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QUASI-ISOMETRIC DILATIONS OF OPERATOR-VALUED
MEASURES AND GROTHENDIECK’S INEQUALITY

MiLTON ROSENBERG

Let M(-) be a strongly countably-additive (s.c.a.) (con-
tinuous linear) operator-valued measure on an arbitrary
o-algebra <7 of subsets of an arbitrary set £ from a Hilbert
space W to a Hilbert space 5. Is there a Hilbert space
22 2 2 and a s.c.a. quasi-isometric measure M(-) (cf. Masani,
BAMS 76 (1970), 427-528) on <% from W to % such that
M(-)=PoM(-) where P is the projection on % onto 5#? In
other words, has such an M(-) a “quasi-isometric dilation
M(-)’? We show that when W or & is finite-dimensional
the answer is affirmative, and that when W is finite-dimen-
sional there is a unigue (up to isomorphism) quasi-isometric
dilation J(-) of M(-) such that trace(M(Q2)*M(2)) is a mini-
mum. This generalizes results of Miamee and Salehi, and
Niemi. Our results depend on Grothendieck’s inequality.
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1. Introduction. In 1977 Niemi [15] proved that a countably-
additive (c.a.)' measure &(-) on the Borel family <& of a locally
compact Hausdorff space 2 with values in a Hilbert space 2# over
F,;® is the projection of a countably-additive orthogonally-scattered
(c.a.0.8.) measure &(-) on £& with values in a larger Hilbert space
277 More fully, &B) = P{&(B)}, Be <%, where P is the projection
on .2 onto 57 Stated differently, &(-) has an ‘“orthogonally-
scattered dilation to &(-)”.

Niemi was influenced by Abreu’s 1976 paper [2] in which he
gave a sufficient condition [2, Th. 3] for an S#valued measure to
be the projection of a c.a.o.s. measure with values in a larger space
2%. However, Niemi interpreted vector-valued measures not as set-
functions but as linear operators on spaces of continuous functions
which vanish at infinity. As early as 1970 Abreu [1] had shown

! We shall abbreviate “finitely additive”, “countably additive,” “weakly countably
additive,” “strongly countably additive”, repectively, as “f.a.”, “c.a.“, “w.c.a.”, “sc.a.”.
2 Throughout this paper F will stand for the real number field R or the complex

number field C.
135
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that every process harmonizable in the sense of Cramér is the
projection of a stationary process. In 1978 Miamee and Salehi [14]
guided by the work of Niemi, in the course of generalizing Abreu’s
theorem for processes harmonizable in the sense of Rozanov ([14,
Main Th. 5]), derived Niemi’s theorem for the case 2 = R, cf [14,
Cor. 6].

To understand the relation of our work with the preceding, we
must recall the definitions of an orthogonally-scattered measure and
of a quasi-isometric measure, cf. Masani [11], [12]. Let 5# be a
Hilbert space and <& be a c-algebra over a set 2. An S#-valued
set function £(-) on <Z is said to be countably-additive orthogonally-
scattered (c.a.o.s.) if and only if

(&(A), &(B))s> = (AN B), A, Be<Z,

where ¢ is a c.a. nonnegative real-valued measure on <#.* Now let
W and 5# be Hilbert spaces and let M(-) be a W-to-5# (continuous
linear) operator-valued set function on <& Then M(-) is said to be
strongly countably-additive quasi-isometric (c.a.q.i.) if and only if

M(B)*M(A) = HLAN B), A BeZ,

where H(-) is a s.c.a. W-to-W nonnegative hermitian operator-valued
measure on <#.*

It is natural to ask if, in analogy to the result of Niemi, every
s.c.a. W-to-2# operator-valued measure M(-) on <7 is obtainable by
projection from a W-to-9% c.a.q.i. measure M(:) on <&, where the
Hilbert space .97 is larger than 57 specifically if

M(B) = P-JM(B), Be &z,

where P is the projection on .5 onto 5% Stated differently, the
question is whether such an M(-) has a “quasi-isometric dilation
M(-).

This paper is addressed to the operator-valued question just
described. In it the fundamental concept of a 2-majorizable measure
due to Persson and Pietsch [17] plays a fundamental role, as it does
in the papers of Niemi and of Miamee and Salehi. However in our
paper this concept, defined so far for vector-valued measures, has
to be defined for operator-valued measures. In §2, in our main
Theorem 2.9 we give a set of equivalent conditions pertaining to
dilatability, 2-majorizability, and the positive definiteness of certain
kernels (2.8). In this theorem and in the rest of this paper, we
interpret dilatability in terms of injections into Hilbert spaces rather

8 In [12; 2.1] it is indicated that such a £(-) is necessarily c.a.
4 In [12; 8.6(e)] it is shown that such an M(-) is s.c.a.
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than imbeddings into Hilbert spaces, ef. [13; §1]. In light of
Theorem 2.9 the central question is whether every W-to-5# s.c.a.
operator-valued measure M(-) is 2-majorizable? In the case of a
vector-valued measure with 2 locally-compact Hausdorff, an affirma-
tive answer was given by Niemi [15, Th. 4] on the basis of earlier
work by Pietsch [18] and Rogge [20]. In §3 for the purpose of
proving a generalization of this result for operator-valued measures,
we give a new proof of the vector result (3.9), with <& an arbitrary
o-algebra over an arbitrary set 2, in which a central role is played
by Grothendieck’s inequality (3.2). We also give a new proof of the
uniqueness of a minimum 2-majorant (3.10) valid for any £, original-
ly due to Pietsch, for compact Hausdorff spaces [18, Satz 2].

In §4 we turn to the question of the 2-majorizability of any
W-to-2# s.c.a. measure M(-). We are able to give an affirmative
answer only in the case where either W or 5# is finite-dimensional
(4.1), (4.8), unfortunately. We also show for finite-dimensional W
the existence and uniqueness of a minimum trace 2-majorant (4.7
and 4.14). We exhibit the explicit form of the minimum trace 2-
majorant in the case where 2 consists of 2 points (Example 4.15).

We refer the reader to [22] for facts on the generalized inverse
A# of an operator A. In general, for an operator A we let #Z(A) =
range A, A* = adjoint of A, A = trace of A, |A| = Banach norm
of A, |A|; = euclidean norm of 4 =17(tA*4). We denote P, as
the orthogonal projection with range _#

2. Definitions and the equivalence theorem. In this section

(i) &7 is a c-algebra over an arbitrary set 2 ;

2.1
2.1) (ii) W, 27 and 2 are Hilbert spaces over F .

DEFINITION 2.2. Let 2, <&, W, 22 be as above.

