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REDUCTION OF ELLIPTIC CURVES
OVER IMAGINARY QUADRATIC NUMBER FIELDS

R. J. STROEKER

It is shown that an elliptic curve defined over a complex quadratic
field K, having good reduction at all primes, does not have a global
minimal (Weierstrass) model. As a consequence of a theorem of Setzer it
then follows that there are no elliptic curves over K having good
reduction everywhere in case the class number of K is prime to 6.

1. Introduction. An elliptic curve over a field K is defined to be a

non-singular projective algebraic curve of genus 1, furnished with a point

defined over K. Any such curve may be given by an equation in the

Weierstrass normal form:

(1.1) y2 + aλxy + a3y = x3 + a2x
2 + a4x + a6

with coefficients at in K. In the projective plane P^, the point defined over

K becomes the unique point at infinity, denoted by 0. Given such a

Weierstrass equation for an elliptic curve E, we define, following Neron

and Tate ([12], §1; [6], Appendix 1, p. 299):
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The discriminant Δ, defined above, is non-zero if and only if the curve E

is non-singular. In particular, we have

(1.3) 4bz = b2b6-b% and c\ - c\ = 2633Δ.

The various representations of an elliptic curve over K, with the same

point at infinity, are related by transformations of the type

(1.4) x ~ u * , withr.j.ί
v J y = u3y' + u2sx' + t
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Let E be an elliptic curve defined over a field K. An equation for E of
type (1.1) is called minimal with respect to a discrete valuation v of K iff
v{ai) > 0 for all i and v(Δ) minimal, subject to that condition. For each
discrete valuation of K, there exists a minimal equation for E. This
equation is unique up to a change of co-ordinates of the form (1.4) with r,
s, t G R and u invertible in R. Here R stands for the valuation ring. An
equation for an elliptic curve E defined over K is called a global minimal
equation for E over K iff this equation is minimal with respect to all
discrete valuations of K simultaneously. We have the following theorem
due to Neron and Tate.

(1.5) THEOREM. Let Θκ be the ring of integers of an algebraic number

field K. If &κ is a principal ideal domain, then every elliptic curve defined

over K has a global minimal equation over K.

It is not true, in general, that an elliptic curve defined over an
algebraic number field K has a global minimal equation over K. Following
Tate [13], define the minimal discriminant ideal for an elliptic curve E
over a number field K by

Δ £ = Π K ( H
finite v

where Δ,, is the discriminant of a minimal equation for E at v and pp is the
prime ideal of 0^ associated with v. If a global minimal equation for E
over 0^ exists, then ΔE is principal, for it is generated by the discriminant
of any global minimal equation.

For a discrete valuation v of a field K, let R be the valuation ring, P
the unique prime ideal of R and k — R/P the residue class field. Assume
v is normalized and let π E R be a prime with v(π) — 1. If E is an elliptic
curve over K, let Γ be a minimal equation for E with respect to v of type
(1.1). Reducing the coefficients at of Γ modulo P — πR, one obtains an
equation f for a plane cubic curve E defined over k. This equation is
clearly unique up to a transformation of the form (1.4) over k. If f is
non-singular (over k) then E is an elliptic curve over k and f is an
equation for E over k. In that case Δ φ 0 or, equivalently, v(Δ) = 0. We
say that E has good (or non-degenerate) reduction at v. In case A = 0, i.e.
v(Δ) > 0 , then E is a rational curve and E has bad (or degenerate)
reduction at v. In particular, if v(Δ) > 0 and v(c4) = 0, then E has a node
and we say that E has multiplicative reduction at v\ if *>(Δ) > 0 and
KC4) ^ 0? then E has a cusp and the reduction of E at v is additive.
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(1.6) THEOREM (Tate). There is no elliptic curve defined over Q with

good reduction at all discrete valuations of Q.

Proofs of this theorem may be found in [7] and [10], p. 32.

In this paper we will prove and discuss a generalization of Tate's

result for elliptic curves defined over imaginary quadratic number fields.

More precisely, the purpose of this paper is to prove

(1.7) MAIN THEOREM. Let K be an imaginary quadratic number field

and let E be an elliptic curve defined over K. If E has a global minimal

equation over K, then E has bad reduction at v for at least one discrete

valuation v of K.

In fact when E has everywhere good reduction over a number field K,

then Δ £ = (1). The condition placed upon E in the Main Theorem (1.7),

to the effect that E must have a global minimal equation over K, is not

superfluous. This is shown by the following theorem, first formulated by

Tate.

(1.8) THEOREM. Let n be a rational integer prime to 6 and suppose

j 2 — 1728y ± n12 = 0. Then the elliptic curve with equation

2 = 3 36 1
y y ~ X j ~ 1728X j - 1728

over Q(j) has good reduction at every discrete valuation ofQ(j).

For a proof we refer to [11] or [10], p. 31. See also Setzer [9], Theorem

4(b).

In this context we have the following theorem, which is a direct

consequence of the Main Theorem (1.7) and a theorem of Setzer (cf. [9],

Theorem 5).

