify notation
and calculations in Chapter 2.

Let K be the subgroup of G generated by {xa(t)\aeΦ, t e #*}.
Then IT is a good maximal compact subgroup of G [4. 27], and there
is an Iwasawa decomposition G = KB = KTU, nonuniquely.

More generally, suppose G is the group of ϊ-rational points of a
reductive algebraic group defined over ϊ. A Borel subgroup B is a
maximal connected solvable subgroup of G. A parabolic subgroup
P is a subgroup of G containing a Borel subgroup. Let N be the
unipotent radical of P, A a maximal ϊ-split torus in the radical of
P and M = ϋΓG(A). Then P has a Levi decomposition P = MN.

B has Levi decomposition TU where T is the centralizer in G
of a maximal ϊ-split torus A of G. W = N(A)/Z(A) acts on A and
thus on Horn (A, I*), which is dually paired over Z with Horn (ϊ*, A).
If Cr is semi-simple, the root system Φ = Φ(Cr, A) spans Horn (A, I*) (g)
jβ, and we have the dual root system Φv in Hom(ϊ*, A)(g) JB [1].

Bruhat-Tits theory gives a generating set of valuated root data
and the existence of good maximal compact subgroups of G, for
which Iwasawa and Cartan decompositions hold [4, 27].

A topological group G is said to be totally disconnected (t.d.) if
there exists a neighborhood basis at 1 for the topology on G con-
sisting of open compact subgroups. A function on a t.d. group is
smooth, or C°°, if it is locally constant.

Let G be a t.d. group and V a vector space over C. A represen-
tation (77, V) of G is a mapping 77: G-^End(F) such that 77(1) = 1
and Π(xy) = Π(x)Π(y) for all sc, # € G. A vector t; e V is smooth if
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x H> Π(x)v is a smooth function on G. We say that 77 is smooth if
every v e V is smooth.

If H is a subgroup of G, define F / 7 = {ve F|/7(/&)v = v for all
& e H}. A representation (77, V) of (? is admissible if 77 is smooth
and dim VH < °° for any open subgroup H of G.

A subspace W of F is invariant if 77(α;)TF= PF for all cceG.
The representation (77, F) is (algebraically) irreducible if F has no
nontrivial invariant subspaces.

(77, F) is a pre-unitary representation if there is a positive-
definite hermitian form on V which is preserved by all Π(x), xeG.
We may take the completion of V with respect to the inner product
defined by this form to obtain a unitary representation of G on a
Hubert space Sίf, of which V is the subspace of smooth vectors.

We also require that x t—> Π(x) be continuous for unitary repre-
sentations. (77, £%f) is irreducible if there are no nontrivial closed
invariant subspaces.

Let (77, F) and (77', F') be representations of G. An inter-
twining operator between 77 and 77' is a linear map A: V—>V with
the property that AΠ{x) = Π'(x)A for all x e G. 77 is equivalent to
77' if A can be chosen to be a bisection.

Define the commuting algebra of (77, F) to be {A: V —> F | AΠ(x) =
77(aO A for all α 6 G}.

If Γ, TΓ' are unitary, we require an intertwining operator A to
be a bounded linear operator, π and πr are (unitarily) equivalent if
A can be chosen to be a unitary operator.

We will use the following criterion for reducibility.

THEOREM. Suppose (TΓ, F) is α unitary representation of G.
TT̂βw π is irreducible if and only if its commuting algebra is one-
dimensional [32].

More detailed introductions to the representation theory of t.d.
groups may be found in [6, 11, 13, 32].

CHAPTER I

INTERTWINING OPERATORS AND THE COMMUTING ALGEBRA

1* The intertwining operators A(w, λ) and a(w, λ)* Let P =
MN be a parabolic subgroup of G and (σ, V) an admissible represen-
tation of M, extended trivially across N. Define the representation
Indp a to be left translation in the space of functions Hσ — {/: G —>
V\f is locally constant and f(gmn) = δpmσ~\m)f(g) for all #eG,
meM, and neN}. Since G — KP with iΓ compact, Indp # is an admis-
sible representation of G. The factor Sp1/2 is used so that unitary
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representations induce to unitary representations. One could also
take functions which are square integrable mod P.

From Bruhat theory, one knows that Indpσ and Iτίάp1σί have
no composition factors in common if P and Px are not conjugate in
G. Further, Ind? σ and Ind£ σx have a composition factor in common
only if there exists a w e W normalizing M such that wσ is equiva-
lent to σx. In this case, Indpσ is equivalent to Indpwσ.

Jacquet's theorem states that any irreducible representation of
a reductive p-adic group G is a subrepresentation of Indp σ for some
parabolic subgroup P, where σ is a supercuspidal representation of
M [13, 32].

Thus to give a complete list of the irreducible representations
of G, one needs to decompose all IndpO , with equivalent factors
arising only in the case of the equivalent representations Ind? σ and
Indp wσ.

We study the problem of decomposing the representations Indf λ,
where G is a Che valley group over ϊ, B = TU is a Borel subgroup,
and λ is a (unitary) character of T.

Let Wλ = {w e W \ wX = λ} for λ a quasi-character of T. By
Bruhat theory, the length of the composition series of Indgλ is
bounded by \Wχ\ if λ is unitary.

Suppose w 6 W. Intertwining operators A(w, X) between Inds λ
and Indf wλ are defined initially for certain nonunitary λ. These
operators are normalized to define operators a(w, X) which can be
extended by analytic continuation to meromorphic functions in λ.

Fix a coset representative w in N(T) for w. Define [30, 37]

[A{w, X)f](g) = \ f(guw)du for

We remark that if we choose a different coset representative
w9 for w, then w~~xw' e T and the operators differ by a scalar

N. Winarsky has shown that A(w, X)f(g) converges absolutely for
quasi-characters λ in the domain D(w) = {λ|Reλα > 0 for aeR(w)},
where R(w) = {a e Φ\a > 0 and wa < 0}, and that A(w, X): Hλ —• iJw;ι

intertwines Indf λ and Indf wX. Further, if the condition l(w'w") =
Z(w') + ϊ(w") on lengths holds, then the cocycle condition A(w'w", X) =
A(w',w"\)oA(w",\) holds [37].

These results are true for G a reductive p-adic group. The
proofs are as in [30, 37] once we have the following.

LEMMA 1. Let G be a reductive p-adic group. Let Reλ = |λ |
and let ZRe x be the K-fixed vector in HRe λ defined by %Re χ(ktu) —
Re (λΓVr^ί). Suppose Re λα > 0. Then
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I
Proof. By Bruhat-Tits theory, the derived group of G possesses

a system of valuated root data, with properties which Macdonald has
taken as axioms for a "group of p-adic type" [4, 27].

B = TU is a minimal parabolic, where T is now the centralizer
of a maximal ϊ-split torus A in G. There is a homomorphism v with
kernel T Π K from JV(A) to the affine Weyl group of G, which is the
group generated by reflections in the hyperplanes determined by the
set of affine roots {a + r \ a e Φ, r e Z}. Let Yr = Ϊ7_α_r/ϊ7_β_r+1. Then

I Z R e λ(uwa)du = I XRe λ(wav)dv
)ua Jεr_ff

dv + Σ\

We may write ve ί7_α_r as v = u{nu^ where ulf u2e Ua+rdUΓiK
(r is a positive interger) and v(ri) — wa_r. If naeK with v(wβ) = wβ,
then nan 6 Γ and y(^α^) = Vu where ta is the translation x \-> x + ct
in the affine Weyl group. Let qa = (tΓ^: Z7J and ^α/2 = q^A*1.

Thus

(v) = \ λRe x(uxnu2) = \ XRe ί(w) = \
Jr r JΓr ]γr

= Reλ-1/t>-1(ίί) vol(Γr)

Thus the sum over r is a geometric series with common ratio
Re λ(£α)~

2, which converges if and only if s — Re \a > 0.
The value of the sum is then given by Harish-Chandra's c-ίunc-

tion co(α, s) = c(α/2, s)c(a, s). The reader is referred to Macdonald
[27].

Let V be the unipotent radical of the Borel opposed to B. Since
G — VB up to a set of Haar measure zero, functions in Hλ are deter-
mined by their values on V and we may realize Indfλ on L\V).
Assume that Re λα > 0. If G is a Chevalley group, then Z7_α is one-
dimensional, and a calculation realizing the representation on L\V)
via the Fourier transform in Ϊ7_α, as in the X-realization of Gelfand,
Graev and Pyatetskii-Shapiro [7] or Sally [28] for SL (2), shows that
A(wa9 λ) acts as multiplication by λ~T(λα), where wa = wJX). We
may then use the analytic continuation of the gamma function to
define the intertwining operator A(waf λ) for any quasi-character λ
such that Γ(Xa) is defined, i.e., for λα φ 1.
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If we normalize A(wa9 X) by Γ(Xa) by setting cι(wa, X) =
(l/Γ(Xa))A(wat λ), then by analytic continuation a(waf X) defines an
intertwining operator between Indf X and ϊndf waX for all λ.

Suppose w e W has length I and w — wai waι is a reduced
product of basic reflections, af simple. The appropriate normalizing
factor for A(w, X) = A(waχ9 wa2 waιx) o . . . o A(wαz, λ) is

Π Γ(wai+1 wβίλβ<) = Π Γ(λβ).

