REDUCTION OF ELLIPTIC CURVES OVER IMAGINARY QUADRATIC NUMBER FIELDS

R. J. STROEKER

It is shown that an elliptic curve defined over a complex quadratic field K, having good reduction at all primes, does not have a global minimal (Weierstrass) model. As a consequence of a theorem of Setzer it then follows that there are no elliptic curves over K having good reduction everywhere in case the class number of K is prime to K.

1. Introduction. An elliptic curve over a field K is defined to be a non-singular projective algebraic curve of genus 1, furnished with a point defined over K. Any such curve may be given by an equation in the Weierstrass normal form:

$$(1.1) y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

with coefficients a_i in K. In the projective plane \mathbf{P}_K^2 , the point defined over K becomes the unique point at infinity, denoted by $\underline{0}$. Given such a Weierstrass equation for an elliptic curve E, we define, following Néron and Tate ([12], §1; [6], Appendix 1, p. 299):

$$\begin{cases} b_2 = a_1^2 + 4a_2, & c_4 = b_2^2 - 24b_4, \\ b_4 = a_1a_3 + 2a_4, & c_6 = -b_2^3 + 36b_2b_4 - 216b_6, \\ b_6 = a_3^2 + 4a_6, \\ b_8 = a_1^2a_6 - a_1a_3a_4 + 4a_2a_6 + a_2a_3^2 - a_4^2, \\ \Delta = -b_2^2b_8 - 8b_4^3 - 27b_6^2 + 9b_2b_4b_6, & j = c_4^3/\Delta. \end{cases}$$

The discriminant Δ , defined above, is non-zero if and only if the curve E is non-singular. In particular, we have

(1.3)
$$4b_8 = b_2b_6 - b_4^2 \text{ and } c_4^3 - c_6^2 = 2^6 3^3 \Delta.$$

The various representations of an elliptic curve over K, with the same point at infinity, are related by transformations of the type

(1.4)
$$x = u^2x' + r$$
 with $r, s, t \in K$ and $u \in K^*$.

Let E be an elliptic curve defined over a field K. An equation for E of type (1.1) is called minimal with respect to a discrete valuation ν of K iff $\nu(a_i) \geq 0$ for all i and $\nu(\Delta)$ minimal, subject to that condition. For each discrete valuation of K, there exists a minimal equation for E. This equation is unique up to a change of co-ordinates of the form (1.4) with r, s, $t \in R$ and u invertible in R. Here R stands for the valuation ring. An equation for an elliptic curve E defined over K is called a global minimal equation for E over K iff this equation is minimal with respect to all discrete valuations of K simultaneously. We have the following theorem due to Néron and Tate.

(1.5) Theorem. Let \mathfrak{O}_K be the ring of integers of an algebraic number field K. If \mathfrak{O}_K is a principal ideal domain, then every elliptic curve defined over K has a global minimal equation over K.

It is not true, in general, that an elliptic curve defined over an algebraic number field K has a global minimal equation over K. Following Tate [13], define the minimal discriminant ideal for an elliptic curve E over a number field K by

$$\Delta_E = \prod_{\text{finite } \nu} \mathfrak{p}_{\nu}^{\nu(\Delta_{\nu})},$$

where Δ_{ν} is the discriminant of a minimal equation for E at ν and \mathfrak{p}_{ν} is the prime ideal of \mathfrak{O}_{K} associated with ν . If a global minimal equation for E over \mathfrak{O}_{K} exists, then Δ_{E} is principal, for it is generated by the discriminant of any global minimal equation.

For a discrete valuation ν of a field K, let R be the valuation ring, P the unique prime ideal of R and k = R/P the residue class field. Assume ν is normalized and let $\pi \in R$ be a prime with $\nu(\pi) = 1$. If E is an elliptic curve over K, let Γ be a minimal equation for E with respect to ν of type (1.1). Reducing the coefficients a_i of Γ modulo $P = \pi R$, one obtains an equation $\tilde{\Gamma}$ for a plane cubic curve \tilde{E} defined over k. This equation is clearly unique up to a transformation of the form (1.4) over k. If $\tilde{\Gamma}$ is non-singular (over k) then \tilde{E} is an elliptic curve over k and $\tilde{\Gamma}$ is an equation for \tilde{E} over k. In that case $\tilde{\Delta} \neq 0$ or, equivalently, $\nu(\Delta) = 0$. We say that E has good (or non-degenerate) reduction at ν . In case $\tilde{\Delta} = 0$, i.e. $\nu(\Delta) > 0$, then \tilde{E} is a rational curve and E has bad (or degenerate) reduction at ν . In particular, if $\nu(\Delta) > 0$ and $\nu(c_4) = 0$, then \tilde{E} has a node and we say that E has multiplicative reduction at ν ; if $\nu(\Delta) > 0$ and $\nu(c_4) \neq 0$, then \tilde{E} has a cusp and the reduction of E at ν is additive.

(1.6) Theorem (Tate). There is no elliptic curve defined over \mathbf{Q} with good reduction at all discrete valuations of \mathbf{Q} .