(a) A W-to-2¢ (continuous linear) operator-valued set function
M(-) on <Z is said to be a strongly countably additive quasi-isometric
(c.a.q.i.) measure iff

M(B)*M(A) = HANB), A, Be <7,

where H(-) is a s.c.a. W-to-W nonnegative hermitian operator-valued
measure on Z.° H(.) is called the control measure of M(-).

(b) A 9#°to-¢ operator-valued set function E(.) on &# is said
to be a spectral measure iff E(-) is s.c.a. on <7, E(B) is an orthogonal
projection for each Be.<# and E(B)E(A) = E(AN B), A, Be &.°

With the notation of (2.1) we assume

5 In [12; 8.6(e)] it is shown that M() is s.c.a.
& Note, we do not stipulate that E(Q) = I.
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(i) M(.) is a s.c.a. W-to-5# operator-valued measure on <7;

(il) H(-) is a s.c.a. W-to-W nonnegative hermitian operator-
valued measure on 7.

(2.3)

DEFINITION 2.4. Let M(-) and H(-) be as in (2.3). We say that
M(-) is 2-majorizable with respect to H(-) or that H(-) is a 2-
majorant of M(-) iff for all » =1 and all B, ---, B,€ <& and all
wy, +-c, W, €W

3 MByw,| = 335 (HB.N Bw, w)y

DEFINITION 2.5. Let M(-) be as in (2.3). We say that

(a) M(-) has a quasi-isometric dilation J(-) iff JM(-) is a W-to- %%~
c.a.q.i. measure on <& where 9 is a Hilbert space, and I an iso-
metry J on 5% to % such that

M(B) = J*M(B) , Be &#,

(b) M(-) has a spectral dilation E(-) iff E(.) is a J7-to-2¢~
spectral measure on <& where 9%  is a Hilbert space, and 3 continu-
ous linear operators S on W to .2 and T on 2% to 5# such that

M(-) = TE(-)S .

In the vector case (i.e., W = F') the above definitions assume
the known forms which we now state.

DEFINITION 2.6. Let 2, <&, 5 be as in (2.1). Let &) be an
S7-valued c.a. vector measure on <Z and let y(-) be a nonnegative
real-valued c.a. measure on <& We say that &(-) is 2-majorizable
with respect to p(-) or that u(-) s a 2-majorant of &(-) iff for all
n=1,and all B, ---,B,e <% and all a,, ---, @, e F

Ig{ a:&(B,) I; = ggf a:@;4B; N By) .

DEFINITION 2.7. Let &(-) be as in 2.6. We say that

(a) &(-) has a c.a.o0.s. dilation &(-) iff &(-) is a #-valued c.a.o.s.
measure on <& where % is a Hilbert space, and 3 an isometry J
on ¢ to .2 such that

E(B)=J*§(B)’ Be &,

(b) &(+) has a spectral dilation E(-) iff E(-) is a 2~to-2¢
spectral measure on <& where .22 is a Hilbert space, and 3 a
continuous linear operator T on 2 to £ and a vector x,€ 9%
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such that
&(+) = TE()x, .

LEMMA 2.8. Let M(-) and H(-) be as in (2.3), and let
K(A, B) = HAANB) — M(B)*M(A) , A, Be Z.
Then () VB, ---,B, e and Yw, -, w,e W

n n

S (K(B,, Byw,, wy)y = >, > (H(B, N Bw,, w;)

1j=1 i=1g§=1

(*) " ] .
- Z{ M(Bt)wl,; .
(b) H(-) is a 2-majorant of M(-) iff the kermel K(-, -) in (a)
is positive definite on & X &, i.e., L.H.S. (*) is always =20 and
K(A, B) = K(B, A)*.

Proof. (a) Just expand the L.H.S. (*) after making the sub-
stitution K(B,, B;) = H(B;, N B;) — M(B;)* M(B;).
(b) Immediate from Definition 2.4. ]

2.9. The Equivalence Theorem. Let M(-) be a s.c.a. W-to-57#
operator-valued measure on <& where <%, W, and 27 are as in (2.1).
Then (a) the following conditions are equivalent:

() M(-) has a 2-majorant H(-),

(8) M(-) has a quasi-isometric dilation M(-),

(v) M(-) has a spectral dilation E(-);

(b) H(-) is a 2-majorant of M(-)« M(-) has a quasi-
isometric dilation I7(-) with control measure H(-).

Proof. (a) (a)=(B):" Note («) implies that the kernel K(-, -)
defined in 2.8 is positive definite, cf. 2.8(b). By the Kernel theorem
(Masani [13; p. 421]) 3 a Hilbert space 57, and a function X{(-) on
& such that X(B) is a continuous linear operator on W to 5% and

K(A, B) = X(B)*X(A) , A, Be Z.

Now define %% = 57 @ 574, = {(x; 2'): v e 57, ' € 97} and for Be &
define M(B): W — 2% by M(B)w = M(B)w @ X(B)w. We shall show
that

(1) M(B)*M(A) = HHANB), A, Be<Z.
Note for A, Be &Z and w, w'e W

7 An alternative more direct proof of “(a) = (8)” is in the Appendix, cf. A. 8.
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(M(B)* M Ayw, w')y, = (M(A)yw, HB)YW )
= (M(A)w, M(B)w")» + (X(A)w, X(B)W")x,
= (M(B)*M(A)w, w')y + (X(B)* X(A)w, w')y
= (M(B)*M(A) + X(B)* X(A)}w, w')y = (H(A N Byw, w')y .

(2)

So by Definition 2.2(a) M(-) is c.a.q.i. Finally let vaze 5% J(x) =
(x; 0)e 2. Then J is an isometry on S5~ to .2 and therefore J* =
JPs,. So J*N(B) = M(B), Be 7.

(8)=(7): For each Be <%, let _#, be the subspace spanned by
{M(A)Yw): Ac < A < B, we W}, and let E(B) be the projection on
2" onto _#;. Then E(-) is a spectral measure on <& for ¢ such
that vBe <%

(3) M(B) = E(B)M(2) (cf. [13; (5.8)-(5.11)]) .

Hence M(-) = J*I(-) = J*E(-)M(Q).
()= (@): Let M(-) = TE(-)S, cf. 2.5 (b); and let B, ---, B,e &

and w,, ---, w,e€ W. Then

g E(Bi)swit

2
b2

S\ MBJw,| = |T 3 BB)Sw,

2
=|Tp

(4) .
= |7} 35 3% (" B(B. N By)Sw,, wh .
So H(-) defined for Be <# by H(B) = |T]’)S*E(B)S is a 2-majorant
of M(-).
(b) The forward implication “=" has been shown in the proof
that (a)=(B), ef. (1). To prove the converse “=", note that for
B,:---,B,e# and w,, ---, w,e W

S, MBow,|_ = |7 5 MBw,| < |3 HBow,||
( 5 ) i=1 P-4 : nl=1 o =1 x
= g{ g; (H(B; N Byw;, w;)w .
So H(-) is a 2-majorant of M(-). ]

In the case that 57 = W and the values of M(-) are hermitian
operators on W to W the Equivalence theorem can be augmented
as follows.