Denote this product by ΓW(X) and define

α(w, λ) = X A(w, λ) .

An argument similar to that in Winarsky [37] gives the analytic
continuation of A(w, λ) and a(w, λ) in the case of a semi-simple p-adic
algebraic group.

THEOREM 1. Let G be a connected semi-simple p-adic group and
suppose f 6 Hx is locally constant. The map X M» (A(W, X)f)(k) of D(w)
into C is analytic for keK. It extends to Cn as a meromorphic
function. When X is not a pole of the extension, the operators
A(wy X) intertwine the representations Indf λ and Ind| wX.

Proof The unramified part of X is determined by n unramified
characters | \s«9 a simple, each of which is identified with the com-
plex number sa. Multiply this by a representation λ* of kery.
Considering λ* fixed and letting the unramified part of λ vary, we
identify λ with a point in Cn.

It is enough to prove the theorem in the case w = wa is a simple
reflection. Again, we follow Macdonald [27]. Choose a coset repre-
sentative naeK for wa with v(na) = wa. Write veYr= U_a_r\U_a_r+1

as v = uxn^tr

au^ with ulf u2 e Ua+r and v(ta) translation by a\ Sup-
pose that / is constant on cosets of U_a+m in K.

Then

A(na, X)f(k) - \ f(knav)dv

= \ f(knav)dv + Σ \
J ^ - α + m-l r = m Jγr

= ( f(knav)dv + Σ (
J^-cH-m-l r = m J r r

But ^ u ^ " 1 6 U_a+m and / is assumed constant on this. The sum
over r is thus
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f(k) Σ ί x-'p-XK)

0 if Xa is ramified

2-1 Ή&ίJ Hall Qa Wα/2 Qcc ~ Qa!2 Qa )

r—m

if \a is unramified .

For λα unramified, this is a geometric series with common ratio
X(ta)~2, which converges if and only in Re λα > 0. In this case the
sum is given by

(1 - g^Xl + MtJ-Ή

We note that if G is split, then qa — q and qa/2 — 1 and the above
sum agrees with Winarsky's.

Thus λ v-> A(naf X)f(k) extends to a meromorphic function of sa

with simple poles at λ(ία) = ± 1 for gα/2 ^ 1 and at λ(ία) = 1 for
gα/2 = 1, if I |s« is unramified, and extends to an analytic function
if λα is ramified. By analytic continuation, the intertwining relation
holds if λ is not a pole of the extension.

If we normalize A(wa9 λ) by Harish-Chandra's c-function co(α, λα)
and A(w, λ) by cw(X) = Π«eΛ(W) co(α, λ j then λκ>α(^, λ) = (l/cw(X))A(w, λ)
extends to a meromorphic function on Cn which is holomorphic in a
neighborhood of {(cl9 - , cn) eCn\Reci = 0, i = 1, , w} and defines
an intertwining operator between Ind^ λ and Indf ^λ if λ is not a
pole.

An argument similar to that of [37] shows that Indl λ is reducible
if there exists a w e W, w Φ 1 with wX = λ such that λ is not a
pole of cw(λ).

2 The cocycle condition for a(w, λ)» We now choose certain
coset representatives for each w e W. Fix any coset representatives
na for the basic reflections wa9 a simple. Suppose we W has length
I and w = wai wa2 - waι is a reduced product of basic reflections.
We take nai na2 wαz as the coset representative of w and define

A(w, X) = A(wβl wΛ2 ^αz, λ) and

α(w, λ) = a(nai na2 nav X) .

This is well-defined by the following.

THEOREM 1. Fix coset representatives na e N(T) for the basic
reflections wa, a simple. Suppose w is expressed as a reduced pro-
duct wai wa2 waι of basic reflections, l(w) = I. Then the coset
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representative nai na2 naι of w is independent of the expression

Proof For Che valley groups, see page 242 of [34]. For con-
nected reductive p-adic groups, see page 112 of [4].

We now fix a set of coset representatives as above and write
A(w, X) instead of A(w, λ). For the calculations in Chapter 3, we
have taken na = wa(l) as the coset representative for the basic re-
flection waf a simple.

Recall the cocycle condition A(w'w", X) = A(w'f w"X) ° A{w", X) if
l(wrw") = l{wf) + l(w"). In this case we also have ΓW'W"(X) =
Γw>{wrtX)Γwn{\) since R(wfw") = R(w") U w"-ιR(w'). Thus a(w'w", λ) =
α « w"\)o*(w", X) if l{w'w") = l(w') + ϊ(w")

We will show that with the above choice of coset representatives,
the cocycle condition holds for the normalized operators a(w, X) with
no condition on the lengths of wr and w".

We have seen that under the X-realization in Z7_α, A(wa, λ) acts
as multiplication by λ*\Γ(λα). Thus A(wa, wa\)oA(wa, λ) = /XλJΓCλ"1)
is scalar and a(wa, wa\)°a(wa, λ) = I is the identity.

Thus &(wat waX) is the inverse of <x{waf X), i.e., the cocycle con-
dition holds in this case.

THEOREM 2. The cocycle condition a(w'w", λ)=α(w', w"X)°a(w", X)
holds with no condition on the lengths of w' and wh\

Proof. We first recall that with our choice of coset representa-
tives the operators are well-defined. This is in fact equivalent to the
cocycle condition.

The proof is by induction on the length of w'. Suppose l(wr) — 1,
say w' = wa, a simple. If l(waw") = l(w") + 1, then we are done.
O t h e r w i s e l ( w a w " ) = l ( w " ) — 1 . S u p p o s e w" = wβlwβ2 ••- wβι i s a
reduced expression for w" as a product of simple reflections. Then
by Coxeter's exchange condition [2], w'w" — wa wβl wβ2 wβι —
wh ''' ™Pj " ' wh> w ^ e r e βs is omitted.

Since wa has order 2, w" = wβλ wβι = wa wβχ wβj wβχ, and
these are both reduced expressions for wh\ Then since a(w", X) does
not depend on the reduced expression chosen for w", we get

a(wa, w"X)°a(w", X)

= a(wa, w"X)oa(wa wβl wβ. wβιf X)

= α(wβ, Λ ) o α ( w α , w^ wβj wβιx)oa(wβl - - wβj - - wβι, X)

= JoαCw^ w^. ii;̂ ,, λ)

= a{waw", X) ,
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since l(wa wβl wβ. wβι) = 1 + l(wβl wβ. wβι) and wβl

wβ. wβι is a reduced expression for waw".
Thus the theorem is true if wf has length 1. Suppose wr has

length > 1 and write wf — wawx with a simple and l(wx) — l(wr) — 1.
Then

a(w'w", X) = a^WaWiW", X) = a(wa9 w^w'^aiw^w", X)

= a(wa9 wιw"X)a(wl9 w"X)a(w", X)

by the induction hypothesis ,

= a(wawl9 w"X)a(w"9 λ) since l(wa) = 1 ,

= a(w', w"X)a(w", X) .

Thus the cocycle condition is true with no condition on the
lengths of w' and w". We remark that one could also use the rela-
tions (wawβ)

n{a>β) = 1 defining If as a Coxeter group to prove the
cocycle condition.

We note that to prove the theorem, we need only normalize the
operators so that a(wa, waX) is the inverse of a(wa, λ). For Che valley
groups we may do this with either gamma functions or c-ίunctions.

For Macdonald's "groups of p-adic type" we may use the c-func-
tions to do this, at least for unramified λ. In any case, αζw1, wX)a(w, X)
is scalar. If X is unramified and fλ is the infixed vector in Hλ with
fλ{e) = 1, then A(w, X)fλ = cw{X)fwλ and A{w~\ wX)A(w, X)fλ =
cw-i(wX)ew(X)fλ. So if a(w, X) — (l/cw(X))A(w, λ), we see that
a(w~\ wX)a(w, X) = /.

Thus the cocycle relation holds with no condition on lengths for
"groups of p-adic type" and unramified characters λ.

Finally, we note that the cocycle condition implies that w i-> a(w9 X)
is a representation of Wλ = {w e W\wX = λ}.

3. The Knapp-Stein i^-group** We define a subgroup R of Wλ

such that the commuting algebra of Indfλ is given as the group
algebra C[R]. The theory of the i2-group was developed by Knapp
and Stein for real semi-simple Lie groups. The following p-adic
analogue is another illustration of Harish-Chandra's "Lefschetz prin-
ciple," which says that whatever is true for real reductive groups
is also true for p-adic groups.

Let Δ' = {a > 0\Xa = 1}. Then ±Ar is a sub-root system of the
root system Φ.

Let

R == {w e Wλ\a > 0 and Xa = 1 imply that wa > 0}

= {weWλ\w(J') = Δ'} .

Suppose that G is a Chevalley group.
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Let W be the reflection group associated to ±Δ', i.e., the group
generated by the reflections {wa\aeA'}.

THEOREM 1. Wλ can be written as a semi-direct product Wλ =
R ix W, where R and W are defined above. Further, W is the
group {we Wχ\&(w, λ) is scalar}.

Proof. First we show that W 5g Wλ. Let a e Δr and show that
wa\β = λ̂  for all roots β. But since Xa = 1, waXβ = X~lβ =
λjβλja — λ,β.