Proofs of this theorem may be found in [7] and [10], p. 32.

In this paper we will prove and discuss a generalization of Tate's result for elliptic curves defined over imaginary quadratic number fields. More precisely, the purpose of this paper is to prove

(1.7) MAIN THEOREM. Let K be an imaginary quadratic number field and let E be an elliptic curve defined over K. If E has a global minimal equation over K, then E has bad reduction at ν for at least one discrete valuation ν of K.

In fact when E has everywhere good reduction over a number field K, then $\Delta_E = (1)$. The condition placed upon E in the Main Theorem (1.7), to the effect that E must have a global minimal equation over K, is not superfluous. This is shown by the following theorem, first formulated by Tate.

(1.8) THEOREM. Let n be a rational integer prime to 6 and suppose $j^2 - 1728j \pm n^{12} = 0$. Then the elliptic curve with equation

$$y^2 + xy = x^3 - \frac{36}{j - 1728}x - \frac{1}{j - 1728}$$

over $\mathbf{Q}(j)$ has good reduction at every discrete valuation of $\mathbf{Q}(j)$.

For a proof we refer to [11] or [10], p. 31. See also Setzer [9], Theorem 4(b).

In this context we have the following theorem, which is a direct consequence of the Main Theorem (1.7) and a theorem of Setzer (cf. [9], Theorem 5).

(1.9) THEOREM. Let K be an imaginary quadratic number field with class number prime to 6. Then there are no elliptic curves over K having good reduction everywhere.

Indeed, when the class number of a number field K is prime to 6, the condition ' Δ_E is principal' is equivalent to the existence of a global minimal model over K.

In Ishii [4] a similar but less general result is obtained.

Throughout the rest of this paper, K will stand for the imaginary quadratic number field $\mathbb{Q}(\sqrt{-m})$, where m is a squarefree positive integer. The symbol \mathbb{G} will always denote the ring of integers of K with basis $\{1, \omega\}$, i.e. $\mathbb{G} = \mathbb{Z}[\omega]$.

2. Proof of the main theorem in case $m \neq 1$ or 3. Let E_r denote an elliptic curve, defined over K, with an equation of type

$$\Gamma_r \colon x^3 - y^2 = r \qquad (r \in K^*).$$

As usual $E_r(K)$ will stand for the group of K-rational points of E_r ; the group operation in $E_r(K)$ will be written additively.

(2.1) LEMMA. If $r \in \mathbf{Q}$, then $(x, y) + (\bar{x}, \bar{y}) \in E_r(\mathbf{Q})$ for each point $(x, y) \in E_r(K)$.

Proof. Let $(x, y) \in E_r(K)$ and put $P = (x, y) + (\bar{x}, \bar{y})$. Then $P \in E_r(K)$ because $r \in \mathbf{Q}$. Clearly, $\overline{P} = P$ and since $K \cap \mathbf{R} = \mathbf{Q}$, we conclude $P \in E_r(\mathbf{Q})$.

Some easy consequences of the group structure on E_r are laid down in the following formulas. A straightforward calculation shows their validity.

If $r \in \mathbf{Q}$, $(x, y) \in E_r(K)$ and $(x, y) + (\bar{x}, \bar{y}) = (p, q) \in E_r(\mathbf{Q})$, then

(2.2)
$$\begin{cases} x + \overline{x} + p = \left(\frac{y - \overline{y}}{x - \overline{x}}\right)^2 & \text{and} \quad p \cdot \frac{y - \overline{y}}{x - \overline{x}} + \frac{x\overline{y} - \overline{x}y}{x - \overline{x}} + q = 0 \\ & \text{in case } \overline{x} \neq x, \\ 2x + p = \left(3x^2/2y\right)^2 & \text{in case } \overline{x} = x, \overline{y} = y \neq 0, \\ \left(p, q\right) = \underline{0} & \text{in case } \overline{x} = x, \overline{y} = -y. \end{cases}$$

(2.3) LEMMA. If $(x, y) \in E_r(K)$ with $r = \pm 2^6 3^3$ such that $x, y \in \emptyset$ and $x\overline{x} \not\equiv 0 \pmod{2}$, then $x \in \mathbf{Z}$ and $y \notin \mathbf{Z}$.

Proof. Lemma (2.1) shows $(x, y) + (\bar{x}, \bar{y}) \in E_r(\mathbf{Q})$. Now $E_r(\mathbf{Q}) \cong \mathbf{Z}_2$ (cf. [3]) and thus $E_r(\mathbf{Q}) = \{\underline{0}, (\pm 12, 0)\}$, where the \pm sign corresponds to that of r. Consequently, we have to consider two possibilities; first, if $(x, y) + (\bar{x}, \bar{y}) = \underline{0}$ then $\bar{x} = x$ and $\bar{y} = -y$. If y = 0, then x does not satisfy the condition $x\bar{x} \not\equiv 0 \pmod{2}$. If $(x, y) + (\bar{x}, \bar{y}) = (\pm 12, 0)$, put $x = a + b\omega$ and $y = c + d\omega$ $(a, b, c, d \in \mathbf{Z})$. Then clearly $b \neq 0$. We distinguish between the cases:

(i)
$$m \equiv 1 \text{ or } 2 \pmod{4}$$
;

(ii) $m \equiv 3 \pmod{4}$.