(1.9) THEOREM. Let K be an imaginary quadratic number field with class

number prime to 6. Then there are no elliptic curves over K having good

reduction everywhere.

Indeed, when the class number of a number field K is prime to 6, the

condition 'Δ^ is principal' is equivalent to the existence of a global

minimal model over K.
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In Ishii [4] a similar but less general result is obtained.

Throughout the rest of this paper, K will stand for the imaginary
quadratic number field Q(f-in\ where m is a squarefree positive integer.
The symbol 0 will always denote the ring of integers of K with basis
{l,ω},i.e.6 = Z[ω].

2. Proof of the main theorem in case m φ 1 or 3. Let Er denote an
elliptic curve, defined over K, with an equation of type

Tr:x
3-y2 = r (rEK*).

As usual Er(K) will stand for the group of j£-rational points of Er\ the
group operation in Er(K) will be written additively.

(2.1) LEMMA. / / Γ G Q , then (x, y) + (3c, y) e Er(Q) for each point
(x, y) G EJLK).

Proof. Let (x, y) G Er{K) and put P = (x, 7) + (3c, y). Then P G
Er(K) because r G Q. Clearly, P — P and since Γ̂ Π R = Q, we conclude
P G £r(Q). D

Some easy consequences of the group structure on Er are laid down in
the following formulas. A straightforward calculation shows their validity.

If r G Q, ( x , y) G Er{K) a n d ( x , y) + ( x , y)=^(p,q)G E£Q)9 then

and
\ x — x /

(2.2)

^ ) a d p ^ ^
χ — χ) r x — x x — x

in case x 7̂  x,

2x + p = (3x2/2y) in case x^xj^^O,

( z 7 ^ ) — 0 in case 3c = J C , J 7 = -y.
(2.3) LEMMA. If(x> y) G £,.(#) w/YΛ r = ±2 6 3 3 such that J C J £ 0

5£ 0 (mod 2), /Λew x G Z and y & Z.

. Lemma (2.1) shows (x, y) + (x, y) G J?r(Q). Now £,.(Q) = Z 2

(cf. [3]) and thus Er(Q) = (0,(^12,0)}, where the ± sign corresponds to
that of r. Consequently, we have to consider two possibilities; first, if
(x, y) + (x, y) — 0 then x = x and y — -y. If j> = 0, then x does not
satisfy the condition xx SΞ 0 (mod 2). If (x, 7) + (3c, y) = (±12,0), put
x = α + 6co and y — c + dω (a,b,c,d G Z). Then clearly Z> 7̂  0. We
distinguish between the cases:

(i) m = 1 or 2 (mod 4);
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(ii) m = 3 (mod 4).

In case (i), ω = f=m . Put T = d/6. We obtain from (2.2):

(i), 2α ± 12 = Γ 2 ;

(i)2 c = - Γ 3 + 3αΓ;

Clearly, α and Γ are even because of (i), (note that T E Z). Hence

mb2 = 0 (mod 4). This follows from (i)3. Thus b is even, which implies

x = 0 (mod 2).

In case (ii), ω = ^(1 + ŷ Tw"). Again put T — d/b and ax — 2a + b,

c, — 2c + d. Formulas (2.2) give

(ii), Λ l ± 12 = Γ 2 ;

(n)2cx = -2T3 + 3axT;

(ii)3 mZ>2 = 3α,2 - 4c,Γ.

Again Γ G Z and α,, 6 and Γ have the same parity as can be seen from

(ii), and (ii)3. Moreover it follows from (ϋ) 2 that ax and c, have the same

parity. If α,, b, cx and Γ are even, then ax=b = 0 (mod 4) as is clear from

(ii), and (ii)3. Hence 4xx = a\ + mf>2 = 0 (mod 8). And if al9 b, c, and T

are odd, then m=l (mod 8), which is a consequence of (ii)3. Again

4xx = 0 (mod 8). We may conclude (x, 7) + (jc, y) = 0 if xx ^ 0

(mod 2). D

(2.4) LEMMA. Lei (1.1) be a global minimal equation for the elliptic

curve E over K with v(Δ) — 0 for every discrete valuation v of K. Further,

let p2be a prime ideal divisor of 2 in θ. Then p2 does not divide av

Proof. Since v(Δ) = 0 for every discrete valuation of K, Δ is a unit in

θ. Suppose P2\
a\ Then we see from (1.2) that p\\b2 and ί>2l^4 and hence

^ | | ( Δ -h 276^)• It is clear that p2 does not divide av For £ 2 l α 3 implies

£2|Z>6 and thus t>2|Δ However, Δ is a unit. From (1.2) we also obtain

b\ = α3 (mod 8). We observe that we may restrict the values of the

coefficients al9a2 and a3 to

al9 a3 = 0, 1, ω or 1 + ω and α 2 = 0, ± 1 , ±ω or ± 1 ± ω.

We consider the following cases separately:

(i) m ΞΞ 1, 2 (mod 4).