Now suppose w e Wλ has length I and write w = wai waι as
a reduced product of basic reflections. If w e R then we are done.
Otherwise there exists a e Δf with wa < 0. Then a = waι wai+ι(at)
for some ίf 1 <^ i <L I. Let r = wαi wai - waι where wa. is
omitted. Then

w = wai-- ivai - waι waι - - wa. - w β l w β l ^ α z

- w α / - wat+ι waί wai+1 - . waι

= rwa .

Then wα 6 W since α e / . Since Z(r) < l(w) we may use induction
on l(w) to complete the proof that Wλ = it? K W.

Finally, we show that W = {w e Wλ \ a(w, λ) is scalar}. In the
Z-realization, a(wa, λ) acts as multiplication by λ^1, if we use wa(l)
as coset representative for wa and normalize the operator by the
gamma function. Thus a(wa, λ) = I if and only if a e Δf. Then
a(w, λ) = I for all weW. The cocycle condition shows that w —>
a(w, λ) is a homomorphism from Wλ into the group of invertible
intertwining operators for Ind^λ, and Winarsky [37] shows that
a(w, λ) is nonscalar if weR, w Φ 1. These observations complete
the proof of the theorem.

We note that Winarsky's condition for reducibility is essentially
that R is nontrivial.

By an unpublished theorem of Harish-Chandra, the commuting
algebra C(λ) of Indg λ is spanned by {a(w, λ)| w e Wλ}. By the above,
it is spanned by {a(w,X)\w eR}. But these operators are linearly
independent, by our calculations in Chapter 3, or by an appeal to
Silberger's theorem [33], which states that

Thus the operators {a(w, λ) | w e R) form a basis for C(λ). Finally,
since a(w'w", λ) = a(w', λ)α(w", λ) for wr and w" in R ^ Wλ, we have
the following
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THEOREM 2. The commuting algebra C(λ) of the (unitary) prin-
cipal series representation Indf λ is isomorphic to the group algebra
C[R\.

COROLLARY 1.

(a) dimC(λ)= \R\.
(b) The number of inequivalent irreducible components of Indi λ

is equal to the dimension of the center of C[R], which equals the
number of conjugacy classes in R.

(c) Indfλ decomposes with multiplicities equal to 1 if and only
if R is abelian.

(d) If C[R] = Mni(C) 0 0 Afnjb(C), then nl9 - ,nk are the
multiplicities of the irreducible components of I n d | λ.

CHAPTER II

CLASSIFICATION OF THE i2-GROUPS

The j?-groups which occur for Chevalley groups of each type
An, Bn, Cn, Όn, E6, E7, E8, F4 and G2, are determined. They are
abelian except in the cases of Ώn, for which non-abelian R occur for
every n ^ 4, and in the cases E7 and E8.

The orders of the i?-groups which can occur depend on n and
on the arithmetic of the field ϊ. Further, the existence of the non-
abelian E8 jβ-group depends on the arithmetic of ϊ.

Let λ be a character of T and let

— {a > 01 a(wa, λ) is scalar} .

Then

R = {w e Wι [ a > 0 and Xa = 1 imply that wa > 0}

= {weWx\w(/i') = Δf) .

We note that the second definition of R shows that it is a group.
Identify Xa with a° in the root system Φυ dual to Φ and let

.Sf = j ^ = Z[ΣΛama-ocv\TίaK«= 1, maeZ]. Then weWλ if and
only if av — wa° e .2? for all simple roots a\ <£f contains the set
{a°\ae A'} = positive elements in £fΐ\Φv, which we sometimes denote
by Δ\

w acts on Xa as w acts on a\ as w"1 acts on a. Since w e R if
and only if w~λ e R,

R={weWλ\aveΦ\ a°eSf and aυ > 0 imply that wa° > 0} .

We do the calculations to classify R in the root system Φv dual
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to Φ. Note that not all of w\ά° — wά°), 0 <; i < ord w, can be posi-
tive, since their sum is zero. Thus, if av — wav e^fλf]Φv

+ for some
root a, then w £ Rλ. Note that this condition is invariant under
conjugation, replacing λ by wX, although RwX may not be equal to
wRλ = wRxW1.

We use this observation to determine which elements of W can
form an iϋ-group for some λ e Γ A . Once we have a possible R, we
look for a character λ with R <S Wλ as i2-group. The existence of
such a λ depends on the arithmetic of f. Our proof explicitly con-
structs a list of λ and R and shows that any nontrivial jβ-group is
conjugate under W to one on the list.

We proceed according to the classification of types of root
systems [2].

1. Type An. Φ = Φυ = [et — β y | l <̂  i Φ j <> n + 1} is self-dual
and the Weyl group W = Sn+1 acts as permutations of the et.

THEOREM An. R is abelian and \R\ divides n + 1. If the largest
cyclic subgroup of R has order m, then \R\ divides [ϊ*: (ϊ*)m] = order
of the subgroup of (ϊ*Γconsisting of characters of order dividing m.

Conventions. We identify β4 — e^ e Φv with the character λei_ei

and consider Z[Φv]j£? as a subgroup of (l*)~ by the map Σ ^ α « v H»

LEMMA 1. tt; H> e< — ewί is α^ injective homomorphism from R
into (ϊ*)~, independent of i. .

Proof Let w e ΐ ^ . Then e{ — e, = w{et — eά) — ewi — ewj implies
that et — ewi = ey — ewj, so that the map is independent of i. Note
that = means congruence mod Sf and that we have used the fact
that w e Wλ if and only if αv - ^ α v e £f for all α?; e Φ\

Let w, w' e Wλ. Then eέ - βw w^ = et - e^t + ewH - ew{wH) = et—

eW'i + e< — ewί shows that the map is a homomorphism.
If w ^ 1 then we may replace everything by a conjugate to

assume that wlΦl. Then if ex — ewleSf, we have ex — ewled' and
iiΓ^βi — ewl) < 0, so that w$R. Thus the map is injective on R.

Thus iϋ is isomorphic to a subgroup of (ϊ*)~ and is abelian.
Further, if the largest cyclic subgroup of R has order m, then any
element of R has order dividing m and the image of R is contained
in the subgroup of characters of ϊ* of order dividing m. Thus |JB|
divides [!*: (!*)•].

Since R is abelian, Indg λ decomposes simply. This is shown for
G = SL(n, ϊ) by Howe and Silberger [12].
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We note that if ϊ = JB, then the image of R is a finite subgroup
of (R*T, so has order 1 or 2 [17].

LEMMA 2. The stabilizer of any d in R is trivial. Thus \R\
divides n + 1.

Proof. Suppose w e R fixes some i. Then β< — ewi = 0 and the
image of w under the above map is trivial. Thus w = 1. So the
action of R partitions {1,2, , n + 1} into orbits of cardinality | R \
and \R\ divides n + 1.

Note that any finite subgroup of (ϊ*)" with order dividing n + 1
is the image of some jR-group.

REMARK. The homomorphism w v-+ et — ewi is suggested by the
following. In Chapter 3 we realize Ind| λ and a(w, λ) on L\V). We
exhibit a class of functions in L\V) on which a(wa, λ) acts as multi-
plication by M(wa, λ) = λ"1 in the U_a coordinate, a simple. Then
a(w, λ) = &(wai wav λ) acts as multiplication by the function
M{w, λ) = M(waι, wa2- waιX) M(waι, λ).

Then w \-+ M(w, λ) is a homomorphism, as is w H-» M(W, λ) evalu-
ated at some U_a, a simple. The above map M(wf λ) is evaluated
at E7_α, a = ex — e2-

We note that the linear independence of distinct characters of
ϊ* implies that the M(w, λ) evaluated at U_a are linearly independent
for weR, and therefore the operators {a(w, λ) | w e R) are linearly
independent.

2. TypeRn. Φ -= {±ei±ej9 ±ek\l ^i < j ^n9l^k^n). The
dual root system Φυ = {±et ± βy, ±2efc 11 ̂  i < j ^ ^, 1 ^ & ^ w} is type
Cn. The Weyl group W = Sn K Z? acts on Φ and Φv by permutations
and sign changes on the e<.

T H E O R E M B n . R = Z2x -•- x Z2 with \ R \ dividing both 2n and

[!*: (ϊ*)2].

Suppose w — sc e Wλ with s e Sn and ceZ2

n. We may replace w
by a conjugate under Sw to assume the cycles in s consist of con-
secutive integers, and then by a conjugate by a sign change to
assume that c changes the sign of at most one e^ in each orbit of s.

LEMMA 1. If w — sceR, then a nontrivial cycle of s can not
have only one sign change associated to it.

Proof. We may assume the cycle is (k k + 1 n — 1 n), k <n,
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and that the sign change is on 2en. Repeated application of w"1

sends en^ — en to ek — ek+1, which w"1 then sends to — en — ek. Thus
ek + βn_i € £f.

If k = n - l , then 2en_ί e £? Π Φυ. But then 2en_x > 0 and
w " 1 ^ ^ ) — — 2en < 0 contradicts weR.

Otherwise β < n — 1 and ek + en^ e£ff\Φ\ But then ek + en^ > 0
and w\ek + en^) — w(ek+1 + en) = ek+2 — ek < 0 contradicts weR.

LEMMA 2. Aw?/ nontrivίal cycle of seSn must be a transposi-
tion if w = sceR.

