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SIMPLE GROUPS AND A DIOPHANTINE

EQUATION

LEO J. ALEX

Let G be a finite simple group whose order is of the form pm where
p is a prime, (p,m) — 1, and the index of a Sylow / -̂subgroup in its
normalizer is three in G. Suppose the degree equation for the principal
/>-b!ock, B0(p), has the form 1 + 2a = 3*5C + 2*3 e5 / where a, b, c, d, e
and / are non-negative integers. In this paper it is shown that under these
conditions G must be isomorphic to one of the groups L(2,7), C/(3,3),
L(3,4) and As. This is accomplished by solving the exponential Di-
ophantine degree equation for BQ(p).

1. Introduction. 1.1. In this paper finite simple groups, G, with a
Sylow /7-subgroup whose normalizer has order 3p such that the degree
equation for the principals-block, B0(p\ has the form 1 + 2a = 3*5c +
2^3*5' are studied.

In §2 several preliminary results dealing primarily with the values of
the characters in BQ(p) are obtained. In particular, inequalities relating
the degrees of these characters are derived, so that the task of solving the
degree equation for B0(p) is simplified.

In §3 the degree equation, 1 + 2a = 3*5C + 2<*3e5/, for B0(p) is
solved. This is accomplished, with computer assistance, by considering the
equation modulo a sequence of prime power moduli and applying the
group theoretic results from §2. The inequalities relating the characer
degrees are especially useful here in bounding the size of these degrees.

In §4 the possible degree equations left after the analysis in §3 are
studied, and it is shown that the only finite simple groups with a Sylow
/?-normalizer of order 3p and degree equation for B0(p) of the form
1 + 2a = 3*5C + 2</3e5/ are the groups L(2,7), ί/(3,3), L(3,4) and A%.

1.2. NOTATION. In general upper-case letters denote groups, and Sp is
used to denote a Sylow/^-subgroup. If A is a subgroup of G, then #(^4),
C(A), I G: A I , | A \ , Z(A) denote the normalizer of A in G, the central-
izer of A in G, the index of A in G, the order of A9 and the center of A in
G, respectively. Upper-case Greek letters are used to denote ordinary
characters of G.

2. Preliminary results. Let G be a finite simple group satisfying the
hypothesis

(2.1) I iV(Sp) I = 3p, for a Sylow /^-subgroup Sp.
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Brauer's work [3] yields the following information concerning B0(p),
the principal/7-block of G.

The characters in B0(p) are the principal character 1, two other
nonexceptional characters Λ, Γ, and (p — l)/3 exceptional characters
χ ( w ) , m = 1,2, , (/? - l )/3. There are signs δ 1 ? δ 2, δ' = ±1 such that
Λ ( l ) = δ , (mod/>), Γ ( l ) = δ 2 (mod/?), χ ( w ) ( l ) = - 3 δ ' (mod/?), m =
l,2, , ( / > - l ) / 3 a n d

(2.2) 1 + δ,Λ(l) + δ 2 Γ(l) + β'χC">(l) - 0.

In the sequel we make the additional hypothesis that the degree equation
(2.2) for B0(p) has the form

(2.3) 1 + 2a = 3*5C + 2*3*5',

where a, b, c, d, e,f&re non-negative integers.
We next list several results which are effective in obtaining informa-

tion about the structure of G from the degree equation for BQ(p). The first
two lemmas appear in the work of Brauer and Tuan [4].

LEMMA 2.1. Let G be a simple group of order pqbr, where p and q are
primes, (pq, r) — 1. Suppose G has no elements of order pq. Then for any
q-block, B(q), Σδ^χ^l) = o (mod qb), where the summation is taken over
all characters in B0(p) Π B(q).

It has become traditional to refer to Lemma 2.1 as the principle of
"block separation".

LEMMA 2.2. // G is a simple group, χ is an irreducible character of G of
degree q\ q a prime, s > 0, then χ cannot be in B0(q).

The following lemma is extremely productive in eliminating possible
degree equations. It is due to Keller [5]. A proof appears in [1].

LEMMA 2.3. Let G be a simple group satisfying hypothesis (2.1) with
degrees equation 1 + x = y + z for B0(p) then xyz is a positive integral
square.

The next two lemmas give inequalities between the degrees of the
characters in B0(p). The proof of the first lemma appears in [1].

LEMMA 2.4. Let G be a simple group satisfying hypothesis (2.1) with
degree equation 1 + x = y + z in B0(p).

( l )//z = 3 (mod p), then
(a) x < z2 whenp — 1 and
(b) x < \(z2 - 2z) whenp > 7.
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(2) Ifz = -1 (mod p), then
(a) x < j(z3 — 3z) when x = 1 (mod p) and
(b) x < [3/(2/? - 2)](z3 - 3z) when x =-3 (mod /?).

