
PACIFIC JOURNAL OF MATHEMATICS
Vol. 102, No. 2, 1982

INTRINSICALLY (n - 2)-DIMENSIONAL CELLULAR
DECOMPOSITIONS OF En

ROBERT J. D A VERM AN AND D E N N I S J. GARITY

Let G be a CE use decomposition of an ^-manifold M.
The intrinsic dimension of G is a measure of the minimal
dimension of the image of the nondegeneracy set of CE
maps from M onto M/G which approximate the natural
projection map. Examples of totally noncellular intrinsically
^-dimensional decompositions of Ev, n^S, are known to
exist. Here it is shown that there also exist cellular de-
compositions of En, n^&, which are intrinsically (n — 2)-
dimensional.

0* Introduction* Most examples of decompositions presented
in the literature are O-dimensional. Illustrating the extreme alter-
native, Cannon, Daverman and Walsh have constructed examples of
totally noncellular, CE use decompositions of En, n ^ 3 [3] [7]. The
fact that these decompositions are totally noncellular (and are known
to yield ^-dimensional decomposition spaces) makes it clear that they
are intrinsically ^-dimensional.

Cellular decompositions, however, cannot be quite so complicated.
It is not difficult to show that a cellular decomposition of En (having
finite dimensional decompositson space) is necessarily of intrinsic
dimension less than n. For proofs of this fact, see [10, p. 68] or
[11, p. 27]. This paper sets forth examples of cellular decompositions
of En, n ^ 3, that are intrinsically (n — 2)-dimensional. Such exam-
ples were discovered independently by the authors in 1979.

The main point established by these examples is that cellular
decompositions form a fairly large and reasonably typical subclass
of the total class of CE decompositions. Moreover, the important
question of whether En/G x Eι is homeomorphic to En+1 remains
open in all dimensions n ^ 3 (even when G is a cellular use decom-
position of En and En/G is finite dimensional). Whenever G is
intrinsically of dimension <; n — 3, (En/G) x E1 is known to be
topologically En+1 [6, Theorem 1] [5, Theorem 3.3].

Whether there exist intrinsically (n — l)-dimensional cellular
decompositions of En stands as an unsolved problem.

l Notation and conventions* We will be considering cell-
like (CE) upper semicontinuous (use) decompositions of manifolds M
without boundary. If G is such a decomposition, HG represents the
set whose elements are the nondegenerate elements of G, and Nσ
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represents the union of these elements. In general, π or πa will
represent the quotient map from M onto M/G. If p is a CE map
from M onto X and H is the decomposition of M with elements
{p~\x)\xeX}f then JVP = NH. A CE map p from ikf onto X is said
to be 1-1 over A if AcX and each p~\a) for α e i consists of a
single point.

The sup metric p on £7* will be used. That is, p(x, y) —
sup l ί : isSn |a?i - Vi\ where a? = (xί9 , a?n) and j/ = d/x, •••,!/„). For
maps / and # from X into £/n, /o(/, flO Ξ= swp9βZ p{f(x)9 g(x)). The
standard embeddings [—1,1] x x [—1,1] x {0} and [—1, 1] x x
[-1,1] x {0} x {0} of the closed (n - 1) and (n - 2) balls in En will
be denoted by Bn~λ and Bn~2 respectively. Thus, each point y of
I?""1 can be represented as (x, t) where x is in Bn~2 and t is in

[-1,1].

2. Preliminaries* The following definitions and theorem are
taken from [3] and provide a general framework for constructing
CE use decompositions.

DEFINITION. Let N be a P.L. ^-manifold. A defining sequence
(in N) is sequence £* — {^£λ, ^^ } satisfying the following con-
ditions:

(1) for each i, ^ # ; is a finite collection {Λf(l), •• ,Λf(fc<)} of
P.L. ^-manifolds with boundary in N such that

(Int M(j)) n (Int M(k)) = 0 for j Φ k

(2) for 1 ^ ΐ < j and for each 4̂. in ^ ^ , there is a unique
element Pre^CA) in ^^ properly containing A; and

(3) for each i ^ 1, each A in ^ u and each pair of points x
and /̂ in dA, there is an integer j > i such that no element of ^fό

contains both x and y.