COROLLARY 2.10. Let M(-) be a s.c.a. W-to-W hermitian operator-
valued measure on &. Then each of the conditions (), (8), (V) of
2.9 13 equivalent to a “Jordan decomposition’:

(8) 3 two s.c.a. W-to-W monnegative hermitian operator-valued
measures M,(-) and My-) such that M(-) = M,(-) — M,y(-).
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Proof. (¥)=(5): By hypothesis we have VBe <z, TE(B)S =
M(B) = M(B)* = S*E(B)T*. Thus VBe 7,

M(B) = [TE(B)S + S*E(B)T*}/2
(1) = (T + S*EBXT* + 8)]/2 — [S*E(B)S + TEB)T*]/2
= M(B) — MyB).

(0) = (7): By the Naimark Dilation theorem, cf. [13; 5.12],
M(-)=TrE()T,, M()=T:E()T. where E(-) and E(-) are
spectral measures on <7, respectively for two Hilbert spaces .27 and
%; and where T, and T, are continuous linear operators, respectively
on W to 247 and to .27;. Thus VBe <&, we may write

e g BB 0 J[Tl]~
(2) M(B) = [T, T2]IL 0o E(B|T, = TEB)S,

where E(-) is spectral measure on <& for 2/ .7%;, S = [g‘} is a

continuous operator on W to %P %; and T = [T}, ——Tf] is a
continuous operator on 7 %; to W. N

It should be noted that upon taking W = F that Lemma 2.8
and the Equivalence Theorem 2.9 assume the following form for
vector-valued measures.

LEMMA 2.11. Let &(-) and p(-) be as in Definition 2.6, and let
k(A, B) = (AN B) — (&(A), &B)), A, Be<Z .
Then (a) VB, ---, B,€ <% and Va,, ---,a,c F

n

1

3 kB, By, = 3 3. i(B: 0 Bad,

")

S\ e8|

(b) n(-) is a 2-majorant of &(-) iff the kernel k(-, -) in (a) is
positive definite on <& X &, i.e., L.H.S. (*) is always =0 and
k(A, B) = k(B, A).

THEOREM 2.12. Let &(-) be a c.a. SF-valued measure on <Z.
Then (a) the following conditions are equivalent:
(@) &(:) has a 2-majorant p(-),
(B) &(-) has a c.a.o.s. dilation &(-),
) &(-) has a spectral dilation E(-);
(b) u(-) is a 2-majorant of &(-) = &(-) has a c.a.0.s. dilation
E(+) whose control measure is p(-) [i.e., (E(A), EB)). = A N B)].
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Result 2.12 (b) is found in Niemi’s paper [15; Th. 12].

3. Existence of 2-majorants for Hilbert space-valued measures.
The proof of our main theorem in this section depends heavily on
a remarkable inequality of Grothendieck to discuss which we first
introduce the Grothendieck norms:

DEFINITION 8.1. For an n X » matrix A = [a,;] with entries in
F and .9 an arbitrary Hilbert space over F, define |A|, by

|Als = sup { ;; ;i (Tiy Yi)or |+ @iy Y5 € T and ||, |¥;le = 1} .

(Note this definition also holds for .#" = F in which case (x,, ¥;)r =
xY;.)

LeMMA 3.2. (Grothendieck’s inequality, cf. [10; p. 68], [19]). 3
a positive constant ¥ > 1 such that for all n = 1, all » X n matrices
A = [a;;] with entries in F and all Hilbert spaces % over F

(*) Al = 7] Alr .

A more useful formulation of the condition (*) reads as follows:
For all ©, «++, 2,, ¥, +++, ¥, in 5%

(3.3)

n n
20 20 %, Yi)or | = V| Alp max |a;] 5 - max |y, .
i=1j=1 15isn 1sjs<n

We now stipulate that:

& and 57 are as in (2.1) and
&(+) is an S#-valued c.a. measure on <Z.

(3.4) {

We consider F-valued <Z-measurable simple functions - and
their integrals E.(+) with respect to &(-):

@) ¥=3bXs, Be#, beF
(8.5) = i
b) B = | H)xdo) = Sb4B)e 7.

It is easily shown that the definition of E.(+4) is independent of the
representation of . We shall denote the set of F-valued -
measurable simple functions by S(F) = S(<Z, F).

It readily follows, cf. [6 (I), p. 323], that for each € S(F)

(3.6) | B = 11211 (2) max (@)
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where || ¢||(2) is the semivariation of &(-) [6 (I), p. 320]. It is
known that ||£]|(R) is < <, cf. [6, p. 320, 4(b)].

It is easy to see that for ¢ = 3", a,,, ¥ = 37-1045,€ S(F)
we have

(@) (B(9), Bp) - = 3 3 aby(E(4), B
(3.7) I
b) B = 3 3 0 (6(A), 64 -

We next prove the key lemma needed for our main Theorem 3.9.

LEMMA 38.8. 3 a real number K >0 such that for all positive
integers m and all ¢, -, ¢, € S(F)

(*) S\ B0 = K- max 33 [gy@)*

Proof. Let ¢ = 37, aiks,, v = 2=, biXs, € S(F) where (B))! is a
disjoint sequence. Then by (3.7)(a) and (3.6) we have

n n

(1) DIPHEED) EBy)zaib;| = [(Eg), Be(y))x|
< llsil(!?)“ggglai[-{gggxn[bjl .

Without loss of generality, we may assume that each ¢, in (*) is of
the form ¢, = >, b, X5, With the same disjoint sequence (B;); for
each k. Then

m n

22

11

(&(By), &(B))abeidss

I

S B

n
Jj=1

, (&(B), &(By))ar 3 bbss

&

(2) .
by

n
i= =,

J

-

But then letting «, = (b)j- € % = F™ and noting that (z,, 2,),» =
S, bybyy, it follows from (3.8), and equation (1), on taking [a.;] =
[(S(Bz)y E(Bg))z], that

RHS. 2) = 7-1|¢](2) max |zl
(3) e
=7+ |1¢11(2 max (35 [sd@)F) -

Thus (*) is true with K =7 ||&](2) O

THEOREM 3.9 (Ewistence). Corresponding to every S7-valued c.a.
measure &(+) on a o-algebra <& over 2, 3 a c.a. nonnegative real-
valued measure p(-) on <& with respect to which &(-) is 2-majoriza-
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ble, cf. Def. 2.6.