In case (i), $\omega = \sqrt{-m}$. Put T = d/b. We obtain from (2.2):

- (i), $2a \pm 12 = T^2$;
- (i), $c = -T^3 + 3aT$;
- (i)₃ $mb^2 = 3a^2 2cT$.

Clearly, a and T are even because of (i)₁ (note that $T \in \mathbb{Z}$). Hence $mb^2 \equiv 0 \pmod{4}$. This follows from (i)₃. Thus b is even, which implies $x \equiv 0 \pmod{2}$.

In case (ii), $\omega = \frac{1}{2}(1+\sqrt{-m})$. Again put T = d/b and $a_1 = 2a + b$, $c_1 = 2c + d$. Formulas (2.2) give

- $(ii)_1 a_1 \pm 12 = T^2;$
- (ii), $c_1 = -2T^3 + 3a_1T$;
- (ii)₃ $mb^2 = 3a_1^2 4c_1T$.

Again $T \in \mathbb{Z}$ and a_1 , b and T have the same parity as can be seen from (ii)₁ and (ii)₃. Moreover it follows from (ii)₂ that a_1 and c_1 have the same parity. If a_1 , b, c_1 and T are even, then $a_1 \equiv b \equiv 0 \pmod{4}$ as is clear from (ii)₁ and (ii)₃. Hence $4x\bar{x} = a_1^2 + mb^2 \equiv 0 \pmod{8}$. And if a_1 , b, c_1 and T are odd, then $m \equiv 7 \pmod{8}$, which is a consequence of (ii)₃. Again $4x\bar{x} \equiv 0 \pmod{8}$. We may conclude $(x, y) + (\bar{x}, \bar{y}) = 0$ if $x\bar{x} \not\equiv 0 \pmod{2}$.

(2.4) LEMMA. Let (1.1) be a global minimal equation for the elliptic curve E over K with $v(\Delta) = 0$ for every discrete valuation v of K. Further, let \mathfrak{p}_2 be a prime ideal divisor of 2 in \mathfrak{G} . Then \mathfrak{p}_2 does not divide a_1 .

Proof. Since $\nu(\Delta) = 0$ for every discrete valuation of K, Δ is a unit in \emptyset . Suppose $\mathfrak{p}_2|a_1$. Then we see from (1.2) that $\mathfrak{p}_2^2|b_2$ and $\mathfrak{p}_2|b_4$ and hence $\mathfrak{p}_2^3|(\Delta + 27b_6^2)$. It is clear that \mathfrak{p}_2 does not divide a_3 . For $\mathfrak{p}_2|a_3$ implies $\mathfrak{p}_2|b_6$ and thus $\mathfrak{p}_2|\Delta$. However, Δ is a unit. From (1.2) we also obtain $b_6^2 \equiv a_3^4 \pmod{8}$. We observe that we may restrict the values of the coefficients a_1 , a_2 and a_3 to

$$a_1, a_3 = 0, 1, \omega \text{ or } 1 + \omega \text{ and } a_2 = 0, \pm 1, \pm \omega \text{ or } \pm 1 \pm \omega.$$

We consider the following cases separately:

(i)
$$m \equiv 1, 2 \pmod{4}$$
.

The principal ideal (2) factors as \mathfrak{p}_2^2 . Further, $b_6^2 \equiv 1 \pmod{\mathfrak{p}_2^5}$ because $a_3 = 1$ or ω in case m is odd and $a_3 = 1$ or $1 + \omega$ if m is even. If \mathfrak{p}_2^2 does not divide a_1 , then $\Delta - 1 \equiv \Delta + 27b_6^2 \not\equiv 0 \pmod{\mathfrak{p}_2^4}$. But $\Delta - 1 \equiv 0 \pmod{\mathfrak{p}_2^3}$ implies $\Delta = 1$, because Δ is a unit, contradiction. And if $\mathfrak{p}_2^2|a_1$ then $\Delta + 27b_6^2 \equiv 0 \pmod{\mathfrak{p}_2^6}$. But then $\Delta + 3 \equiv 0 \pmod{\mathfrak{p}_2^5}$ and this is clearly impossible.

(ii) $m \equiv 3 \pmod{8}$.

Now $\mathfrak{p}_2=(2)$. If $a_3=1$ then $b_6^2\equiv 1\pmod 8$ and hence $\Delta+3\equiv 0\pmod 8$, an impossibility. Further, if $a_3=\omega, 1+\omega$, then $b_6^2\equiv \omega, 1+\omega\pmod 2$ and hence $\Delta\equiv \omega, 1+\omega\pmod 2$. This is contradictory in case $m\neq 3$. However, if m=3, then $b_6^2\equiv -\omega, \ \omega^2\pmod 8$ and this implies $\Delta\equiv 3\omega, -3\omega^2\pmod 8$, again a contradiction.