DEFINITION. Let y be a defining sequence in an ^-manifold N.
Then

8t(x, Λj) = stx{x, ^/rs) •= {x} \J \J {Ae ^\% z A] and

stk(x, ^) = U {sί(i/, ^ζ.) I y e s ί ^ O , ^-)} when k ^ 2 .

DEFINITION. The decomposition G of N associated with a defin-
ing sequence S^ in N is described as follows. Distinct points x and
y oί N are in the same element of G if there is an integer r,
depending only on x and y, such that for each j , yestr(x,

THEOREM 1 [3, §3]. The decomposition G of N associated with
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a defining sequence ,9* in N is use. If, in addition, each A in
^j is null homotopic in Pre1 (A) for all j ^ 2, then G is CE.

In general, each x in N has the property that π~~x°π(x) =
Γ\7=iSt2(x, ^ O Let B = \J{dA\A is an element of some ^f}}. If
x 6 g 6 G and either xeBoγgΓ\B = 0 , then TΓ"1 O π(x) = 07=1

3* Measuring intrinsic dimension* This section sets the stage
for the construction of the next section. Methods for determining
the intrinsic dimension of certain decompositions are set forth.

DEFINITIONS. Let G be a CE use decomposition of an ^-manifold
M. Then G is said to be:

( i ) d-dimensional if τϋ(NG) has dimension d;
(ii) closed d-dimensional if the closure of π(NG) has dimension d;
(iii) secretly d-dimensional if π is arbitrarily closely approxi-

mable by CE maps p from M onto M/G with p(.Np) of dimension
less than or equal to d; and

(iv) intrinsically d-dimensional if it is secretly cZ-dimensional,
but not secretly (d ~ l)-dimensional.

For a defining sequence S? = {^C, - ^ , } in En consider the
following Special Hypothesis:

(SH*) There exist maps F1 and i^2 from B2 into £7n and ε > 0
so that F,(B2) (Ί F2(B2) = 0 and p(Fe(dB2), \J ^ ) > ε for e = 1, 2.

(SHO (a) iί, is the subdivision of J5ra~2 into 2(ί~1)u~2) (w - 2)-
cells obtained by dividing each [ — 1, 1] factor into 2ί~1 equal sub-
intervals.

Si is a triangulation of [ — 1, 1] with Si+1 refining St.
Ti is the subdivision of Bn~x obtained by taking Rt x Si%

Tt has mesh less than or equal to 22~\
(b) For each element A of ^fi9 A Π {-B^1 x [-1/i, 1/i]} - C x

f-l/i, 1/i] where C is an (n - l)-cell of Tt.
(c) For distinct elements A and A of ^jξu i n A is contained in

dC x [-1/i, 1/i] where C is an (w - l)-cell of Tt.
(d) If xedA for A in ^€i_x, either x g U ^£t or x 6 3C x

[~l/i, 1/i] for some (n - l)-cell C of Γ,.

DEFINITION. Fix t in [-1, 1]. Maps /x and /2 from ^ 2 into En are
(ί, ^ ) slice maps if for all x in £"-2, ττ(x, t) Γ) π(UB2)) f] π(f2(B2)) Φ 0 .
Assume SH, holds. Then f and /2 are (A, ^ ^ ) siice maps (A an
interval of St) if P x A is contained in an element of ^/^ that
intersects both f{B2) and f(B2) for every P in R,.

The next two lemmas are technical and will guide the construc-
tion in the following section.
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LEMMA 1. Assume that SH* holds, and that:
( i ) π\Bn~ι is homeomorphism;
(ii) π(Nκ)^π{Bn-1);
(iii) iff,, and f2 are maps from B2 into En, with ρ(fe \ dB\ Fe | dB2) <

ε/2 for e = 1, 2, then for some t in [ —1, 1], /x and f2 are (t, S^) slice
maps; and

(iv) the decomposition G of En associated with 6^ is cellular.
Then G is intrinsically (n — 2)-dimensional.