Proof. Taking K as in Lemma 3.8, let for all € S(R)

(1) 8w = inf {max|Ky(@) + K 5100 - 3B

(p)1 a5 N 0e? k=1 k=1
cf. Pietsch [18]. Then, by elementary considerations, it may be
shown that S(-) is a positive homogeneous subadditive functional on
S(R) such that K :min, .,y (w) < S(¢p) £ K-maX,.o9(w). Thus by
the Hahn-Banach theorem, cf. [25; Cor., p. 103], there exists a
linear functional T' on S(R) such that T'(sy) < S(+), from which it
readily follows that for - € S(R)

(2) K- miny(@) S —S(—y) S T) = S(¥) £ K- max 4(o) .

Moreover from (1), it follows that for ¢ e S(F),
S(—13]) = max [K{~|¢(@)[} + K|p@) — | B[]

(3

= —|Ee(¢) % .
Thus since —T(|4]>) = T(—|¢>) < S(—|8]*), it follows that for ¢ € S(F)
(4) | E(3) % = T([¢]") -

Define v on &# by v(B) = T(Xz). Note by (2) that T(X,) = K. Then
y(+) is a finitely-additive (f.a.) nonnegative real measure on <& To
complete the proof we need to replace v(-) by a countably additive
measure. Let p(-) be the c.a. measure defined from »(-) as in
Lemma A.l1 (see Appendix). We shall show that for each ¢ =
S bXs, € S(F) with (B;); disjoint, that

(5) B = 3 0B = | 1Pde,

i.e., by the sentence following (3.5) (b), that p(-) is a 2-majorant
of &(-):

Let for1<i<mand m =1 (BR)y, be a disjoint sequence in
& such that B, = Ur-, B and p(B;) = lim|,,—c. D Y(BR),® ef. A.l.
Then for each m, ¢% = >\, b{3.i-, XB;';} converges to ¢ as N— oo
and by (4) for each m and N

JACOTRED NS E: o

So on letting N — «, we obtain for each m

8 lim | means “nonincreasing limit”, i.e., limit of nonincreasing values.
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(6) B(@)F = 3103 2B -

Thus, by the definition of g(-), on letting m — -, we obtain (5)
from (6). U

THEOREM 3.10 (Uniqueness of minimal 2-majorant). Given an
SZ-valued c.a. measure £(-) on & there exists one and only one 2-
majorant () of &) such that

2(2) = inf {p(2): p(-) is a 2-majorant of &(-)}.

Proof. The proof which depends on Pietsch’s inequality:
4a™ + b)) < (0 + b)/2 for a,b >0 with equality only if a = b,
is subsumed in the proof we shall give in §4 of Theorem 4.14.

4. The problem of the existence and uniqueness of 2-major-
ants for operator-valued measures. Let 2, <& be as in (2.1).

THEOREM 4.1. Let W be a q-dimensional Hilbert space over F
and 5# be an arbitrary Hilbert space over F. Then corresponding
to every s.c.a. W-to-57 operator-valued measure M(-) on <, 3 a
s.c.a. W-to-W mnowmnegative hermitian operator-valued measure H(-)
on & with respect to which M(-) is 2-majorizable, cf. Def. 2.4.
Moreover H(-) may be chosen to be of the form

H(-) = qu]:lﬂj(-)Pj ’

where Py, -+, P, are rank 1 orthogonal projections on W to W such
that >\, P; =1, PP; =0 for i+ j, and p(-), -+, tt(-) are c.a.
nonnegative real-valued measures on 7.

Proof. Let g3, ---, B, be an o.n. basis of W. Then &,(-) = M(-)3,
is c.a. on &% to 57 and therefore by 3.9 has a 2-majorant v,(.).
We shall show that we may take as a 2-majorant of M(-)

(1) H(-) = ¢ 3 %()P,

where P, is the projection onto the space spanned by B, For
B,---,B,e=®, w,-:---,w,€W we have on representing w,=

D Cirfr

2
o

S Gosin).
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= ng{ iz:‘ic‘ké"(B‘)l; by the Schwarz ineq .
<933 S eatwnB N B) by Def. 26,

since v,(+) is a 2-majorant of &,(-). Thus

(2) 3 MByw| < ¢33 S et wiBin By

On the other hand it is easily checked from (1)

(3) (BB, N Byw,, w))y = g 3 %(B: 0 B)euTa .

Combining (2) and (8) we get the inequality of Def. 2.4. O

Unfortunately we are as yet unable to prove the last theorem
for infinite-dimensional W. To point out some other aspects of the
existence problem for finite-dimensional W, we need the following
lemma, part (b) of which is an adjunct to the Equivalence Theorem
2.9.

LEMMA 4.2. Let M(-) be a s.c.a. W-to-57 operator-valued
measure on Z. Then (a) M(-)* is a s.c.a. SF-to-W operator-valued
measure on 7.

(b) M(-) has a 2-majorant <= M(-)* has a 2-majorant.

Proof. (a) We have the sequence of implications: M(-) is
s.c.a. = M(-) is w.c.a. = M(-)* is w.c.a. = M(-)* is s.c.a., where the
last implication follows from [9; Th. 3.6.2].

(b) By 2.9, we have the following sequence of equivalences:
M(-) has a 2-majorant <= M(-) = TE(-)S <= M(-)* = S*E(-)T* < M(-)*
has a 2-majorant. O

COROLLARY 4.3. Let W be an arbitrary Hilbert space over F and
57 be a gq-dimensional Hilbert space over F. Then corresponding
to every s.c.a. W-to-57 operator-valued measure M(-) on &£ 3 a
s.c.a. W-to-W nonnegative hermitian operator-valued measure H(-)
on & with respect to which M(-) is 2 majorizable.

Proof. By 4.2 (a) and 4.1, M(-)* is s.c.a. and 2-majorizable.
Thus by 4.2(b) M(-) is 2-majorizable. U

Let 2, &&, W, 57 be as in (2.1). Let M(-) be a s.c.a. W-to-2¢
operator-valued measure on <# and let H(-) be a s.c.a. W-to-W
nonnegative hermitian operator-valued measure on <& We now
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introduce the concepts of W-valued <#Z-measurable simple functions
fy g, ete., and the integral E,(f) of f with respect to M(-) and the

integral Sg (dHf, g) of the (ordered) pair {f, g} with respect to H(-):
@) f= zm‘, wikz, g = i wike; (B, C;€ B, wy, w;e W)
=1 Jj=1

®) B = | Mdoyio) = 3 MBw e 5

(4.4) 4 =

© |, @8, 00 = | Hdof ), g@)y
=3

=1 g

(H(B; N Cpw;, wiw .