(iii) $m \equiv 7 \pmod{8}$.

We now have $(2) = \mathfrak{p}_2\mathfrak{p}_2'$ with $\mathfrak{p}_2 = (2, \omega)$ and $\mathfrak{p}_2' = (2, \overline{\omega})$. If $\mathfrak{p}_2|a_1$ then $a_3 = 1$ implies $b_6^2 \equiv 1 \pmod{8}$ and $a_3 = 1 + \omega$ gives $b_6^2 \equiv 1 \pmod{\mathfrak{p}_2^3}$. Both cases are impossible. An analogous argument may be used in case $\mathfrak{p}_2'|a_1$.

We are now in a position to prove the main theorem for $K = \mathbb{Q}(\sqrt{-m})$ with $m \neq 1$ and $m \neq 3$.

Suppose that E has good reduction at every discrete valuation of K. Let (1.1) be a global minimal equation for E. Then $\nu(\Delta) = 0$ for every discrete valuation ν of K. Hence Δ is a unit of \emptyset , i.e. $|\Delta| = 1$ since $m \neq 1$ and $m \neq 3$. Now from (1.3) we have

$$c_4^3 - c_6^2 = \pm 2^6 3^3$$

and this yields $c_4\bar{c}_4 \not\equiv 0 \pmod{2}$ because of (2.4). Lemma (2.3) then shows that $c_4 \in \mathbb{Z}$ and $c_6 \notin \mathbb{Z}$. Thus $c_6 = y\sqrt{-m}$ with $y \neq 0$ and $y \in \mathbb{Z}$, because $c_6^2 \in \mathbb{Z}$. From (1.2) we obtain

$$y\sqrt{-m} \equiv -a_1^6 \pmod{4}.$$

Checking the possibilities $a_1 = 1$, ω and $1 + \omega$, we find an impossible congruence in each case.

The proof of the main theorem as given above $(m \neq 1 \text{ and } m \neq 3)$ depends largely on the fact that the only units of \emptyset are +1 and -1. However, in $\mathbf{Z}[i]$ and $\mathbf{Z}[\rho]$, where $\rho = \frac{1}{2}(1 + \sqrt{-3})$, we have the additional units $\pm i$ and $\pm \rho$, $\pm \rho^2$, respectively. Consequently, in order to complete the proof of the theorem, it suffices to show that no point $(x, y) \in \emptyset \times \emptyset$ of the curve with equation

$$(2.5) x^3 - y^2 = \varepsilon 2^6 3^3,$$

where $\emptyset = \mathbf{Z}[i]$ and $\varepsilon = \pm i$ in case $K = \mathbf{Q}(i)$, and where $\emptyset = \mathbf{Z}[\rho]$ and $\varepsilon = \pm \rho$, $\pm \rho^2$ in case $K = \mathbf{Q}(\rho)$, comes from an elliptic curve with global minimal equation of the form (1.1) and $(x, y) = (c_4, c_6)$. This will be done in §3.

3. The exceptional cases. First proof. First, we consider $K = \mathbf{Q}(i)$. Let (x, y) be a solution of (2.5) with $\varepsilon = \pm i$ that comes from an elliptic curve over K with global minimal equation (1.1) such that $(x, y) = (c_4, c_6)$. Then (x, y) must satisfy

(3.1)
$$1 + i \nmid x, \quad 3|y \Rightarrow 3^3|y.$$

This follows immediately from Lemma (2.4) and (1.2). Now (-x, iy) is also a solution of (2.5) satisfying (3.1). So we need only consider solutions (x, y) of

$$(3.2) x^3 = y^2 - 3i(24)^2.$$

- (3.3) LEMMA. If $\theta = \frac{1}{2}(1+i)\sqrt{6}$, then $\theta^2 = 3i$ and the number field $\mathbf{Q}(\theta)$ has the following properties:
 - (1) The set $\{1, \theta, i, i\theta\}$ is an integer basis for $\mathbf{Q}(\theta)$.
 - (2) The principal ideals (2) and (3) factor as \mathfrak{p}_2^4 and \mathfrak{p}_3^2 , respectively.
 - (3) The class number of $\mathbf{Q}(\theta)$ equals 2.
 - (4) The unit $\eta = 1 + i + \theta$ is fundamental.

The proof of this lemma is a straightforward exercise (cf. [2]).