LEMMA 2.5. Let G be a simple group satisfying hypothesis (2.1) where
the degree equation for B0(p) has the form I + 2a = rb + 2crd, where r = 3
or 5,

(2) w/*e?« r = 3, a < 40,
(3) when r = 5, α < 4 1 .

Proof. Let χ, 0 be characters of degree 2α and r 6 , respectively. Then
by Lemma 2.2, χ is not in 2?0(2), and θ is not in B0(r). Then a>c,b>d
from Lemma 2.1 applied respectively to B0(p) Π JB0(2) andl?0(/7) (Λ B0(r).
Also if α = c then 6 = 0 which is not possible since G is simple. This
proves (1).

When r = 3, consideration of the degree equation modulo 2C and 3d

yields 3* = 1 (mod2 c) and 2a = 1 (mod 3d), whence 2C~2 divides b and
S^"1 divides a. Now Lemma 2.4 implies that 2a < 23 c33 ί /. Thus a < 3c +
3rf(log 3)/(log 2). Clearly 6 < α. Thus we may conclude that

(2.4) 2C~2 + 3d~ι <2a<6c + 6d(log3)/ (Iog2).

A short calculation involving inequalities (2.4) yields d < 4 and c < 8.
Also when d — 4 it must be the case that c < 7, and when c = 8 neces-
sarily d < 3. Then further consideration of inequalities (2.4) yields 0 < 40.
This proves (2).

Similarly when r = 5, consideration of the degree equation modulo 2C

and 5* yields 5* ΞΞ 1 (mod2c) and 2a = -1 (mod5J), whence 2C~2 divides
b and 5^" ! divides 0. In this case consideration of Lemma 2.4 yields

(2.5) 2C"2 + 5d~ι < 2α < 6c + 6d(log5)/ (log2).

Then consideration of (2.5) yields d < 3 and c < 8. Also when d—3, then
c < 7; and when c = 8, then d < 2. Thus α < 41. This completes the proof
of Lemma 2.5.

3. Solution of the degree equation. Next we apply the results of §2
to solve the degree equation (2.3) for the principal /7-block of G.

The first step in the solution process is to test the equation modulo a
sequence of primes and prime powers in order to determine information
regarding the exponents α, £>, c, d, e, and /. The equation is tested by
computer modulo 7, 13, 19, 37 and 73 in that order. The computer used
for this purpose was the CDC 6600 at the University of Minnesota
Computer Center. These tests yield sets of congruences on the exponents α,
b, d, and e modulo 36 and on the exponents c and / the congruences are
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modulo 72. This is due to the fact that the exponents of 2, 3, and 5
modulo 7 13 19 37 73 are 36, 36, and 72 respectively. Next the equa-
tion is tested modulo 5, 3, 9, 27, 4, 8, and 16. Then the sets of congruences
are checked to see that Lemma 2.3 is satisfied and that none of the terms
2a, 3*5°, or 2^3*5' is necessarily equal to 1. At this point there are the
following 19 sets of congruences on the exponents to consider:

(mod36) ft (mod36) c (mod72) d (mod36) e (mod36) /(mod72)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)

9
27
2
6
10
14
18
22
26
30
34
3
9
10
5
5
6
7
9

0
0
0
0
0
0
0
0
0
0
0
1
3
0
0
3
2
1
2

0
0
0
0
0
0
0
0
0
0
0
0
0
4
2
0
1
2
2

9
27
2
6
10
14
18
22
26
30
34
1
1
4
3
1
2
1
5

0
0
0
0
0
0
0
0
0
0
0
1
5
0
0
1
0
3
2

0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
1
0
0

Now we test these 19 remaining cases by hand to determine the
possible solutions to equation (2.3). In this regard, Lemma 2.5 is especially
productive.

First of all in cases (1) and (2), consideration of equation (2.3)
modulo 5 yields that c — 0 and f—0. Then Lemma 2.5, (2) gives a < 40,
whence a — 9 in case (1), and a = 27 in case (2). But then the equations
are 1 + 29 = 1 + 29 and 1 + 227 = 1 + 227, respectively. These are not
possible degree equations for a simple group. This contradiction eliminates
cases (1) and (2). Similarly in cases (3)-(ll), consideration of equation
(2.3) modulo 3 yields that b = e = 0. Then Lemma 2.5, (3) gives a < 41
whence a = 6, 10, 14, 18, 22, 26, 30, 34 in cases (4)—(11) respectively; and
in case (3), a = 2 or 38. In each of these cases it is then easy to see that
the equation must have the form 1 + 2a — 1 + 2", a contradiction to the
simplicity of G.