Proof We may assume that the cycle is (k n — 1 n), and by
the above lemma, that there are no sign changes associated to this
cycle, i.e., c(2^) = 2et for k <; i ^ n.

Then w(β«-i+en) = β» + ei! implies that e f c - V i ^ ^ If k<n — l,
then e4--en_16β2

ί?nΦ% with ek-en^>0 and w""1(βt-βn_1) = en-en_2<0,
contradicting weR. Thus fc = ^ — 1 and the cycle is a transposition.

By the two lemmas, any w = sc e R is conjugate to a product
of disjoint transpositions and sign changes, so w2 = 1 and iϋ =
Z2 x x Z2. Further, no such w Φ 1 can fix an β<β This follows
by the argument for type A n i f s ^ l . If s = 1, w — c Φ\ changes
the sign of some es. Then if w(et) = et we have e3- — et — w{eύ — β̂ ) —
2ede£fΐ\Φ\ But then 2ed > 0 and w(2ey) < 0 contradicts weR.

Thus R permutes {±ei\l ^ i ^ n} with stab i2(±e i) = {1}, so \R\
divides 2n.

We now have that any weR is conjugate to one of 1,
(12) (34) --- (n ~- In), (12) (fc — 1 &)cfc+1 cn, or d c2 cn, where
Ci is the sign change on et.

If we evaluate M(w, λ) at Z7_α, α = βx — e2, we get the homo-
morphism cx cn \-+ 2ex (i.e., λej and ̂  H> ̂  — w^ if w — sc with
8(ΐ) 9̂  i. We note that none of these characters can be trivial if
weR, so w \-* et — wet is an injective homomorphism from R into
the group of characters of I* generated by those of order 2. Thus
|ieI divides [1*: (ϊ*)2].

Of course, one may directly check that w \-> et — wet is independent
of i and is an injective homomorphism from R into the subgroup
Z[Φv]/£f of (I*)" without reference to M(w, λ).

We note that if ϊ = R, then |JS| = 1 or 2, and that if ϊ is non-
Archimedean with odd residual characteristic, then \R\ = 1, 2, or 4.

3. Type Gn. Φ = {±et±es, ±2ek\l£i<j ^.n,l£k£n}. The
dual root system Φ" = {±et±eά, ±ek\l^i<j^n,l^k^n} is type
Bn. The Weyl group W = Sn ix Z2

n acts on Φ and Φv by permutations
and sign changes on the e*.
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THEOREM Cn. R = Z2 x Z2 x x Z2 with the number of factors
of Z2 bounded by n and by [ϊ*: (ϊ*)2] — 1.

Suppose w = sc e Wλ, seSn and c 6 Z2

n. We may replace w by a
conjugate under a sign change to assume that c changes the sign
of at most one et in each orbit of a.

LEMMA 1. Suppose w = sceR, seSn, ee Z2

n. Then a = 1.

Proof. If s has a nontrivial cycle, by conjugation we may assume
it is (k n — 1 n) and that c changes the sign of at most one et

in the corresponding orbit.
Suppose c(et) = et for k ^ i < n and c(e«) = — en. Then W^eJ =

βn_! implies that β ^ — en 6 <^ Π 0V. But repeated application of w~ι

sends en^ — en to ek — ek+lf which w"1 sends to —en — ek < 0, contra-
dicting weR.

Now suppose c(et) = et for k ^ i ^ n. Then w~\en) — en^ and
βw_i — en eJέfnΦv. But then w{en^ — en) = en — ek < 0 contradicts
weR.

Thus a = 1 if w — sc e R, and 22 is contained in the group of
sign changes in W. Hence R = Z2 x x Z2 with the number of
factors bounded by n.

Let weR. By conjugation we may assume that w = c&cfc+1 cw.

LEMMA 2. 1/ ck ck+1 cneR, then CiSR, k ^ ί ^ n.

Proof. et and et — eif k ^ i Φ j ^ %, correspond to characters
of order 2, and ^ ^ contains Z[2βi\k ^ i ^ n]. Then α — Ciαeiίf
for all simple a, so c< 6 Wλ, k <ί i <^ n. Since -Bfe) S R{ck cn)
does not intersect J', we have that c* e R. (Recall that R(w) =
{α > 0|wα < 0}.)

Thus any R is conjugate to <cfc, ck+ί, , O for some &, 1 ̂  & ^ w,
taking cλ cn above with as many sign changes as possible.

Note that each et corresponds to a character of order 2, k^i^n,
and that these characters must be distinct, since et — es does not
correspond to the trivial character, k ^ iΦj ^ n. Conversely, we
may define a character λ with iϋ-group (ck, ek+ί9 , cn) by assigning
a distinct character of order 2 to each eif k <; i <L n.

Thus the number of factors of Z2 in R is bounded by
[I*: (ϊ*)2] - 1.

Note that there can be more reducibility in the case of type Cn

than in the case of type Bn.
Bn:\R\ divides 2n and [!*: (ϊ*)2].
Cn: |JB| divides 2n and 2[!*;(ί*)2]-1.
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If ϊ = i?, we again get \R\ = 1 or 2.

4. Type Όn. Φ = Φv = {±βi ± β, | 1 ^ ί < j £ n} is self-dual and
the Weyl group W = Sn K Z2~

γ acts as permutations and even sign
changes on the et.

THEOREM Όn.

(a) Suppose n is even. Then if R is abelian, R = Z2 x
Z2 x x Z2 wΐίfo ίfee number of factors bounded by n — 1 and by
[I*: (I*)2] - 1. // i? is nonabelian, then R ^ (Z2 x x Z2) tx
(Z2 x Z2 x x Z2) wiίfe ίfeβ order o/ the first factor dividing both
2n and [ϊ*: (ϊ*)2], and the number of factors of Z2 in the normal
subgroup an odd number bounded by n — 1 and [ϊ*: (ϊ*)2] — 1.

(b) Suppose n is odd. Then if R is abelian, R ~ Z2 x • X Z2

with the number of factors of Z2 bounded by n — 1 and [ϊ*: (!*)2] — 1,
or R = Z4. // R is nonabelian, R = Z4 ix (Z2 x x Z2) ^iίfe ίfee
number of factors of Z2 in the normal subgroup an even number
bounded by n - 3 and [I*: (ϊ*)2] - 2.

The actions on the normal factors of the semi-direct products
are described explicitly in the course of the proof.

LEMMA 1. Suppose w = sceR, s e Sn and c e Z2

n~1. Then s2 = 1.

Proof Suppose s has a cycle of length ^ 3. Replacing w by a
conjugate under ί?n, we may assume the cycle is (fc & + 1 n),
k<n — l. Then by conjugating w by a sign change, we may
assume that c changes the sign of at most 2 of the et in each orbit
of s.

If c involves no sign changes on ehf , enf then w"^^.! + βj =
en_2 + βn_i implies that en^2 — ene Δ'. But then w{en^2 — en) < 0 con-
tradicts w eR.

If c involves only one sign change on^, , en, we may suppose
it is on en. Then w{en^ + en) — en — eh implies eh + en^ e Δ\ But
then w\eh + en_x) = ek+2 — ek<0 contradicts w e R.

Finally, if there are two sign changes involved, we may suppose
they are on en^ and en. Then w{en^ — en) = —en + ek implies that
ek — en-\sΔ\ But then w~\ek — en_i) = — en — en_2<0 contradicts w eR.

Note that w — sceR, s2 = 1 implies that w2 = (scs'^c is a sign
change in i? and thus w* = 1. If we let Rr be the group of sign
changes in R, then R' ^R and Jί/iZ' = Z2 x x Z2.

LEMMA 2. Suppose ckck+1 - - cneR with k > 1. T&βw JS contains
all even sign changes on {ek, ek+1, * , en}.



THE DECOMPOSITION OF REDUCIBLE PRINCIPAL SERIES 371

Proof. If k > 1, then ckck+1 cneR if and only if et — eά cor-
responds to a character of order 2 for ft <Ξ ί < j ^ n, and en_t ±en

correspond to the same character. Then ct ci+1 6 Wλ and R(ct ci+ι) £
R(Ck ck+1 O imply that c< c i + 1 eR, for k <^ ί < n.

Thus J?' consists of all even sign changes on {ek,
 β ,en}, and

Further, since the characters corresponding to ei — eό are non-
trivial for k ^ i < j < n, the characters corresponding to et — en are
distinct, k^i<n. Thus |Λ' | ^ 2Γϊ*:(ί*)2]~1.

Now, suppose w = sceR with s ^ 1. By conjugation we may
assume s = (12) (34) (fc — 1 fc) with k <L n. Then c(^) = — e< for
ft < i ^ ^ first, we may assume c(ek) = +e & by conjugation by cfccn

if necessary. Then if c(βt) = e< for some k < i ^ nf w(ek — et) =
«*-i ~ βt would imply ek^ — eke Δ'. But then w{ek_x — ek) < 0 contra-
dicts w eR. Thus we have shown

LEMMA 3. stab i 2 (±e ί ) <; J?'.