We turn our attention to (3.2) and write

(3.4)
$$x^3 = (y - 24\theta)(y + 24\theta).$$

The only possible prime divisor that $y + 24\theta$ and $y - 24\theta$ have in common is \mathfrak{p}_3 , because of (3.1) and (3.3). We deduce that

$$(y+24\theta)=\mathfrak{p}_3^a\mathfrak{A}^3,$$

where a = 0, 1 or 2 and \mathfrak{A} is an integral ideal. Also

$$(y-24\theta)=\mathfrak{p}_3^a\mathfrak{A}'^3,$$

where $\mathfrak A$ and $\mathfrak A'$ are conjugate ideals. Multiplication yields

$$(x)^3 = \mathfrak{p}_3^{2a} (\mathfrak{A} \mathfrak{A}')^3,$$

hence $2a \equiv 0 \pmod{3}$ and thus a = 0. Since the class number of $\mathbf{Q}(\theta)$ equals 2 and \mathfrak{A}^3 is a principal ideal, we deduce that \mathfrak{A} is principal. Then

$$y + 24\theta = \varepsilon (a + b\theta)^3,$$

where ε is a unit and $a, b \in \mathbb{Z}[i]$. By Dirichlet's unit theorem ε can be expressed in the form $\zeta \eta^k$ with $k \in \mathbb{Z}$ and root of unity ζ . The only roots of unity in $\mathbb{Q}(\theta)$ are ± 1 and $\pm i$, all of which may be written as a cube.

Furthermore, the conjugation map $\theta \mapsto -\theta$ takes η into η^{-1} . Consequently, we need only consider

$$\pm y + 24\theta = (1 \text{ or } \eta)(a + b\theta)^3$$

with $a, b \in \mathbf{Z}[i]$.

$$(1) \pm y + 24\theta = (a + b\theta)^3$$
.

Equating coefficients of 1 and θ yields:

$$\pm y = a^3 + 9ab^2i$$
 and $24 = 3a^2b + 3b^3i$.

Then b|8 and the solutions (x, y) are easily obtained. However, none of those satisfies (3.1).

$$(2) \pm y + 24\theta = (1 + i + \theta)(a + b\theta)^{3}.$$

Equating coefficients of 1 and θ yields:

$$\pm y = (1+i)a^3 + 9ia^2b + 9(-1+i)ab^2 - 9b^3$$

and

$$24 = a^3 + 3(1+i)a^2b + 9iab^2 + 3(-1+i)b^3$$
.

Clearly 3|a| and hence 3|y|. However, $3^3|y|$ implies $3^3|24|$. Hence a solution (x, y) of (2.5) cannot possibly satisfy (3.1). This completes the case $K = \mathbf{Q}(i)$.

Next we consider $K = \mathbf{Q}(\rho)$; we recall that $\rho = \frac{1}{2}(1 + \sqrt{-3})$. Let (x, y) be a solution of (2.5) with $\varepsilon = \pm \rho$, $\pm \rho^2$, coming from an elliptic curve over $\mathbf{Q}(\rho)$ with a global minimal equation (1.1) and $(x, y) = (c_4, c_6)$. According to (1.2) and Lemma (2.4), (x, y) must satisfy

(3.5)
$$2 \nmid x$$
, $(2\rho - 1) \mid y \Rightarrow (2\rho - 1)^3 \mid y$.

Clearly, also (\bar{x}, \bar{y}) solves (2.5) and satisfies (3.5). Since $\rho = -\bar{\rho}^2$ and $\bar{\rho} = -\rho^2$, we need only consider the equation

$$(3.6) x^3 - \sigma \rho 2^6 3^3 = y^2,$$

with $\sigma = \pm 1$.

- (3.7) Lemma. If $\zeta = \zeta_9 = -\exp \pi i/9$, then the cyclotomic field $\mathbf{Q}(\zeta)$ has the following properties:
 - (1) The set $\{1, \zeta, \zeta^2, \zeta^3, \zeta^4, \zeta^5\}$ is an integer basis for $\mathbf{Q}(\zeta)$.
 - (2) The principal ideal (2) is prime and the ideal (3) factors as \mathfrak{p}_3^6 .
 - (3) The class number of $\mathbf{Q}(\zeta)$ equals 1.
 - (4) The set $\{1+\zeta,1+\zeta^5\}$ is a set of fundamental units.

The above statements are all well known. For (1) and (2), see [5], p. 39; for (3) see [14], Ch. 7, and for (4) see [1], p. 378.

We return to (3.6) and observe it may be written as

$$y^2 = (x + 12\sigma\zeta)(x + 12\sigma\zeta^4)(x + 12\sigma\zeta^7).$$

Since 2 does not divide x, we deduce that

$$(3.8) (x + 12\sigma\zeta) = \mathfrak{p}_3^a \mathfrak{A}^2$$

with a=0 or 1 and integral ideal \mathfrak{A} . The conjugation maps $\zeta \mapsto \zeta^4$ and $\zeta \mapsto \zeta^7$ take ρ into ρ while \mathfrak{p}_3 too remains unchanged. Hence from (3.8) we obtain the conjugate ideal equations

$$(x + 12\sigma\zeta^4) = \mathfrak{p}_3^a(\mathfrak{A}')^2$$
 and $(x + 12\sigma\zeta^7) = \mathfrak{p}_3^a(\mathfrak{A}'')^2$.