Proof. First, it will be shown that G is secretly (n — 2)-dimen-
sional. Note that Q = En/G — π(Bn~ι) is an Fa set and that π is
already 1-1 over Q. Choose a countable dense subset {#J of B71"1 so
that 0 = B71'1 — \J?=1 {Xi} is (n — 2)-dimensional. Since G is cellular,
π: En —> STO/G can be closely approximated by a C2? map 2>t: E

n —>
En\G that is 1-1 over π(xt). It follows from [9, p. 15] that the
map π from En onto En\G can be closely approximated by a CJ£
map p from i?71 onto En/G with p(Np)a0. This implies G is secretly
(w — 2)-dimensional.

Next, it will be shown that G is not secretly (n — 3)-dimensional.
Assume the contrary. Then π can be approximated by a CE map
q so that q(Nq) has dimension less than or equal to (n — 3). Since
F,(B2) Π F2(B2) = 0 , it follows that h, = qoFx and h2 = qoF2 have
the property that ^i(B2) Π 2̂(-B2) has dimension less than or equal to
w — 3. By [8, p. 80], there exists a path a from βn~2 x {1} to

Bn-2 x {_i} i n j3*-i go that π(α) Π h,(B2) 0 h2{B2) = 0 .
By choosing q close enough to π, it is possible to find approxi-

mate lifts f and /2 to fex and h2 so that /X(JB2) Π /2(-β2) Π « = 0 , and
so that p(fe\dB2, Fe\dB2) < ε/2. This contradicts hypothesis (iii) of
the lemma and implies that G cannot be secretly (n — 3)-dimensional.

LEMMA 2. Assume that SH* and SHi hold for 1 ^ i < °o,
£/&e decomposition G associated with S^ is cellular, and that for
1 <: i < oo ίfcβ following condition holds:

(aθ whenever flf f2 are maps of B2 into En in general position
with respect to all the elements of ^£h, k ^ i, and for which
p(fe\dB2, Fe\dB2) < e/2for e = 1, 2, then there exists A^Si such that
fi and f2 are {Ai9 ^x) slice maps. Moreover, in case i ^ 2, the
choice of At can be made so that At £ Ai_x.
Then G is intrinsically (n — ^-dimensional.

Proof. It follows from SHi that each nondegenerate element of
G intersects J571"1 and that, for x e B71'1, Bn~ι Π st2(x, ^ ^ ) has diameter
less than 24~\ By Theorem 1, πlJS71"1 is an embedding and π(Nπ) =
π(NG)(zπ(Bn'~1). Moreover, Conditions (aθ, l ^ ΐ < © o , imply that
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hypothesis (iii) of Lemma 1 holds. Thus, all the hypotheses of that
lemma are satisfied, and G must be intrinsically (n — 2)-dimensional.

4* The construction* Lemma 2 indicates how the construction
will proceed. A defining sequence Sf for a cellular decomposition
G will be constructed in En so that SH* is satisfied. At each stage
i, SHi will be satisfied, as will Condition ai from Lemma 2. The
construction will complete the proof of the following theorem.

THEOREM 2. For n^2>, there exist intrinsically (n — 2)-dimen-
sional cellular use decompositions of En.

The following definition and lemma from [4] will be used in the
course of the construction. Anyone familiar with the examples of
wild Cantor sets in En constructed by Antoine [1] or Blankinship
[2] may prefer to use the appropriate manifolds from their specific
examples in place of the more general construction procedure used
below.

DEFINITION. Let ikf be a manifold with boundary, H a disc with
holes and / a map from H into M with f(βH) c dM. Then / is said
to be I-ίnessential if there exists a map / from H into dM with
f\dH= f\3H. Otherwise, / is said to be I-essential.

LEMMA 3 [4, p. 147]. Let S denote a closed P.L. (n — ^-mani-
fold and M = S x JS2. Choose e > 0. Then there exists a finite
collection {Mt} of pairwise disjoint, locally flat manifolds in Int (M)
such that:

( i ) each M{ is homeomorphic to the product of B2 and a closed
P.L. (n — 2)-manίfold;

(ii) the diameter of Mi is less than ε; and
(iii) whenever H is a disc with holes and g:H—>M is an I-

essential map, then g(H) Π (U -Mi) ̂  0

Stage l 2V Let Rx be as in SH 1 and St be the trivial trian-
gulation of [-1,1]. Let Tx = Rλ x Sx.