Further, any element of order 2 in R is conjugate to one of
c 6 Z r \ (12) (34) (n - 1 ri), (12) (34) - (n - 1 n ) ^ . , cn, or (12) . . .
(ft — 1 k)ck+1 cn for some k. Any element of order 4 in ϋ? is con-
jugate to (12) (34) (m — 1 m)cfc cfc+2 •••<?„ cw + 1 cm+2 •••<?„ for some
m, k with 2 <̂  ft <: m ^ w, where the sign change changes the sign
of the ei9 m < % ^ n and of the ej} j even, ft ^ i ^ m.

If i? has no elements of order 4, then R = Z2 x x Z2 is
abelian. Suppose there is an element of order 4. We distinguish
the cases n even and τι odd.

Case 1. Suppose w is even.
Then any element of R of order 4 is conjugate to w —

(12) (34) (m — 1 m)cfc cfc+2 cm cm + 1 cn with ft ^ m — 2. Suppose
for a moment that m = n. Then since weW* if and only if α —

the λα must satisfy relations corresponding to ex — e2

 Ξ

. . . = βw_! - βw Ξ ew_x + en, 2(e, - e2) Ξ 0, and 2(e< - ey) = 0
for k <^ i < j <> n. Further, if w eR then .Sf Π{βi — e, |fc —

i < j ^ ^} = 0, and thus λ is given by

sgnβ

sgnθ sgnθ sgnθ sgnθ

sgnθ

where k — n ~ 2d.
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Since w2 = ek_j ck cn e R, by Lemma 2, JR contains the group
Z2

2d+1 of all even sign changes on {ek_ly ekf , en}. Then (12) (34)
(n-lri)eR and R ^ <(12) (34) (w - 1 rφ tx <cncn_,, cft_1cn.2, ,
β*β*-i> is nonabelian.

If there are other sign changes in R, we may assume they
involve eh ei+lf ---,ek-2, where I is odd. Then the group Rr of all
sign changes in R consists all even sign changes on {eh et+1, , en}
and each et — eίf I ^ ί < j ^ n corresponds to a character of order 2.

Now, if m < n, w = (12) (m — 1 m)ck ck+2 cm. cm+i cn

acts on Dm= {±ei±ej\l^i < j ^m}czΦ as the above. Then
βj — β2 = e3 — e4 Ξ . . . = em - 1 — em Ξ em_! + βw mod Sf, and e< — βy cor-
responds to a character of order 2 for fc — 1 ^ ί < j ^ m and for
m + l < ; i < i < I w .

Thus em_x - em^ (en_x - en) + (βn_! + en) * 0 and 2(βm - em+1) Ξ
β»_i — em mod ^ and λ is given by

all order 2
sgn

θ
 sgn

a
 sgn

θ
 sgn

θ
 sgn

θ
 ψ , y

sgnθ sgnθ

f

with Ψ2 = sgn^.
Again, i? contains sc = (12) (m — 1 m)cm+1 cn and we may

assume by conjugation the iϋ' consists of all even sign changes on
{eh •• ,e»}.

Then R ^ <sc) ix i2' is nonabelian, as before. Suppose there are
other s'e' in R. If s' = s then se' is in the subgroup <sc> K β' . If
s' Φ s then i? ^ (sc, s'c') tx Jϊ'. We keep adding new elements of
R until

LEMMA 4. JS = {1, sc, s'c', •} ix Rf with the permutations sU)

distinct.

Further, the order of the first subgroup divides 2n by Lemma
3, and also JB' ̂  ZΓ1- Thus |JB| divides n 2n.

Formally define a character corresponding to 2en to be — (en^ —
en) + (βn-i + βn) and then use 2βέ = 2(e* — en) + 2en to define a character
corresponding to 2e^ If w — see R, c e Zζ"1 with s =£ 1, then β* — wβ<
is a character of order 2 and w b-• eέ — te βi is an injective homo-
morphism on the first (nonnormal) factor of R. Thus the order of
this factor divides [!*: (!*)2].

We have already seen that the number of factors of Z2 in Rr

is bounded b y w - 1 and [I*: (f*)2] - 1.
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Finally, if n is even and R is abelian, we may write
R = {1, sc, s'e', - } x R' = Z2 x x Z2 as in Lemma 4, with the s(ί)

distinct. We show that the number of factors of Z2 is bounded by
n - 1 and [!*: (ϊ*)2] - 1. If R = R', this is true. If R' = {1}, then
\R\ divides 2n by Lemma 3 and divides [ϊ*: (ϊ*)2] by the above.
Suppose that both factors are nontrivial and that R is abelian. We
may assume that (12) (34) (n — 1 n) or (12) (k — 1 k)ck+ι cn

is in R.
Suppose that (12) (fc — 1 k)ck+1 cn and ct ck_x ckeR, k < n.

Then also ck^ckeR. Then if s'c' eR, β' ^ 1, (12) ••• (fc -- lfc), we
may assume that c'(et) = et, i = & — 1, &. Then s'(fc) =£ A; — 1 by
Lemma 3 and s'c' does not commute with cfc_! cΛ, contradicting the
assumption that R is abelian. Thus no other s'c' are in R. Further,
if I < k — 1, then cfc_2 c ^ € R, contradicting R abelian, and ck_λ ck is
the only sign change in R. Thus |jβ| = 4.

Suppose that (12) (34) (n — 1 n) and ct cn_i cTO e R. Then if
1 < i < % — 1, <?n_2cn_i 6 i?, contradicting the assumption R is abelian.
Thus i — 1 oτ n — 1. If i = 1, the ϋJ' — {1, cx c2 cn} and | R \ divides
2n and 2[I*: (f*)2]. If i = w - 1, then | J2| = 4, as above.

We note that if ϊ = JB, then one can have \R\ = 1, 2, or 4 in
the case of DTC, w even.

Case 2. Suppose τ& is odd.
In this case any element of order 4 in R is conjugate to w =

(12) • • • ( m - l m ) . c* cA+2 cm-cm+1 cn, with k ^ m < n.
If m = n — 1 and w = (12) • • • ( w - 2 % - l)cn_i cn, then λ is

given by

sgnβ sgnθ

ψ-ι

with ?F2 g
Then w2 = cfc_! cfc cra_! e i? and thus R contains all even sign

changes on {ek_lf ek, , en^}. Thus each et — ejf k — 1 ^ ΐ < j ^
^ — 1 corresponds to a character of order 2 and also sc = (12)
(n — 2 w — l)cn_! cn e R. We have i2 ^ <sc> ix <cfc_! cfc, ck ck+1, ,

cw_3cn_2> ^ z 4 ̂ < z r * " 1 .
If m < ^ — 1 and w — (12) (m — 1 m)ck ck+2 cm cm+i cneR,

then λ is given by
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sgiW

all order 2
sgnθ sgn^ sgnθ sgnθ^ sgnθ

sgnθ sgnθ ψ

sgnθ sgnθ'

with Ψ2 = sgnθ.

In this case, w2 = ck_λck e w e i 2 and i2 contains all even sign
changes on {ek_ly , eΛ}. Then sc = (12) (m — 1 m)cm cm+1 >- cneR
and each et — eif k~l<*i<j<:m, and m + l ^ ί < i ^ t ι , cor-
responds to a character of order 2. Also 2(em — em+1) = ew-i — em =
{en-i - en) + (β,.! + e J mod ^f.

i? ^ <sc> K ( c ^ c , , β^c^, , cm_2cm_x> - Z, K Z2

m~fc. Let i2" be
the group of the even sign changes on {eu e2, , ew_J which occur
in R. Then i2 = <sc> \κ R" by

LEMMA 5. If s'c' e R, then s' = 1 or s' = s = (12) - (m » 1 m).

Proo/. If sc and s'c' are in i£, then s's = ss' by Lemma 1, so
that s' permutes the odd number of fixed points m + 1, , n of s.
s' must permute them faithfully by Lemma 3. But this contradicts
Lemma 1, which implies that s' must be a product of transpositions.

Thus R = (sc) K ΈL" s Z, x i2".
Since i?" ^ Z2

W~2 ^ Zz71"3, the number of factors of Z 2 in R" is
bounded by n - 3. It is also bounded by [ϊ*: (!*)2] — 2, since the
number of factors of Z2 in # ' = <cm_i O x JB" is bounded by
[!•: (ϊ*)2] - 1.

Finally, suppose that R is abelian and n is odd. Then either
there are no factors of Z2 above, i.e., k = m, R" = {1} and J? = Z4,
or i2 is contained in the group Z£~λ of even sign changes.

5. Type Eβ.

THEOREM E6. JR ~ 1, Z2, Z8, 2Γ3 x Z 3 or Zβ. Further, Zz x Z3

occurs as a reducibilίty group if and only ifp — Z or 3 divides

Arrange the simple roots in the traditional Dynkin diagram
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The roots spanned by {α2, α3, α4, α5, α j form a subsystem of type
D5, giving an inclusion of Weyl groups W(D5) < W(E6). Comparing
orders, 27 3 5 and 27 3* 5 respectively, we see that a 2-Sylow sub-
group of W(D5) is also a 2-Sylow subgroup of W(EQ). By conjuga-
tion, we may assume that a 2-Sylow subgroup of Wλ is contained
in W(DΛ).