It is readily shown that the two integrals defined in (b) and (c) are
independent of the representations of f and g and that when the

B; are disjoint we have
(4.5) |, @HS, Dw = 3 HBYw, w)y -

We shall denote the set of W-valued <Z-measurable simple functions
by S(W) = S(<#, W). We note by (4.4) and Def. 2.4, that

H(-) is a 2-majorant of M(-) iff
(4.6) {

| Bu )P < | @HS, £y ¥FeSW) .

THEOREM 4.7 (Ewistence of a minimum trace 2-majorant). Let
W be a q-dimensional Hilbert space over F and 57 be an arbitrary
Hilbert space over F. Given a s.c.a. W-to-57 operator-valued
measure M(-) on <&, there exists a s.c.a. 2-majorant H(-) of M(-)
such that

trace H(Q) = inf {trace H(Q): H(-) is a 2-majorant of M(-)}.

Proof. By 4.1 the class of 2-majorants of M(.) is not empty.
Let

(1) K = inf {H(Q): H(-) is a 2-majorant of M(.)}

and let (H,(-))7-, be a sequence of 2-majorants of M(-) such that
tH,(2)\, K. To prove the theorem we introduce the following space
and linear functional.

Let #, be the linear space of bounded real functions ¢(-) on N,.°

Define the functional S on 4, by S(¢) = lim,_.. 3(n) and observe that

8 N, and Ry:+ denote, respectively, the set of positive integers and the set of non-
negative real numbers.
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it is positively homogeneous, and subadditive. Hence by the Hahn-
Banach theorem there exists a linear functional T on Z, such that
T(¢) < S(¢) and therefore for each ¢(-)¢ ,

(2) lim g(n) = —S(—¢) < T($)=S(6) = Tm s(n) .

So T is nonnegative and continuous with respect to the sup norm
on 2,

Now let Be <Z be fixed and define for we W, g,(n) = g%(n) by
(3) gun) = H(B)"w, nz=1l.
Since |H,(B)| < tH,(B) < tH,(2) < tH(Q) vn = 1, it follows
(4) 19.(n) [ = (H (B)w, w)y < tH(@)[wly, Vnz1.

Thus |g,(+)[% € 4. Define for each we W

(5) Ry(w) = T([g.(-)[})
Then by (2) and (4) it follows for vwe W
(6) 0 < Ry(w) = tH(Q)|wi .

We now proceed to show Ry(-)"* is a seminorm on W satisfying the
parallelogram law. We do this by exhibiting the connection between
Ry(-)"* and an 4-norm. Since T e/, (the dual of 4,), we have for
all y(:)e,

(1) Tei) = | vmatdn)

where a is a finitely-additive measure on 2%+ to R,,,” ¢f. [6; p. 296,
Th. 16]. Now consider the space 4 = 4 (N., 2"+, a; W) of W-valued
functions on N, which are square-integrable with respect to a.
This is a pre-Hilbert space under the usual 4-norm, |-],, cf. [6; p.
120, Lemma 3(b)]. By (7) and (5)

(0.0 = | loumfiatan)

T(g.() i) = Ba(w) < oo .

Thus Ywe W

(8) 9.(-)e4 and Ry(w)”* = [g.(-)] -
From (8) it is obvious that for ce R and w, w,, w.€ W
(9) Ieu(*) = €9,(+) and  gusu(*) = G0,(+) + gu(*) -

Since |-|, is a norm satisfying the parallelogram law, it follows
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readily from (8) and (9) that Ry(-)"* is a seminorm satisfying the
parallelogram law. Since by (6) Rz(-) is bounded, it follows from
the J-VN Lemma A.2 (in the Appendix) that Ry(-) comes from a
bounded nonnegative hermitian sesquilinear functional on W x W to

F, and thus from a continuous nonnegative hermitian linear operator
N(B) on W so that

Ry(w) = (N(B)w, w)y Ywe W.
Thus using (8) and (3) we see that for vwe W

(N(B)w, w)y = Rg(w) = |9g.()
10
(10) = Smlyw(-)ﬁva(dn) = SN (H,(B)w, w)ya(dn) .

This shows that N(-) is a finitely additive measure on <%, from the
finite-additivity of H,(-), » = 1.
Let H(-) correspond to this N(-) as in Lemma A.3. Then

H(-) is a s.c.a. W-to-W operator-valued measure on <7, and

(11) {0 < H(B) < N(B) < N(Q) .

We claim that the H(-) just obtained is the desired H,(-). We first
show that this H(-) is a 2-majorant of M(-).

Let f= 37, wXs € S(W) with B/’s disjoint, then by definitions
(4.4)(b)(c) and since each H,(-) is a 2-majorant of M(-) we have

LB =

ey

@Hf, Py = 3 (HBJw, wy
(12) . =
=2 lgumly,  vez1,

where the last equality follows by (3) and (4). But thus by (2), (5)
and (10)

Bu(H)le < lim 3% 9%y < T(3 1951 )

= 3 T( g2 ) = 33 By (w)

3

Il

(N(B)ws, wow »

1

2

Il

ie., |3, M(B)w;’» = 3, (N(B)w;, w;)w. But then for H(-) cor-
responding to N(-) as in A.3 it readily follows, as with Theorem
3.9 (5), that

(13) Bu(f)lee < 3 HBYw, wy = | (@HS, Fu,



150 MILTON ROSENBERG

i.e., cf. (4.6) and the statement after (4.4), H(-) is a 2-majorant of
M(-).
We denote by (11) that

(14) TH(2) < TN(Q) .

Next, on noting ¢%(n) = g,(n) and letting B3, ---, B, be an o.n. basis
of W we obtain

N(@) = 3L (N@Bs 8w = 3 RalB))

(15) q q
= 3 (193, = T(3 19,1 ) -

But by (3) and (4)

3 gl = 3 (H(DBw Bs
=tH,(Q)~ K as n—> o,

cf. (1). Hence by (2), R.H.S. (15) = K. Thus

an tN@Q) =K.

Therefore by (14) zH(2) £ K. But since K is the infimum of the
traces of 2-majorizing measures, it follows that zH(Q2) = K. So
existence is established. O

(16)

To prove uniqueness of the minimum trace 2-majorant we need
to introduce further results on integrals.

Throughout the rest of this section we assume W is a finite-
dimensional Hilbert space with o.n. basis (8;)!-,. For a s.c.a. W-to-2#
operator-valued measure M(-) on && we define the semivariation
| M||(-) of M(-) by

4.8) | MI(B) = sup |5, M(BJw,

#

where the supremum is taken over all finite partitions (B, of B
and all w,€ W with |w,|y < 1.