Let V be a P.L. embedded copy of

Tn = B2 x S1 x '^2<Sι

n— 2 copies

in B1"1 x [3, 4] and W a P.L. embedded copy of Tn in Bn~x x [-4, -3] .
^ d will have one element, Λf(l), consisting of Bn~γ x [ — 1, 1], V,
W, and P.L. w-tubes joining Bn~x x {1} to V and Bn~ι x {-1} to W.

Figure 1 shows Af(l) in the case n — 3.
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FIGURE 1.

SH 1: The choice of Tx and
is satisfied.

allows one to verify that SH 1

Note 1. The construction allows one to choose ε > 0 and maps
Fu F2 from B2 into En so that

(i) F ^ Π W ^ 0;
(ii) p(Fe(dB2), Λf(l)) > ε for β = 1, 2; and
(iii) whenever fλ and f2 are maps from JB2 into En in general

position with respect to M(l), and with ρ(fβ\3B2, Fe\dB2) < e/2, e =
1, 2, then there exists a disc with holes ΈL^ (resp. 1̂ ) so that /Jίfi
(resp. /2|I#i) is /-essential in V (resp. TΓ).

To find F1 (F2) choose any embedding of B2 in En~ι x (0, co) (in
j^n-i χ (-co, 0)) satisfying condition (ii) above and such Fλ(B2) f] V
(F2(B2) n W) equals the image in V (W) of B2 x pt. x - x pi. c T\

The above note yields immediately the fact that SH* and Con-
dition (ax) of Lemma 2 are are satisfied.

Stage i. Assume that t^^_1 has been constructed so that the
following inductive hypotheses are true for j = ί — 1.
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IH I. SHj and Condition aj from Lemma 2 hold.

IH II. T} ('Wj) is a collection of pair wise disjoint, connected,
locally flat ^-manifolds with boundary in V (W) of diameter less
than 1/j, and of the form B2 x (closed (n — 2)-manifold).

IH III. Each element m of ^ J consists of (an (n — l)-cell of
Tj) x [ — 1/i, l/i] connected by n-tubes to a unique element v(m) of
ψ\ and also to a unique element w(m) of CW^ Furthermore, when
j > 1 each veT} (w e (W*Ϊ) is contained in some flat w-cell Cυ (CJ that
lies interior to some element of 7}_i (^y_i), and then, for me^€J,
w U C,(m> U Cw(m) is a flat w-cell Qm such that

Qw n OB*"1 X [ - l / i , l/i]) = (an (n ~ l)-cell of Γ,) x [-1/i, 1/i] .

IH IV. Whenever /i and /2 and Ay are as in Condition â  of
Lemma 2, P is an element of Rj and v and w are the elements of V}
and ^^} associated with PxAjf there exists a disc with holes H (resp.
L) in B2 so that / J i ϊ (resp. /2 |L) is J-essential in v (resp. w).

2. The above inductive hypotheses are true for j = 1.
will be constructed by considering each "slice" Bn~2 x E (E

an interval in SLi) separately. Focus attention on one such slice.
Rx: Let P(l), , P(r) be the (n - 2)-cells of ie,^, and v(ϊ), ,

v(r), and w(l), •• ,/^(/^) the associated elements of ψ\^ and ^ l _ i
respectively.

As in SH (i-1), r = 2(i"2) u " 2 ) . Ri is chosen as in SH i so that
each P(i), 1 ^ j < r, contains s = 2n~2 (n - 2)-cells of Ri.

Finding interior manifolds* Consider a specific P(j) X 2?, 1 <Ξ
i ^ r. Use Lemma 3, with ε = l/i, to obtain a collection of w-mani-
folds with boundary satisfying the conclusions of Lemma 3 in the
interior of v{j) and w(j).

Without loss of generality, the same number I of interior mani-
folds can be chosen in each v(j) and w(j) so that each interior mani-
fold in v(j) (resp. w(j)) is contained in a P.L. w-cell interior to v(j)
(resp. w(j)).

Note 3. There are l2r distinct ways of choosing exactly one
interior manifold from each v(j) and w(j), 1 ^ j ^ r.