L e t aQ = βx — β2, , «3 = βi — eδ and a2 — β4 + e5. Then by our

D5 results, potential candidates in Bf] W(D6) are conjugate to c2c3c4c5,
c4cn, (12) e2e3c4c5, or (12) (34) C&. Adding the condition waγ = alt only

wα5wα2+αs+2α4+α5wα3wα2 can be in an E6 i?-group.
If c2c3c4c5ei?, then λ is given by

sgnθ sgn^, sgnθ

sgnΘ

with sgn^ Φ sgn^. There can be no other elements of order 2 in R
with c2c3c4c5; if there were another, by conjugation we could assume
it is CjC2(?3c4. But the product cxch cannot be in an i?-group.

Thus, if there is an element with order a power of 2 in R, it
has order 2 and is unique, hence is in the center of R.

Note that the longest Weyl element w0 and the character

Ψ X sgnθ χ~ι ψ"1

SgΠφ

are conjugate to the above.

There is only one conjugacy class of elements of order 5 in W(E6)
and none of its elements can be in an iϋ-group. Thus, R is the direct
product of a 2-Sylow subgroup (1 or Z2) and a 3-Sylow subgroup.
Examining conjugacy classes of elements of order 3 or 9, [5], any
element in R with order a power of 3 is conjugate to one of

Waf»af»a£»aι 0 Γ ™ af** a&> a&> a£» «&>*¥1 > WhβΓβ 'T ΓeprβSβntS the Γθθt
ax + 2a2 + 2az + 3α4 + 2α5 + aβ.

For waiwa3wa6waδ e R, λ is given by

with ψ of order 3, giving R ^ Zz. Further, if λα2 = ψ and λα4 Φ ψ*1

have order 3, then R = (wajwa3wa6wa5, waiwaBwazw^ψ) = Zz x Zz. If
instead λα2 Φ Xai have order 2, then R = (waιwazwaQwab, w0} = Zβ.
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For waiwa3wa.waQwa2wiψ e R, λ is given by

ψ ψ X 9 9

Ψ9-1

with each character having order 3, ψφφ and X&(ψ,φ). Then
R = Z3, or there is also an element of type 2A2 [5] in R = Zz x Z3,
and we are in one of the above cases.

Note that if G is a Chevalley group over k = R, then R = 1
and Ind^λ is irreducible.

6. Type E7.

THEOREM E7. iί mα?/ fee nonabelian. If so, R = dihedral group
D of order 8, or R = D x Z2. D x Z2 can occur if and only if
p = 2 or 4 divides q — 1.

// i? is abelian, then R = Z2

n iϋiί/i 0 ^ τi ^ 4, 2Γ3, Z4 or Z6. Z2

3

cmci Z4 occ^r i/ α^c? owî / ΐ / p = 2. Z£ occurs if and only if
[&*: (fc*)2] ^ 1 6 . Z3 and ZQ occur if and only ifp = 3 or 3 divides

Arrange the simple roots in the diagram

The roots {α2, α8, α4, αβ, αβ, α7} span a subsystem of type Dβ, giving
an inclusion of Weyl groups W(D6) < W(E7). Let ^ 0 = - 1 be the
longest Weyl element in W(E7). Comparing orders, 29 32 5 and
210 3*.5.7, (wo}x a 2-Sylow subgroup of W(DQ) will be a 2-Sylow
subgroup of W(Ej). We first classify 2-Sylow subgroups of i?-groups.

Let aΊ = eι — e2, , a3 = eδ — eβ, and α2 = eδ + ββ. Using our
W(D6) notation and grouping by Wί-E^-conjugacy classes, elements
in R with order a power of 2 are conjugate to:

3A3: (12) (34) (56)cδc6, wocBc±cδcd

4AX: CzCtCsCβ, wo(12) (34) (56)c5c6

5Ar. (12)c3c4c5c6, wo(34) (56),

+ 2AX: (12) (34)c2c4c5c6, wo(12) (34) (56)c4c6

A,: wo(12) (34)c2c3.
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Suppose there is an element or order 4 in R. If it has type
D4(αi) + 2Alt we may assume it is (12) (34)tf2c4cβc6 and λ is given by

sgnφ ψ sgnθ sgnθsgn<p sgnθ

SgΏθSgΏφ

with f2 = sgnθ Φ sgn^. Then R ^ <(13) (24) (56)c2c4> K <(12) (34)<?2C4C5C6> =
dihedral group D4.

If λΛ1 is "generic", then R ~ D is nonabelian with order 8. If
R is larger, a consideration of other possible elements shows that
we may assume, by conjugation, that R contains one of wo<WV*e»
WQCZC&CQ, or WOC&CSCQ. Each of these three cases occurs, giving
R = D x Z2 nonabelian of order 16.

In the first case, λ«x = sgn<? sgnφ, which can occur if, and only if
[fc*: (&*)4] ^ 16, i.e., p = 2 or 4 divides g - 1.

In the second case, λαi Φ sgnθ, sgnψ, sgnθ sgnψ has order 2, which
can occur if, and only if p = 2.

In the third case, λ2

αi = sgn*, and λ,,^"1 Φ sgnθ, sgnψ, sgnθ sgnφ

has order 2, which occurs if, and only if p — 2.
We may now suppose that R contains no elements of type

i) + 2 Λ
Suppose that R contains wo(12) (34)c2c8. Then λ is given by

X sgn
φ
 ψ sgn

θ
 χ~

2
 sgn

θ

sgn
θ
 sgn^

with ?F2 = sgn* Φ sgnΨ, 1 of order 4 and X2 Φ sgn<?, sgn^. If %2 =
sgn,? sgn^, then we are in one of the above cases with (12) (34)c2c4c5c6 6 R.
Otherwise, %2g (sgn^, sgn9>, so p = 2, and then i2 = Z4.

If R contains no elements of order 4, then a 2-Sylow subgroup
of R is a product of copies of Z2. An explicit list shows that Z2

occurs for any fc, even the reals JB; that Z2

2 occurs for any non-
Archimedean k (we will need 2 characters of order 2); that Z2

3 occurs
if, and only if p = 2; and Z2

4 occurs if, and only if [fc*: (fc*)2] ^ 16.
An easy calculation shows that R can contain no elements of

order 5 or 7. Of elements of order a power of 3, only conjugates
of waiwaiwaQwa/wa2w^o(ZA2) can be in an jR-group. If this element
is in R, then λ is given by
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with ψ Φ l±ι of order 3. There are no other elements of order 3
in R with this one, besides its inverse. Since we may specify only
one character of order 2, there can be at most one element of order
2 in this R. Thus, R ^ Zβ. This does occur, with R generated by
an element of type A5 + A2.

7. Type E8.

THEOREM E8. A nonabelian R-group will occur if and only if
[&*: (&*)2] ^ 16. All nonabelian R are conjugate to <(12)(34)(56)(78)C7C8,
(13)(24)(57)(68)C6C8, (15)(26)(37)(48)C4C8> K <ββββΊ9 Cβββ8, Cβfiβ<,

ββo)
// R is abelian, then R = Z2

n with 0 <: n <; 4, Zif Z±X Z2, Z8,
Z 3 x Z 3 , or Z 5 .

Z2

TO occurs i / and only if [&*: (&*)2] ^ 2U + 1, 0 ^ ^ ^ 4. Z 4 occwrβ

if and only if p = 2 or 4 divides q — 1. Z 4 x Z 2 occurs if and only
ifp = 2. Zz occurs if and only if [&*: (&*)3] ^ 9 cmd Z3 x Z3 occurs
i/ and only if [A?*: (&*)3] ^ 27. Z5 ocβwβ i/ a^d only if [k*: (fc*)5] ^
25, i.e., p = 5 or 5 divides q — 1.

Arrange the simple roots in the diagram

Letting β= -(245

2

4321), Φ contains a subsystem of type A spanned
by

giving an inclusion of Weyl groups W(DB) < W(E?). Comparing orders,
2U 32 5 7 and 214 35 52 7, we see that a 2-Sylow subgroup of W(D8)
is also a 2-Sylow subgroup of W(EQ). Thus we may assume that a
2-Sylow subgroup of R is contained in W(DB); we first classify these
groups.

In this realization, the orderings determined by the positive roots
are not compatible between the D8 and E8 root systems. However,
easy modifications of the proofs show that Lemmas 1 and 3 of §jDn

hold. Adding the condition wa2 = a2 in EQ, we see that possible
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elements in W(Ds)nR9 grouped by T7(2£8)-conjugacy classes, are con-
jugate to

4A±: C5CQC7C8, (12) (34) (56) (78)C7C8,

7C8, (12) (34)C5C6C7C8,

8 ^ : w0— — 1 ,
2A(αi): (12) (34) (56) (78)C2C4C6C7,
A(αi) + 3Λ: (12) (34) (56)C4C6C7C8, or
DSfld + 4A,: (12) (34)C2C4C5C6C7C8.
Suppose there is an element of order 4 in 22. If there is one

of type 2A(αO, we may assume it is (12) (34) (56) (78)C2C4C6C7. Then
λ is given by

sgn
θ
 sgn

ε
 sgns sgn* sgn

θ
 sgn

ε
 sgn

θ

with |<sgn^, sgn^, sgnε, sgnff>| = 16. This can occur if and only if
[&*: (fc*)2] ^ 16, and in this case, Δf = ^.

Then

22= Wi

= <(12) (34) (56) (78)C7C8, (13) (24) (57) (68)CβC8, (15) (26) (37) (48)C4C8>

is nonabelian of order 128 and has 65 conjugacy classes. R odm
(woy is abelian of order 64.