Since each w; = X1, a;;B;, with 1 = |w, [}, = Xli., |a;;/% it follows
that || M]|(2) < S, [| M(-)B; (@) < =, ef. [6 (I); p. 320].

We shall call a function f(-) on 2 to W <F-measurable iff for
each open sphere S(x, r) = {y: |y — z|» < 7} we have f(S(z, 7)) € &
We shall denote the set of bounded <Z-measurable W-valued functions
on 2 by B(W) = B(<Z, W). Since W is finite-dimensional it is easily
proven that B(W) is the closure of the linear space of simple
functions S(W) under the sup norm.
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DEFINITION 4.9. For fe B(W) we define

E(f) = | Mdo)f@ =lim E,(f) ,

where (f,); is any sequence of simple functions converging uniformly
to f, cf. (4.4) (a, b).
Since for a simple function f we have

(4.10) | By ()] = [[ M) - sup [ f@)w

it follows that the integral in 4.9 exists, is well-defined, and also
satisfies (4.10).

Next we recall some facts on s.c.a. W-to-W nonnegative
hermitian measures H(-) on <& when W is a finite-dimensional
Hilbert space, cf. [21; §2] and [22 (I); §2 and p. 207 (1)]. The
symbol v shall denote a o-finite nonnegative real measure on <7
We say H(-) is absolutely continuous with respect to v [H < v] iff
y(B) = 0= H(B) = 0. Because W is finite-dimensional it follows
that H(-) is c.a. in the euclidean norm | |, and has a finite total
variation measure |H|,(B) = sup O~, | H(B,)|z) (taken over all finite
partitions (B,)7 of B). Further

THEOREM 4.11. Let H<K y. Then (a) 3 a unique a.e. (v) &-
measurable’® W-to-W operator-valued function H)(-) on 2 such that

H(B) = SB H(w)y VBe Z;
where the last 1s a Bochner integral, and
(b) | H|(B) = SB \H/(w)|,dv VBe.Z.

Movreover, (¢) 0 < H)(w) a.e. (v) [We may always take a version of
H.(-) which is =0 everywhere.]

The use of 4.11 (a) allows us to adopt the definition

w1 | @Hf 9v = | (H@1@), g@)id> VS, g BOV)
where v is any measure such that H € v. It is readily shown: for
=2 wiXB,;y g = 25 ngoj e S(W)

n

|, (@HS, 90 = 3 3L HB. N Cw, )

® J.e, with respect to the Borel s-algebra in the Banach space of W-to-W bounded
operators under the norm |-|z.
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and that if f, ge B(W) are uniform limits of sequences of simple
functions (f,)7, (g9,)7, then Sg (dHf, g)w = lim, SQ (dHf,, 9,)w (which
limit exists).

From (4.6) and Definitions 4.9 and (4.12) it readily follows that
when W is finite-dimensional

H(-) is a 2-majorant of M(-) iff
(4.13) {

BN < | @HS, Py VFeBOW).

In the subsequent discussion, we shall be concerned with <#-
measurable W-valued functions and <#-measurable W-to-W operator-
valued functions and with various functions formed from these by
various operations. In all cases the new functions are again <#-
measurable by virtue of the finite-dimensionality of W.

THEOREM 4.14 (Uniqueness of the minimum trace 2-majorant).
Let W be a q-dimensional Hilbert space over F and 57 be an
arbitrary Hilbert space over F. Given a s.c.a. W-to-2# operator-
valued measure M(-) on <&, there exists one and only one s.c.a. 2-
majorant Hy(-) of M(-) such that

trace Hy(R) = inf {trace H(-): H(Q) is a 2-majorant of M(-)}.

Proof. By Theorem 4.7 existence is assured. Now suppose
that H,(-) and H,(-) are both 2-majorants of M(-) such that tH,(Q) =
K = tHy(Q2), where K is as in Theorem 4.7 (1). Let m(-) be the
measure tH,(-) + zH,(-) and let, for brevity, G,(-) = H, (), G,(+) =
H;,.(-) as in 4.11. So, by (4.138), for fe B(W)

Bl = | (Gl fo)pam,  i=1,2.

Let P, (w) = projection onto range of G,(®) for i =1,2. The first
step in our proof is to prove P(w) = P,(w) a.e. (m): It is readily
shown that E,(P.f) = E,(f) = E,(P,f)* for all fe B(W) and thus
for P(w) = projection onto FZ(G,(w)) N Z(G.(w))" it readily follows
E,(f) = E,(Pf) and thus for all fe B(W)

| Eu() 1% = | Ex(PH)]% = SQ (Gi(w)P(0)f(®), P(@)f(@))wdm ,

11 We use the convention that P.f is the function defined by (P.f)(0) = Pi(o){f(w)},

ete.
2 Tor proving <-measurability, note that by [3; Th. 8]

Plw) = 2Pi(0)(Py(0) + Py0))*Pe(o) .
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1 =1,2. So we must have P, = P= P, a.e. (m) <for otherwise since
TH(Q) = SQTH;(w)dv, there is a 2-majorant with trace smaller than
K, which is a contradiction). Thus Z(G(w)) = FZ(G,(w)) a.e. (m).

The proof of uniquenesé shall now be accomplished by showing
G(w) = G(w) a.e. (m): Let F(w) = (G(0)"* + G(w)"*)* and note
that P(w) = (G,(@)"* + Gy(w)"*)F(w) a.e. (m). Let

B, = {w: |G(0)"*F (@) |z = n, |G(0)"*F(®)|; = n} .
So B, 2 as n— . Then for fe S(W)
| By (X5, ) = | Ex(Xp, P = | By, GV*FS) |2 + | Ey(Xs,GY*FS) ]

(D + <SB (GG F)f, GY*F)ydm)
Thus

By, ) S | @RS, fwdm
(2) "

= SB (HG(@)" + G (@)™ f(w), f®))wdm

where clearly by A.7 (*) in the Appendix, we may replace B, by 2
(on letting n — o). So by (2) H,(-) defined by Hy(B) = SB4F(a))2dm
is a 2-majorant of M(-).