Then $(y)^2 = \mathfrak{p}_3^{3a} (\mathfrak{MM'M''})^2$ and, consequently, $3a \equiv 0 \pmod{2}$ or a = 0. As a result (3.8) becomes

$$(x + 12\sigma\zeta) = (\alpha + \beta\zeta + \gamma\zeta^2)^2$$
 with $\alpha, \beta, \gamma \in \mathbb{Z}[\rho]$,

and this gives in integers of $Q(\zeta)$:

(3.9)
$$\begin{cases} x + 12\sigma\zeta = \tau\zeta^{a}(1+\zeta)^{b}(1+\zeta^{5})^{c}(\alpha+\beta\zeta+\gamma\zeta^{2})^{2}, \\ x + 12\sigma\zeta^{4} = \tau\zeta^{4a}(1+\zeta^{4})^{b}(1+\zeta^{2})^{c}(\alpha+\beta\zeta^{4}+\gamma\zeta^{8})^{2}, \\ x + 12\sigma\zeta^{7} = \tau\zeta^{7a}(1+\zeta^{7})^{b}(1+\zeta^{8})^{c}(\alpha+\beta\zeta^{7}+\gamma\zeta^{5})^{2}, \end{cases}$$

where $\tau = \pm 1$, $0 \le a$, b, $c \le 1$ and a, b, $c \in \mathbf{Z}$. All this is a consequence of Dirichlet's unit theorem and the fact that the only roots of unity of $\mathbf{Q}(\zeta)$ are $\pm \zeta^k$, $k \in \mathbf{Z}$. Multiplication of the three equations (3.9) yields

(3.10)
$$y^2 = \tau(-1)^{a+b} \rho^{a+2b+c} (\alpha^3 - \rho \beta^3 + \rho^2 \gamma^3 + 3\rho \alpha \beta \gamma)^2.$$

We observe that we may assume a = 0 in (3.9). For ζ can be written as a square and thus ζ^a , ζ^{4a} , and ζ^{7a} , respectively, may be absorbed in the square on the right-hand side of the equations (3.9).

We investigate the four cases (b, c) = (0, 0), (1, 0), (0, 1) and (1, 1) separately.

(1)
$$b = c = 0$$
.

Then (3.10) shows that $\tau = 1$. Equating coefficients of 1, ζ , ζ^2 in the first equation of (3.9) gives

$$x = \alpha^2 - 2\beta\gamma\rho$$
, $12\sigma = 2\alpha\beta - \gamma^2\rho$ and $0 = \beta^2 + 2\alpha\gamma$.

It is clear that $2 \nmid \alpha$, $2 \mid \beta$ and $2 \mid \gamma$. Put $\beta = 2\beta_1$ and $\gamma = 2\gamma_1$. A common prime divisor of α and γ_1 divides 3. Thus $\alpha \gamma_1 = -\beta_1^2$ implies

$$\alpha = \varepsilon_1 (2\rho - 1)^p s^2$$
 and $\gamma_1 = \varepsilon_2 (2\rho - 1)^p t^2$,

where p = 0 or 1 and ε_1 , ε_2 are units such that $\varepsilon_1 \varepsilon_2 = -\delta^2$. Now, because of (3.5), we have

$$x \equiv \alpha^2 = (-3)^p \varepsilon_1^2 s^4 \pmod{8},$$

which implies p = 0. Further $\beta_1 = \delta(2\rho - 1)^p st = \delta st$ and thus

(3.11)
$$3\sigma = \alpha\beta_1 - \gamma_1^2\rho = \varepsilon_1\delta^{-2}t\{(\delta s)^3 + \rho(\varepsilon_2 t)^3\}.$$

Apparently t|3 and hence we may write $t = \varepsilon(2\rho - 1)^q$ with q = 0, 1 or 2. Substitution of these values of t in (3.11) gives a contradiction in all cases.

(2)
$$b = 1$$
, $c = 0$.

Now $\tau = -1$ as can be seen from (3.10), and we arrive at the equations

$$x = -\alpha^{2} + 2\alpha\gamma\rho + \beta^{2}\rho + 2\beta\gamma\rho,$$

$$-12\sigma = \alpha^{2} + 2\alpha\beta - 2\beta\gamma\rho - \gamma^{2}\rho,$$

$$0 = -\beta^{2} - 2\alpha\beta - 2\alpha\gamma + \gamma^{2}\rho.$$

From the last two equations we find that $\alpha \equiv \beta \equiv \gamma \rho^2 \pmod{2}$. Elimination of α and β modulo 2, reduces the last equation to $2\gamma^2\rho^2 \equiv 0 \pmod{4}$. And thus $2|\gamma$, $2|\alpha$ and $2|\beta$. The first equation then shows that 2|x.

(3)
$$b = 0$$
, $c = 1$.