Now suppose that 22 does not contain an element of type 2DSβ^)f

but does contain (12) (34) (56)C4C6C7C8 of type Afai) + 3 ^ . Then λ
is given by

λ3 sgnθ sgn^ sgnθ λΊ sgnθ

with X\ = sgnθ and λ2λ7 = sgnθ sgnφ. This can occur if and only if
p = 2 or 4 divides g — 1. An examination of other possible elements
in R with this one shows that 22 = Z4 if λ2 and λ7 satisfy no addi-
tional conditions. If λ7 has order 2, λ 7g <sgn#, sgn9>, then CβJOβ^
R=ZiXZ2. If instead λ?=sgn9, λaλΓ1 has order 2, λ2λΓ2ί <sgn<?, sgn9>,
then (12) (35) (46) ( 7 8 ) 0 ^ 6 R ~ Z, x Z2. These two cases occur if
and only if p — 2.

Next, assume that 22 does not contain elements of types 2Z?4(α1)
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or A(αi) + 3AX, but does contain (12) (34)C2C4C5CβC7C8 of type
4i4.j. Then λ is given by

SgΏπ SgΠφ sgn e

with λ2 = sgnθ and λ| = sgn,? sgnε, and R = Zk. This case occurs if
and only if [k*: (fc*)2] ^ 16.

Now assume that R contains no elements of order 4. An explicit
list shows that a 2-Sylow subgroup of R is then Z2 with 0 <; n <£ 4.
Further, Z2

n occurs if and only if [k*: (A;*)2] ^ 2n+1, 0 ^ w ^ 4.
Using the fact that no elements of order 6 can be in an E8 R-

group, it is easy to see that the other JK-groups which occur are
isomorphic to Z3, Z3 x Z3 or Zδ.

R ^ Zz may be generated by an element of type SA2 or 4A2.
To construct R=Z3xZ3, note that Φ contains a subsystem of type

A8 spanned by {aQ, au a3, α4, α5, aβ, a7, a8}, where aQ = ΐ35f21. Letting
a0 = e, - e2, a, = e2 - e3, - -, aQ = e8~e9, R = <(128) (456) (789),

(147) (258) (369)> occurs for the character

Ψ X Ψ Ψ X Ψ Ψ

Ψ

with ψ, 1 and φ of order 3 and | (ψ, X,φ)\-=2Ί.
Z5 will occur as an JS-group, generated by an element of type

2A4, if and only if [&*: (&*)5] ^ 25.

8. Type F 4. Φv = {±2efc, ±et ± e i f ± ^ ± β2 ± e3 ± e4| 1 ^ fc ^ 4,
1 ^ ί < i ^ 4} is of type F 4. A base for Φv is given by ax — e2 — e3,
^2 = β3 — e 4 , α 3 = 2eif a n d α 4 = ex — e2 — β3 — β4-

Φ' = {± e* ± βy| 1 ^ i < j ^ 4} forms a sub-root system of type
Z>4 with Weyl group W(Φ') = S4 x Z2

3 acting as permutations and
^even sign changes on the e<e The Weyl group for Φ and Φv of type
* F 4 is S3 x TΓ(Φ') ~ Ss x (S4 x i?2

3), where S3 acts as permutations of

If ?) β, the Cartan matrix [n(a, β)] of Φv is

" 2 - 1 0 0
- 1 2 - 1 0

0 - 2 2 - 1
0 0 - 1 2
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The reader is referred to Bourbaki [2] for more details.

THEOREM F 4 . R ~ 1, Z2 or Zz. Zz can occur as an R-group if
and only if p = 3 or 3 divides q — 1.

LEMMA 1. Suppose w ~ sdeR with seSz and deS4 K Z?. Then
s has order 1 or 3.

Proof, se Ss has order 1, 2, or 3, so that w = sd, w2, or wz is
in the normal subgroup S4 K Zl. Further, this element must be able
to give reducibility for D4, so that w, w2, or wz is conjugate to one
of 1, C&, C&C&, (12)c3c4, (12) (34), or (12) (34)c2c4.

But of these, only 1, cxc%czc^ and (12)c3c4 can be in an i?-group
for Φ of type F 4 . Thus w, w2, or w% is conjugate to one of 1, cxc2czc^
or (12)c3c4.

Suppose that s has order 2, so that w2 = 1, CiC2czci9 or (12)c3c4.
We may assume that s = wai = c4 = (β8 — e4, e3 + e4). Then if d = σc
with (7 6 S4 and c e Zi, w2 - c^σcc^σ"1) (σ2cσ~2)σ2. Since (12) Φ σ2 for
any σ, we must have σ2 = 1 and thus cc^σcc^σ"1) = w2 = 1 or cxc2chc^

By conjugation we may assume that σ = 1, (12), (34), or (12) (34).
But then w2 Φ c^c^ for any c e Z2

3, so we have w2 = 1. But σ =
(12) (34) will not give w2 = 1 for any c.

Thus σ = 1 and w = c4c, c 6 Z2

3, or σ = (12) and c = 1, cxc2, c3c4,
or CjC2csc4, or σ = (34) and c is conjugate to c2c3 or c2c4. Then ^ — σcέc
is conjugate to one of c4, c2c3c4, or (12)c4. But none of these can be
in an JS-group for Φ of type F 4. Thus s can not have order 2.

If s = 1, then w = sd e

LEMMA 2. Suppose R ^ W(Φ') Γfce^ i? = Z2.

Proof. Any element of Rf]W(ΦF) is conjugate to one of 1,
or (12)c3c4. c&CsCt can not be in an iϋ-group with any conju-

gate of (12)c3e4, so if CiC2c8c4 6 R, then R — (pxc^c^ = Z2.
Suppose (12)c8c46iZ. Then λ is given by

sgnθ sgn6' sgnβ

where sgn<? Φ sgn^/ are of order 2. If there is another nontrivial
element of R, we may assume by conjugation that it is cxc2(34). We
then would need a^ to correspond to a character Ψ with Ψ2 =
sgn^sgnfl'. But then 2ax + 2α2 + ocz + α 4 e.Sf ΠΦ1' and cxc2(34) sends
this to a negative root, so it is not in an iϋ-group with (12)c3c4.
Thus R = <(12)c3c4> ~ Z2.

Now suppose there exists an element w = sd e R with s Φ 1,
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seS3 and d e W(Φf). Then s has order 3 by Lemma 1, and w3 e W(Φf)
must be conjugate to 1, c^c^, or (12)c8c4. Thus w has order 3 or 6.

Consider the elements waόwa4, waiwa2, (wa2wa3waiY = w2α2+α3wα3+α4,
and (waιwa2wa3waiY of order 3. The first 3 elements can not give
reducibility. The last gives reducibility if λ is given by

»̂ 2 3 2 ^* 3 ^* 2 3

• f T

where λ2 =̂ λs*1 are characters of order 3.
The above 4 elements are pair wise noncon jugate. Further, none

is conjugate to the inverse of another. Since the order of the Weyl
group W is 32 27, we see that any 3-Sylow subgroup of W consists
of 1 and conjugates of the above four elements and their inverses.
Thus there is a unique subgroup of order 3 in any 3-Sylow subgroup
which can be part of an JS-group.

Thus any element of order 3 in R is conjugate to (waiwa2waiwaiY
or its inverse. In this case all a correspond to characters of order
3, and thus R can not contain an element of order 2, which would
have to be conjugate to £,c2c8c4 or (12)c8c4. Thus an element of order
6 can not occur, and we have shown that R = {1}, Z2, or Z3.

Explicitly, if R Φ {1}, then R is conjugate to one of (c^c^) = Z2

with all λα of order 2, or <(12)e8e4> = Z3 with λ given by

s g n θ s g i v

with sgnθ Φ sgnθ>, or ((waiwa2wazwaiY) = Zd with λ given by

χ χ χ χ λ 2λ
9 * Λ

where λ2 Φ Xf1 are of order 3.
We note that if ϊ = R, then R = {1}, and thus Ind2 λ is irre-

ducible if G is a Chevalley group of type F4 over the reals.

9. Type G2. Let {a, β} be a base for Φv with Cartan matrix
i e P ° s ί t i v e r o o t s ί n φ v a r e <̂ , yS, α + 8̂, 2α + β9 3α + ̂ S,

and 2>a + 2β. The Weyl group W is a dihedral group of order 12.

9. Ty

— 3 2 Γ
d 2

THEOREM G2. R — {1} or R = (w0) = Z2, ^Λβre w0 ΐs ίfee Weyl
group element of maximal length.

One checks that the element w0 of maximal length is the only
Weyl group element giving reducibility. R = (w0) if and only if a
and β correspond to distinct characters of order 2.

If ϊ is nonArchimedean, [ϊ*: (!*)2] ^ 4, and such characters exist.
If ϊ = jβ, then R = {1} and Indg λ will be irreducible.
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CHAPTER III

ON THE DECOMPOSITION OF Indgλ

l Multiplicities of the irreducible components* If R is
abelian, then there are | i ί | irreducible components, each occuring
with multiplicity 1.

Write C[R] = NUjJC) © 0 Mmk(C). Then mlf m2, , m* are
the multiplicities of the k inequivalent irreducible components of
Indβλ. k is equal to the dimension of the center of C[R], which
equals the number of conjugacy classes in R. Further, the m* are
the degress of the irreducible representations of the group R. We
note that if R has a normal abelian subgroup R', then the degrees
rrii divide the index of R' in R, by Ito's Theorem.