Next in cases (12), (13) and (16), consideration of equation (2.3)
modulo 5 gives c — f = 0. Then Lemma 2.5, (2) yields a < 40. Thus cases
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(12), (13) and (16) give the possible degree equations 1 + 8 = 3 + 6,
1 + 512 = 27 + 486, and 1 + 31 = 27 + 6, respectively for B0(p). Simi-
larly in cases (14) and (15), consideration of equation (2.3) modulo 3 and
Lemma 2.5, (3) give the possible degree equations 1 + 1024 = 625 + 400
and 1 + 32 = 25 + 8, respectively.

In case (17), consideration of equation (2.3) modulo 3 yields that
e — 0. Then consideration modulo 27 gives b — 2. Next consideration
modulo 8 yields b = 2. Finally consideration modulo 31 and 25 gives
/ = 1, whence a — 6. Thus the possible degree equation 1 + 64 = 45 + 20
is determined.

In case (18), considerations modulo 5, 9 and 4 yield / = 0, b = 1, and
d — 1, respectively. Then consideration modulo 109 gives c = 2 (mod 54)
and e = 3 (mod 54). Then if e > 3, consideration modulo 81 yields a = 43
(mod 54). But then consideration modulo 163 gives a contradiction. Thus
e = 3. Next considerations modulo 25, 11 and 101 yield a = 7 (mod 20),
c = 2 (mod 20), and a = Ί (mod 100), respectively. Then consideration
modulo 125 yields c = 2, whence a — I. Hence the possible degree equa-
tion 1 + 128 = 75 + 54 has been determined.

In the final case (19), consideration modulo 5 yields / = 0. Then
consideration modulo 32, 17, and 64 gives d = 5. Next consideration
modulo 27, 81, 243, 109, and 163 yield that b = 2 and e = 2. Then
consideration modulo 128, 97, 257 and 1024 give a = 9. Thus c = 2, and
the possible degree equation 1 + 512 = 225 + 288 is obtained.

Next we summarize our work in the form of a lemma.

LEMMA 3.1. Let G be a simple group satisfying hypothesis (2.1) with
degree equation (2.3) for BQ(p). Then the degree equation is one of the
following: 1 + 8 = 3 + 6, 1 + 512 = 27 + 486, 1 + 32 = 27 + 6, 1 +
1024 = 625 + 400, 1 + 32 = 25 + 8, 1 + 64 = 45 + 20, 1 + 128 = 75
+ 54, and 1 + 512 = 225 + 288.

4. Proof of the main theorem. Now let G be a simple group
satisfying hypothesis (2.1) with degree equation (2.3) for B0(p). We will
next consider the possible choices for the degree equation given by
Lemma 3.1 and determine the groups involved.

In the case of the equation 1 + 8 = 6 + 3, the Brauer relatins listed
above equation (2.2) imply that p = Ί. Then the work [2] of Blichfeldt
yields that G is isomorphic to L(2,7). It is an easy matter to verify that
L(2,7) satisfies hypothesis (2.1) with degree equation 1 + 8 = 6 + 3 for

B0(T).

For the equation 1 + 512 = 27 + 486, the Brauer relations also give
p — 1. But in this case the block separation Lemma 2.1 applied to
Bo(3) Π B0(Ί) gives a contradiction. Thus there is no group corresponding
to this equation.
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In the case of the equation 1 + 32 = 27 + 6, the Brauer relations give
p = 7. Then the work [6] of Lindsey yields that G is isomorphic to ί/(3,3).
It is an easy matter to verify that t/(3,3) satisfies hypothesis (2.1) with
degree equatin 1 + 32 = 27 + 6 for B0(T).

For the equations 1 + 1024 = 625 + 400, 1 + 32 = 25 + 8, 1 + 128
= 75 + 54, and 1 + 512 = 225 + 288, there is no choice for the prime p
which is consistent with the Brauer relations.

Finally in the case of the equation 1 + 64 = 20 + 45, the Brauer
relations yield/? = 7. Then the work [1] of Alex and Morrow shows that G
is isomorphic to L(3,4) or A%. It is an easy matter to verify that each of
these groups satisfies hypothesis (2.1) with degree equation 1 + 64 = 20
+ 45for£0(7).

We are now in a position to state the main result of this paper.

THEOREM 4.1. Let G be a finite simple group such that \ N(Sp) \ = 3p9

for a Sylow p-subgroup Sp. Suppose the degree equation for B0(p) has the
form 1 + 2a = 3*5C + 2</3e5/, where a, b, c, d, e, and f are non-negative
integers. Then G is isomorphic to one of the groups L(2,7), C/(3,3), L(3,4),
or A%.
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