Again $\tau = -1$. As before we find

$$x = -\alpha^2 - \gamma^2 - 2\alpha\beta\rho^2 + 2\beta\gamma\rho,$$

$$12\sigma = -2\alpha\beta - \beta^2\rho^2 + \gamma^2\rho - 2\alpha\gamma\rho^2,$$

$$0 = -\alpha^2\rho + \beta^2 + 2\alpha\gamma + 2\beta\gamma\rho^2.$$

From the second and third equation we find that $\beta \equiv \gamma \rho \pmod{2}$ and $\beta \equiv \alpha \rho^2 \pmod{2}$. Elimination of α and β modulo 2, reduces the last equation to $2\gamma^2 \equiv 0$ and (mod 4). Consequently, $2|\gamma$, $2|\alpha$ and $2|\beta$. The first equation then shows that 2|x.

(4)
$$b = c = 1$$
.

From (3.10) and (3.9) we obtain, respectively, $\tau = 1$ and

$$x = \alpha^{2}\rho - \beta^{2}\rho - \gamma^{2} + 2\alpha\beta\rho^{2} - 2\alpha\gamma\rho - 2\beta\gamma\rho^{2},$$

$$12\sigma = \alpha^{2} + \beta^{2}\rho^{2} - \gamma^{2}\rho^{2} + 2\alpha\beta\rho + 2\alpha\gamma\rho^{2} - 2\beta\gamma\rho,$$

$$0 = \alpha^{2}\rho - \beta^{2}\rho + \gamma^{2}\rho - 2\alpha\beta - 2\alpha\gamma\rho - 2\beta\gamma\rho^{2}.$$

The second equation shows $\alpha + \beta \rho + \gamma \rho \equiv 0 \pmod{2}$, and the third shows $\alpha + \beta + \gamma \equiv 0 \pmod{2}$. Hence $2|\alpha$ and $2|(\beta + \gamma)$. The last equation then reduces to $2\beta\gamma \equiv 0 \pmod{4}$ and hence $2|\beta$ and $2|\gamma$. Again the first equation shows 2|x.

This completes the case
$$K = \mathbf{Q}(\rho)$$
.

- **4.** The exceptional cases. Second proof. We will give yet another proof of the Main Theorem (1.7) in the exceptional cases $K = \mathbf{Q}(i)$ and $K = \mathbf{Q}(\rho)$. This proof depends on the appropriate parts of the following theorem.
- (4.1) THEOREM. Let E be an elliptic curve defined over $K = \mathbf{Q}$, $\mathbf{Q}(i)$, $\mathbf{Q}(\sqrt{-2})$ or $\mathbf{Q}(\rho)$ with non-degenerate reduction at all discrete valuations of K outside 2. Then E has a point of order 2 rational over K.

Proof. Since the class number of K equals 1, an elliptic curve E over K has a global minimal equation (1.1) which coefficients a_i belonging to the ring of integers Θ of K. Let Δ be the discriminant of this equation. A transformation (1.4) with $u = \frac{1}{2}$, r = 0, $s = -\frac{1}{2}a_1$ and $t = -\frac{1}{2}a_3$ leads to an equation

$$(4.2) y'^2 = x'^3 + a_2'x'^2 + a_4'x' + a_6',$$

for E with $a_i' \in \mathbb{O}$, which is minimal with respect to all discrete valuations of K outside 2. In fact $\Delta' = 2^{12}\Delta$. Assume the points (x',0) of order two on (4.2) are not rational over K, i.e. $x' \notin K$. Then the polynomial $f(x) = x^3 + a_2 x^2 + a_4 x + a_6 \in \mathbb{O}[x]$ is irreducible. If ξ is a root of f(x) = 0 and $L = K(\xi)$, then L/K is unramified at all primes not dividing 2. This is because the discriminant of f divides Δ' . Let f be the splitting field of the extension f is unramified at all primes not dividing 2 (cf. [14], 4-10-9 and 4-10-10, p. 178). Let f be the subfield of f corresponding to the subgroup of order 3 in the Galois group f in the subgroup of f in the Galois group f in the single prime above 2. For f is unramified everywhere else and f is unramified at all primes by class field theory, since the class number of f equals 1. This knowledge enables us to list all possible fields f for each of the given fields f:

- (1) $K = \mathbf{Q}$; $N = \mathbf{Q}$, $\mathbf{Q}(i)$, $\mathbf{Q}(\sqrt{2})$ or $\mathbf{Q}(\sqrt{-2})$.
- (2) $K = \mathbf{Q}(i)$; $N = \mathbf{Q}(i)$, $\mathbf{Q}(\alpha)$, $\mathbf{Q}(\beta)$ or $\mathbf{Q}(\overline{\beta})$, where α and β are roots of $x^4 + 1 = 0$ and $x^4 2x^2 + 2 = 0$, respectively.
- (3) $K = \mathbf{Q}(\sqrt{-2})$; $N = \mathbf{Q}(\sqrt{-2})$, $\mathbf{Q}(\alpha)$, $\mathbf{Q}(\gamma)$ or $\mathbf{Q}(\bar{\gamma})$, where α and γ are roots of $x^4 + 1 = 0$ and $x^4 + 2 = 0$, respectively.