Suppose R is non-abelian. Then G is of type Dn, E7 or E8.
Suppose G is type Dn, with n odd. Then R = Z4 x R" contains a
normal abelian subgroop R! of index 2, so mέ = 1 or 2. If p is odd,
then R ~ Z4 ix (Z2 x Z2) has order 16 and there are 10 conjugacy
classes in R. Thus we have the decomposition 16 = 2 22 + 8 12, and
Indfλ decomposes into 2 irreducible components of multiplicity 2,
and 8 irreducible components of multiplicity 1.

If p = 2, there may be more factors of Z2 in R. We note that
R ~ JS4 tx (Zξ) has 28 conjugacy classes, giving the decomposition
64 = 12 22 + 16 Γ, and R = Z, K {Zξ) has 88 conjugacy classes, giving
the decomposition 256 = 56 22 + 32 Γ.

Suppose G is type Όn with n even. Then any non-abelian R is
isomorphic to (Z2 x x Z2) K JR'. If p is odd, i2' is the group of
even sign changes on {en, en__lf en_2, en_z} and the first factor is
<(12) (34) . . . ( Λ - 1 Λ ) ) or <(12) (34) (n - 1 n), (13) (24) - (n - 2 w)>.

In the first case, mi—I or 2, |J2| — 16 and there are 10
conjugacy classes in R. 16 = 2 22 + 8 12 gives the decomposition
into 2 irreducible components of multiplicity 2, and 8 of multiplicity
1.

In the second case, |jβ| = 32 and there are 17 conjugacy classes.
The two possible decompositions are 32 = 42 + 16 Γ = 5 22 + 12 Γ.
But since i?/<cncn_1c7l_2cn_3> is abelian, there are at least 16 one-dimen-
sional representations of R, so the decomposition must be 32 = 42 +
16 Γ. Thus Indfλ decomposes into 16 irreducible components of
multiplicity 1, and 1 component of multiplicity 4.

If G is type E7, the nonabelian jR-groups are the dihedral
group D of order 8 and D x Z2. R = D gives the decomposition
8 = 1 22 + 4 Γ and R^DxZ2 gives the decomposition 16 = 2 22 + 8 Γ.

If G is type E8, the nonabelian iϋ-group has order 128, 65 con-
jugacy classes, and R/(w0} is abelian of order 64. This gives the
decomposition 128= 1 82 + 64 Γ, so Indfλ decomposes into 1 irre-
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ducible components with multiplicity 8, and 64 irreducible components
each with multiplicity 1.

2* Some analysis on L\V)+ In this section we realize the
operators a(w, λ) on L\V) via a Fourier transform, where V is the
unipotent radical of the Borel subgroup opposed to B. We find a
class of functions in L\V) on which ά(w, λ) acts as multiplication
by a bounded function M(w, λ). This class has nonzero intersection
with each invariant subspace for groups of type An and Bn.

Write φδ(y) for φ, (J | ) in Uδ and let na = 9>β(_J J) for a

simple, where φδ\ SL (2) —» G is the canonical homomorphism corre-
sponding to the root δ.

Write V = Πs<o Uδ in some fixed order. Since each Uδ is isomor-
phic to f, this gives a topological isomorphism of V with the product
of \Φ~\ copies of ϊ. We then define a Fourier transform on L\V)

by fdli<oΨa(cδ)) = j /(Πδ<o 9>*(2/ί))Z(Σί<o c,i/,) Π dyβ, where Z is a fixed

additive character of ϊ with conductor the ring of integers.
Fix a simple root α > 0. Then

A(wα, X)f(g) = A(nαJ X)f(g)

=
J= s

1 0\ f-u 1

'"\l/u l ) \ 0 - l / i

- 0\

du

Let sr 6 V, g = Πδ<o ?a(l/ί) Then

/I 0\

where the Pδ = Pδ,α are polynomials arising from Chevalley's commu-
tation relations. Make the change of variables y_α t—• y_α — u to
define polynomials Qδ(yβ, u). Then Qδ = 0 if δ is simple.

Consider the operator A(wα, λ) under the Fourier transform. Let
$ = Π 9>afo). Then

A(wα, x)f(g) = ί (/ (Π
JJ \u\
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= jj /(π ΨAUB + Qitoβ, mκ(-um-c_au)-^

X Z(Σ c,y9) Π dyδ .

We define a function /eCc°°(F) as follows. For δ <Q, δ simple,
let fδ be any function in C6°°(£*), i.e., such that the support of fδ

avoids zero. Let Sδ be the support of fδ. If δ < 0 is nonsimple
with Qδ = 0, take any fδeCΓ(Uδ), and let Sδ be its support.

Define the other Sδ inductively from right to left in the product
Πδ<o Uδ. If Sβ is defined for all β to the right of δ in the product,
let Sδ be the fractional ideal generated by {Qδ,0t{yβynGZ1

0)\yβeSβ,
ue^ if λα is unramified and \u\ — qh if λα is ramified of degree h,
and c_a 6 supp /_α for a simple}. Define fδ to be the characteristic
function of Sδ.

For root systems of type An, Bn, Cn, Dn and G2, we may arrange
the negative roots such that Qδ)CC(yβ, u)^0 implies Qβta Ξ 0, Qδ>a(yβ, u)^0
implies β Φ - α , and Qδ,a(yβ, u) = Qδ,a(yβ)u. Then if / = Π Λ»

Π

x λ α (~^)χ(-c_ α u)-^- Π d»ι Π dyβ = 0

unless ^ e Ŝ  for all /3 with Q̂  = 0. Fix yβ e Ŝ  and consider

Π Λ(» - Qa^^zίΣ^aM^χCc-^)-^ Π d»*.

This will be zero unless yδ — Qδ(yβ)ueSδ for all δ. Thus we need
only integrate u over the intersection Π^ (VQ*(Vβ))(Vi — Sδ) =
(l/Qδo(yβ)(yδQ — S>,0), for some δ0, and integrate yδ over the coset

Write

S -I + ? L
where the sum is over shells S? consisting of nonzero cosets of SδQ.
The above integral becomes

Π \ Π /,(», - Q,(Vβ)u)X(Σ cδyδ)XMX(c_au)^- Π dy,
jt* JsδQ Jπuδ\δΦδ0 It&j

+ Σ ί (ί Π /.(», - Qs(y^)w)χ(Σ cδ2/J)λα(w)χ(c_αu)-^- Π dy,

In each term in the sum, we are integrating ^a(u)χ(c_au) over
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a shell (ί/QδQ(yβ))S^ which is disjoint from SδJQδQ(yβ). Thus we are
integrating Xa(u)χ(u) over a shell disjoint from (l/QδQ(yβ))c_aSδQ, which
gives zero, by the definition of SδQ and properties of the gamma
function [29, 35].

We are left with only the first term. Note that

We get that

A(waX)f(9) =\ \ \
juuδ',δΦδ() jSδn Jt*

x Z(Σ csys)Xa{u)l{c_au)-pj Π dy, Π dy, .
\u\

This is zero unless yeeSβ, c_α e supp/_α and u e l/c_α x (P~h\P~h+1)
for λα ramified of degree h, or u e l/c_α x ^ for λα unramified. But
then Qs(yβ)ueSs and /(y, - Qs(yβ)u) = /(#,). Thus for such /,

Thus ά(wat λ) = dJΓ(Xa))A(wa, λ) acts on such / as multiplication
by M(wa, λ) = λ«1(c_α). Then if w = ̂ α i ^ α 2 wα,, ά(w, λ) acts on
such/as multiplication by the function M(w, X) = M{waif wa2 waιX)
M(waι, λ), by the cocycle condition.

We note that w \-* M(w, λ) is a homomorphism, and further, that
we may evaluate M(w, λ) at F_α for any simple root a to obtain a
homomorphism from Wλ into (f*)~. If this homomorphism is injec-
tive on R for some a, then the linear independence of distinct charac-
ters of ϊ* implies that the operators {a(w, λ) | w e R} are linearly
independent. Further, we may write |J?| nonzero projections giving
/ as above in each invariant subspace.

The homomorphism is injective on R for groups of type An and
Bn, but is not necessarily injective for groups of type Cn and Όn.
We may show the linear independence of the operators {&(w, λ) | w e R}
for these groups as follows.

As in [37], let fx = fI)X be the function in Hλ whose restriction
to K is supported on the Iwahori I and is constant on Zfl V. Then
<x(w, λ)/7(wf) = 0 if and only if ww' Φ 1, provided that l(wf) ^ l(w),
that ΓW(X) and ΓV(λ) are defined, and the characters λ̂  are ramified
for all β 6 R(w). (The proof is by induction on the length of w.
Write w = waw with l(w) — l(w) — 1 and use the fact that X-w-ia

is ramified.)
To show that {a(w, X) \ w e R} are linearly independent, it is

enough to find a w0 e JB such that a(w, X)fI(w0) = 0 if and only if
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wwQ Φ\. If all λα are ramified, use the above. Otherwise, since
we know what groups R can occur, we may check that wQeR con-
sisting of as many sign changes as possible will work for groups
of type (X and Όn.
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