Ramifying the interior manifolds* Each interior manifold M
is of the form B2 x N for N a closed (n — 2)-manifold. Choose
m = s-V21'^ pairwise disjoint subdiscs Dl9 , Dm of B2, and form m
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"parallel interior" copies of B2 x N by taking Dt x N, , Dm x N.
Tl, W\\ The part of Tι (resp. ' ^ ) associated with the slice

B2 x E consists of the union of all the "parallel interior" manifolds
constructed in v(j) (resp. w(j)), 1 ^ j S r.

Note 4. There are a total of r sΊ2r components of T\ (resp.
Ύ/^ϊ) associated with the slice Bn~2 x E.

Sh Tii Subdivide E into l2r equal subintervals, so that 2\ has
r-s-l2r (n - l)-cells in Bn~2 x E.

^€i\ For each of the l2r choices mentioned in Note 3, choose a
distinct slice Bn~2 x E for E in St. Thus, associated with Bn~2 x E,
we have one of the original interior manifolds from each of v{j)
and w(j), 1 ^ j ^ r.

For each P in i2, with PaR(j), tube P x E x [-1/i, 1/i] to a
parallel interior copy of the associated interior manifolds in v(j) and
w(i). Do this by first choosing an w-cell Cυ (resp. Cw) containing
the target interior manifold in its interior, so that Cv (resp. Gw) is
contained in the interior of v3- (resp. ws ). Run the tube from Bn~λ x
{1} (resp. Bn"1x{ — 1}) directly to Cυ (resp. Cw) and then, once inside
that w-cell, threading the tube through it, never leaving the cell,
over to the preselected element of Tl (resp. CWD

The number of parallel interior manifolds has been chosen so
that each will be used exactly once. Then ^i consists of the mani-
folds resulting from the above tubing operation.

Note 5. At this point IH II is satisfied for j = ί. If the tubing
operation is done carefully enough, IH III and SHi will also be true.

IH IV and Condition ax: Condition ai of Lemma 2 is implied
by IH IV. What follows is a verification of IH IV in case j = i.

Let flf f2 and Aι_λ be as in Condition α ^ , and assume, in addi-
tion, that /i and f2 are in general position with respect to all of the
elements of ^ ί j . By IH IV for j — i — 1, for each P(Jc) of Rt_19

corresponding to the manifolds v(k) and w(k) associated with P(k) x
Ai-i are discs with holes H(k) and L(k) such that f^HQc) is J-essential
in v(k) and fz\L(k) is I-essential in w(k). It follows from Lemma 3
that v(Jc) (resp. w(k)) contains an interior manifold vk (resp. wk) such
that, modulo another general position adjustment, there exists a disc
with holes Hk (resp. Lk) in H{k) (resp. L{k)) for which f^Hj, is I-
essential in vk (f2\Lk is I-essential in wk). Then each of the parallel
interior copies of vk (wk) must be hit in an I-essential way by f (/2).

Determination of vk and wk constitutes a choice as in Note 3.
Thus, the construction of ^€£ associates a slice Bn~2 x E with this
choice and guarantees that IH IV holds for j = i.
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Cellularity of (?• This completes the inductive description of
the defining sequence ^ It remains to be shown that the associated
decomposition G is cellular.

Fix x e Bn~\ SHi, l^i< °°, together with Theorem 1 implies that
the element g of G containing x is obtained by taking ΠΓ=i st(x, ^fέk).
So it suffices to show that Π&U st(x, ^fk) is cellular. At some index
j = j(χ) the number of elements of ^tά contained in st(x, *̂ gj) must
stabilize since this number is bounded above by 2n~\ When this
occurs, any m' e ^ k in st(x, ^€k), contains exactly one m e ^C + 1 in
st(x, ^fk+1), k ^ j .

Using the notation of IH III, st(x, ^/fk+1) is contained in the
union Xk+1 of all the w-eells Qm, where xeme^fk+1, and Xk+1 in
turn is contained in st(x, ^j€k). It is easy to add the w-cells of
Γ̂fc+i together, one at a time, to show that Xk+1 is also a flat

w-cell. If U is any open set containing st(x, ^ ί i ) , Xk+i (possibly
slightly thickened) is thus a flat w-cell with st(x, ^tk+1)dnt (Xk+1)a U.
It follows that Π£U st(x, ^/fk) is cellular and that G is a cellular
decomposition of En.
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