(4)
$$K = \mathbf{Q}(\rho)$$
; $N = \mathbf{Q}(\rho)$, $\mathbf{Q}(\rho, i)$, $\mathbf{Q}(\rho, \sqrt{2})$ or $\mathbf{Q}(\rho, \sqrt{-2})$.

All possible fields N have class number 1, as is easily established using the Minkowski bound in each case. Consequently, the only prime that ramifies in M/N is the single prime \mathfrak{p} above 2. Now M/N is abelian and $G(M/N) \cong \mathbb{Z}_3$. By class field theory, to be more precise, by Artin's reciprocity theorem (cf. [5], 5.7 p. 164), the order of G(M/N) divides the order of the ray class group modulo \mathfrak{p}^n for sufficiently large exponent n (cf. [5], p. 109). In its turn, the order of the ray class group is a divisor of

$$h(N)\operatorname{Norm}_{N/\mathbb{Q}}(\mathfrak{p}^{n-1})\{\operatorname{Norm}_{N/\mathbb{Q}}(\mathfrak{p})-1\}=2^{n-1}$$

in case $K \neq \mathbf{Q}(\rho)$ and of

$$h(N)\operatorname{Norm}_{N/\mathbf{O}}(\mathfrak{p}^{n-1})=4^{n-1}$$

in case $K = \mathbf{Q}(\rho)$. Here h(N) stands for the class number of N (cf. [5], 1.3 p. 111 and 1.6 p. 112). This contradicts the fact that |G(M/N)| = 3. This completes the proof of the theorem.

We remark that Theorem (4.1) was proved by Ogg [7] in case $K = \mathbf{Q}$.

We return to the problem at hand. Suppose $K = \mathbf{Q}(i)$ or $K = \mathbf{Q}(\rho)$, and let E be an elliptic curve defined over K with good reduction everywhere. According to Theorem (4.1) E has a point of order two rational over K. Now E has a Weierstrass equation

$$y^2 = x^3 + a_2 x^2 + a_4 x + a_6$$

with $a_i \in \emptyset$ and $\Delta = \varepsilon 2^{12}$, where ε is a unit of \emptyset . Transforming the point (c, 0) of order two with $c \in \emptyset$ to (0, 0) by means of (1.4), one obtains

$$Y^2 = X^3 + A_2 X^2 + A_4 X$$

with $A_i \in \emptyset$ for E. Expressing C_4 and C_6 in terms of A_2 and A_4 leads to the equation

(4.3)
$$A_4^2(A_2^2 - 4A_4) = \varepsilon 2^8$$
 (see (1.3)).

The last equation is easy to deal with, because the only possible prime divisor of A_4 is the prime divisor of 2. In fact it follows easily that no solution of (4.3) comes from an elliptic curve E defined over K having good reduction everywhere.

5. Acknowledgements. The author wishes to express his gratitude to F. Oort and H. W. Lenstra, Jr. for their assistance. Also a word of thanks is due to the referee for his constructive remarks.

REFERENCES

- [1] W. E. H. Berwick, Algebraic number fields with two independent units, Proc. London Math. Soc., 34 (1932), 360-378.
- [2] Z. I. Borevich and I. R. Shafarevich, *Number Theory*, Pure and Appl. Math. Ser. Vol. 20, Academic Press, New York & London, 1966.
- [3] J. W. S. Cassels, The rational solutions of the Diophantine equation $y^2 = x^3 D$, Acta Math. Stockh., **82** (1950), 243–273.
- [4] Hidenori Ishii, The non-existence of elliptic curves with everywhere good reduction over certain imaginary quadratic number fields, J. Math. Soc. Japan, 31 (2) (1979), 273–279.
- [5] G. J. Janusz, Algebraic Number Fields, Pure and Appl. Math. Ser. Vol. 55, Academic Press, New York & London, 1973.
- [6] S. Lang, *Elliptic Functions*, Addison-Wesley, 1973.
- [7] A. P. Ogg, Abelian curves of 2-power conductor, Proc. Cambr. Phil. Soc., 62 (1966), 143–148.
- [8] J.-P. Serre, Propriétés Galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math., 15 (1972), 259-331.
- [9] B. Setzer, Elliptic curves over complex quadratic fields, Pacific J. Math., 74 (1) (1978), 235-250.
- [10] R. J. Stroeker, Elliptic curves defined over imaginary quadratic number fields, Doctoral Dissertation, Amsterdam 1975.
- [11] J. T. Tate, Letter to Serre, dated July 24th, 1971.
- [12] _____, The arithmetic of elliptic curves, Invent. Math., 23 (1974), 179–206.
- [13] _____, Algorithm for Determining the Type of Singular Fibre in an Elliptic Pencil, In: Modular Functions of One Variable IV, Lect. Notes Math. nr. 476, Springer-Verlag, 1975, 33–52.
- [14] E. Weiss, Algebraic Number Theory, McGraw-Hill, 1963.

Received November 4, 1980.

ECONOMETRIC INSTITUTE
ERASMUS UNIVERSITY ROTTERDAM
P.O. BOX 1738
3000 DR ROTTERDAM
THE NETHERLANDS