Let C = {w: G,(w) # G,(w)}. Since W is separable it follows
C = Uz, {w: (G(w) — G(0)w,, w,)yy # 0} € &, where {w,};7 is a dense
subset of W. Then by A.7 (*) 4z(F(w)*) < (1/2)7(G(®) + Gy(w)) with
strict inequality on the set C. But thus if m(C) > 0, it follows
that

CH(Q) = (Ec + SQ_O)4T(F(a))2)dm < Sg(l/Z)r(Gl(w) + Gy(@)dm
= (1/2)(tH(Q) + tH,(2)) = K,

i.e., 7H,(2) < K, which contradicts 4.7 (1). So we must have
m(C) =0, i.e., G(®) = G,(w) a.e. (m). O

We conclude this section with the following

ExAMPLE 4.15. Explicit form of the minimum trace 2-majorant
in 4.14 when £ ={w, ®,} and Z = 2% Denote M, = M{w,}, M, =
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M{w,}. Then the explicit H(.) of 4.14 is

H, = M¥M, + (M} M,M;M,)"
Hz = M;Mz + (Mz*MfoMz)l/z

such that

MM, MM, H O
< w ,
[M;M, MMJ = [o HJ on WS W

and trace (H, + H,) is a minimum. [The proof which is lengthy, is
presented elsewhere. See “Added in proof” section.]

APPENDIX. We begin by proving two lemmas on nonnegative
real-valued and on nonnegative hermitian operator-valued measures
on a c-algebra <& over a set Q.

LEMMA A.1. Let v(-) be a f.a. nonnegative real-valued measure
on . Define for each Be &

#(B) = int {3, »(B)} ,

where the infimum is taken over all countable partitions (B,)Y of B
into sets im <B. Then p(-) is a c.a. nonnegative real measure on
Z such that for each Be Z

0= p(B) =v(B) =v@) < oo

Proof. We leave it to the reader to show g(-) is f.a.

We now show that p(.) is continuous from above at @: Let
A\, @. We shall show #(4,) \,0. [Proof. Note for each n =1,
A,=Uxz, (A,—A,,,) and that since v is f.a., we have >, v(A,—A4)=
Y(A,) < . Thus

0= (A,) S S V(A — Ap) — 0 a5 n—> oo,
Hence, cf. Halmos [8; p. 39, Th. F], u(.) is c.a. |
To generalize Lemma A.1 we need the following form of the

Jordan-Von Neumann theorem, which is further used in the proof
of Theorem 4.7.

A.2. Jordan-Von Neumann Lemma. Let 57 be a Hilbert space
over F and let R(-) be a function from 5~ to R,, such that
(i) R(-)"*is a seminorm,



QUASI-ISOMETRIC DILATIONS 155

(ii) R(-)"* satisfies the parallelogram law, ie., R(x — y) +
R(x — y) = 2R(x) + 2R(y), each x, y€ 2%,

(iii) there exists K > 0 such that R(x) < K|z, Vee &
Then (a) R(-) can be recovered from a unique bounded nonnegative
hermitian sesquilinear functional 7'(-, -)*® on 5% X 5# to F, i.e.,

(*) R(x) = T(w,2) and |T(x,y)| = Klw|. |yl

(b) 3 a unique bounded nonnegative hermitian linear operator
A on 27 to 27 such that |A| = K, T(x, y) = (Az, ¥) . and necessarily
R(z) = (Az, ®)s.

Proof. (a) Follow the proof of J-VN Theorem in [24, p. 124,
Th. 1] and obtain the second part of (*) by use of the Schwarz
inequality.

(b) Cf. [4, Th. 21.1]. |

We now generalize Lemma A.l.

LeMMA A.3. Let 57 be a Hilbert space over F and let N(-) be
a f.a. nonnegative SF-to-57 operator-valued measure on <&. Let
for each xe 27 v,(-) = (N(-)x, ) [which is obviously a f.a. non-
negative real-valued measure on &) and let for each xe 57 p,(-)
be the nonnegative real-valued measure on <& corresponding to v,(-)
as in Lemma A.l. Then

(a) for each Be <Z I a unique bounded SF-to-57 monnegative
hermitian operator H(B) such that

(H(B)x, x)., = M(B), each x¢€ 57,
(b) the set fumction H(-) is s.c.a. on <& such that
0 < HB) < NB) < N@), each Be Z.
Proof. (a) Let B be a fixed set in <& We shall prove that
the function Ry(-) defined on 57~ by Ry(x) = p,(B) satisfies the
conditions (i), (ii), (iii) in the J-VN Lemma A.2. To carry out the

proof we introduce some notation. Let & = (B,){ denote a partition
of B into subsets in <& Define for xe o7

(1) v,(F) = Z; v.(B)) .
13 A functional T(-, <) on &7 X & to F is called bounded; monnegative; hermitian;

sesquilinear iff, respectively, 3C > 0 such that |[T(x,y)| = Clzle - lyl» v,y
T,2) =20 vzesr; T,y =Ty, 2z V2,ycs#; Tlax+ by, 2 =aTlx, 2) +bT(y,2),
T(z, ax + by) = aT(z, %) + b6T(z,y) Va,bEF, va,y,2€5. In [4], the words “positive”
and “symmetric” are used respectively for “nonnegative” and “hermitian”.
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Then, by definition, ef. A.1,
(2) ¢.(B) = inf {v,(F): & is a partition of B}.

From (2) it easily follows that for each ze.5# and c¢eF that
1(B) 2 0 and g, (B) = |c['t(B).

By the superposition F, oF, of two partitions &, & of B we
mean the partition of B composed of all intersections of pairs of sets,
one from &7, one from &,. It follows similarly as in A.1 that

(3) V(P F) = vm(ﬁl)y V(T .

We now prove condition (i) holds: It only remains to show that
as a function of xe 5% 1/ 1,(B) satisfies the triangle inequality

(4) V ey (B) £V 1, (B) + 1V p,(B) for =, ye 7.

Note that since in (2) g, (B) is the infimum of a set of nonnegative
real numbers, there exists a sequence of partitions (&°7) of B such
that g,(B) =lim|,..v,(Z7%). Similarly there is a sequence of
partitions (&%) such that p,(B) =lim],..v,(Z?!). Let for each n,
P, = PP, Then by (8) it follows that

(5) t(B) =limv (),  #,(B) = limv(F) .
Now let & = (B,)? be an arbitrary partition of B. Then
(6) = J(EINBy @ + )

- \/ ( i | N(B,)"*x + N(B,)"*y l“;g) )

where each of the sequences (N(B,)"*x)z,, (N(B,)"*y);-, is in the Hilbert
space 4(N,, 2"+, p; 57), where p(-) is the “counting measure”. But
thus

RES. © = (S INBy k) + (5 INBy L)
=1V"v,(P) +V,(P) ,

ie., 1V, (P £1Vv,(P) +1Vv,(F). Therefore, using the sequence
(&) of (5) we have

1/#::+y(B) é liln.l/’)xﬂl(ﬁn)

n—0

(8) < im (Vv,(Z) + V0 (F)

n—00

(7)
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=1 1,(B) +1V1,B) by (5).

So (4) holds.
We now prove condition (ii) holds, i.e., that for z, y € 57,

(9) Hory(B) + e y(B) = 212,(B) = 244,(B) .

Let (&Fry), (FP57Y), (FP2), (PY) be sequences of partitions of B such
that p(B) = lim|,_ . v,(F)for 2=2 +y, 2 — ¥y, x, and y. Let for
each n, P, = FH o P Vo P o Py, Then p,(B) = lim, . v,(,) for
z2=x+vy, x—1Y % and y. So (9) readily follows. Moreover for
each n, v,(Z,) < (N(B)zx, 2),. So p,(B)<(N(B)x, x), and thus con-
dition (iii) holds. Therefore by A.2 (b) there exists H(B) such that
(a) holds.
(b) Note that for z, ye o#

(10)  (HB), Y)or = {thory(B) — o y(B) + Uorin(B) — ifteiy(B)}/4 ,

[since ¢, (B) = (H(B)z, z). for ze 5. But by A.1 each g, (-) is c.a.
Thus H(-) is w.c.a. and therefore by [9, Th. 3.6.2] H(-) is s.c.a.
The inequality H(B) < N(B) follows immediately from g (B) =
(N(B)x, ). Ul

Our goal now is to obtain a matrix generalization of the follow-
ing inequality.

LeMMA A.4. For 2 real numbers a,b > 0
(a® + b%)/2 = 4(a™ + b7
with equality holding < a = .

Proof. This is equivalent to the fact that for 2, ¥ > 0 (xz + ¥)/2 =
4oy (x? + y¥*™* with equality holding = « = ¢, whose proof is con-
tained in [18]. |

In the next two results we deal with linear operators on an #-
dimensional Hilbert space over F. We shall switch from an operator
to its matrix representation (with respect to a given o.n. basis) as
appropriate.

LEMMA A.5. Let A =[ay]l>0and let A =[e,;]. Then ¢, =1/a,
for i =1, ---, n with equality holding simultaneously for all i = A =
diag (a,;). Equivalently, a,; = 1/¢;; for i =1, - -+, n with equality for

all 1= A = diag (a,,).

Proof. We show the case ¢ = 1: Let A be partitioned as
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ay
>
anl
[1|a1D‘1} [an—alD‘laI‘IO 1 IO]
Lol 1 0 ID}'[D%*II '

Then det A = det D-det (a,, — a,D'a¥) = (det D)(a, — a,D'a}), and
cofactor (a,) = det D. Thus

Uy I Qg *** Oy

A= @ _ [ -
. a¥

¢, = cof (a,,)/det A = 1/(a,, — a,.D7'a}) = 1/ay,

with equality holding = a, =0, ie.,, =@, =@y = +++ =a,, =0. []
We now prove the generalization of A.4.

THEOREM A.6. Let A, B be linear operators on an n-dimensional
Hilbert space over F such that A, B are > 0. Then

(1) o{(4* + B)/2} =z 47{(A™* + B™) 7}

with equality holding = A = B.

Proof. We first show that if A = [a,;] with respect to a given
o.n. basis, then

(2)  7(4) = 3¢} with equality holding — A = diag (a.,) .

[Proof: (A% =31, 2?:1 ;05 = Z?,j:llaij = aii-]

Now choose an o.n. basis such that A 4+ B~ is diagonal, i.e.,
A = [czj]y B7'=[d;]l, A"+ B*'= diag (¢.; + d.), ¢ij = —di; for
%2 # 7. Then by (2) and Lemmas A.5 and A.4,

(4" + B)J2) 2 3 (ak + B2 2 35 (e + (di))/2
(3)

=4 (e + di) = 47{(A™ + B

e

3

I

1

where the first 2 inequalities are each equality = A4 = diag (a,;), B =
diag (b;;). The last inequality is equality < ¢;' = d;', all <. We
note that if A = diag (a;) and B = diag (b;;), then c¢;' =a,; and

i =1b,. So equality holds in (1) = A = diag (a;), B = diag (b,,) and
a; = b, for all 4. Thus equality holds in (1)= A = B. Conversely,
A = B=equality holds in (1). ]
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The following inequality is crucical for proving uniqueness in
Theorem 4.14.

COROLLARY A.7. Let A, B be linear operators on an n-dimen-
sional Hilbert space over F such that A, B are =0 and H#(A) =
H(B). Then

(*) 4Ar{(AV* 4 BV*)*} < (1/2)t(A + B) (# denotes generalized inverse)
with equality holding if and only if A = B.

Proof. This is an easy consequence of A.6. ]

We conclude the appendix by giving the alternate proof of
“(a) = (B)” in Theorem 2.9 promised in footnote 7.

THEOREM A.8. (a)=(B) in Theorem 2.9.

Proof. Cf. (4.4) and (4.6). Define an inner product (,), on
S(W) by

(7 0 = | @H, 9w — (Bu(f), Bulg))s ,

where we identify f and ¢ if |f — g, = 0. Denote by 5% the com-
pletion of S(W) under | |, and define % = 2S£ P 5#. Define
VBe <%, M(B): W— 2% by

M(Byw = M(B)w @ X,w e 5% .
Then for B, Ce.<# and w, w,€ W it follows that
(M(B)w,, M(C)w.). = (M(B)w, @ Xyw,, M(C)w, B Xow,)
— (M(Byw,, M(C)wy)~ + {g (dH Ly, Lows)y
— (Bullow), Bullow)..}
= (HBN C)w, w)y , ie., IC)*HB)=HBNC),

i.e., by Definition 2.2 (a) M(-) is c.a.q.i. Clearly J*M(-) = M(-) for J
defined as earlier after 2.9 (2). O

ACKNOWLEDGMENT. The author thanks the referee for his sug-
gestions.

Added in proof. (1) The proof of Example 4.15 will appear
as the article “Explicit structure of the 2-majorant of an operator-
valued measure in a special case.” To appear in the book “Prediction
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and Harmonic Analysis. The Pesi Masani Volume,” edited by V.
Mandrekar and H. Salehi, North-Holland Pub. Co.

(2) In Theorem 4.14, the proof that E,(f) = E,(Pf) follows
readily from John Von Neumann’s Alternating Projection Theorem,
which is Theorem 13.7 in his monograph “Functional Operators II,”
Annals of Math. Studies, No. 22, Princeton Univ. Press, Princeton,
1950.

(3) After submitting this paper, we found that fragments of
the Equivalence Theorem are proved in the paper of Jose L. Abreu,
“Transformation-valued measures,” Advances in Math. 27 (1978), 1-11.
Inadvertently, we also left out some relevant references to Niemi,
which are stated in [14].
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