The principal ideal (2) factors as ^ Further, bj = \ (mod $)|)

because a3 = 1 or ω in case m is odd and α 3 = 1 or 1 + ω if m is even. If

t>2 does not divide α,, then Δ - 1 = Δ + 2766

2 z 0 (mod t)2)
 B u t Δ ~ 1

= 0 (mod $1) imphes Δ = 1, because Δ is a unit, contradiction. And if

)p\\ax then Δ + 21bj = 0 (mod p6

2). But then Δ + 3 = 0 (mod p5

2) and this

is clearly impossible.
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(ii) m = 3 (mod 8).
Now p2 = (2). If a3 = 1 then 66

2 = 1 (mod 8) and hence Δ + 3 = 0
(mod 8), an impossibility. Further, if α3 = ω, 1 + ω, then 6<? = ω, 1 + ω
(mod 2) and hence Δ = co,l +ω (mod 2). This is contradictory in case
m Φ 3. However, if m = 3, then δ | = -co, ω2 (mod 8) and this implies
a = 3ω, -3co2 (mod 8), again a contradiction.

(iii) m~l (mod 8).
We now have (2) = )p2p'2 with p2 = (2, ω) and £'2 = (2, ω). If ^ l ^

then α3 = 1 implies b\ = 1 (mod 8) and α3 = 1 + ω gives J 6

2 Ξ 1

(mod £2)- Both cases are impossible. An analogous argument may be used
in ^ k Π

We are now in a position to prove the main theorem for K = QlJ-m)
with m 7̂  1 and m φ 3.

Suppose that is has good reduction at every discrete valuation of K.
Let (1.1) be a global minimal equation for E. Then p(Δ) = 0 for every
discrete valuation v of K. Hence Δ is a unit of Θ, i.e. |Δ| = 1 since m Φ 1
and m φ 3. Now from (1.3) we have

c\ - c\ = ±2 6 3 3

and this yields c4c4 ^ 0 (mod 2) because of (2.4). Lemma (2.3) then shows
that c4 E Z and c6 (£ Z. Thus c6 = >y-w with y ¥=0 and j / G Z , because
c\ E Z. From (1.2) we obtain

yyj-m = — αf (mod 4).

Checking the possibilities Oj = 1, ω and 1 + ω, we find an impossible
congruence in each case. D

The proof of the main theorem as given above (m Φ 1 and m Φ 3)
depends largely on the fact that the only units of 0 are +1 and - 1 .
However, in Z[i] and Z[p], where p = £(1 + /^J) , we have the additional
units ±1 and ±p, ±ρ2

9 respectively. Consequently, in order to complete
the proof of the theorem, it suffices to show that no point (x j ) G 6 X 6
of the curve with equation

(2.5) x3 -y2 = ε263\

where 0 = Z[/] and ε = ±i in case K = Q(/)? and where 0 = Z[p] and
e = ±p, ± p 2 in case K= Q(p), comes from an elliptic curve with global
minimal equation of the form (1.1) and (x, y) = (c4, c6). This will be
done in §3.
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3. The exceptional cases. First proof. First, we consider K = Q(/)

Let (x, y) be a solution of (2.5) with ε = ±i that comes from an elliptic

curve over K with global minimal equation (1.1) such that (x, y) — (c 4, c6).

Then (x, y) must satisfy

(3.1) l + itjc, Άy^^\y-

This follows immediately from Lemma (2.4) and (1.2). Now (-x, iy) is

also a solution of (2.5) satisfying (3.1). So we need only consider solutions

(x, y) of

(3.2) x3=jμ2-3/(24)2.

(3.3) LEMMA. // 0 = £(1 + 0 / 6 , /Aew 0 2 = 3/ and /Λe wwmfor /fe/rf

Q(0) Aas the following properties:

(1) The set {I, 0, /, z'0} w an integer basis for Q(θ).

(2) The principal ideals (2)and (3) factor as$\ andpj, respectively.

(3) The class number ofQ(θ) equals 2.

(4) The unit η = 1 + i + θ is fundamental.

The proof of this lemma is a straightforward exercise (cf. [2]).

We turn our attention to (3.2) and write

(3.4) jc3 = (y - 24θ)(y + 2AΘ).

The only possible prime divisor that y + 24Θ and y — 240 have in

common is p3, because of (3.1) and (3.3). We deduce that

where a = 0, 1 or 2 and 91 is an integral ideal. Also

(y - 240) = t)«2l'3,

where 91 and 9Γ are conjugate ideals. Multiplication yields

hence 2a = 0 (mod 3) and thus α = 0. Since the class number of Q(θ)

equals 2 and 913 is a principal ideal, we deduce that 91 is principal. Then

y + 240 = ε(a + bθ)\

where ε is a unit and a, b E Z[/]. By Dirichlet's unit theorem ε can be

expressed in the form ξηk with k E Z and root of unity f. The only roots

of unity in Q(0) are ± 1 and ±i , all of which may be written as a cube.
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Furthermore, the conjugation map θ ι-> -θ takes η into η~ι. Consequently,

we need only consider

±y + 24θ = (I or η)(a + bθ)3

with a, b e Z[i].

(1) ±j> + 240 = (α + 60)3.

Equating coefficients of 1 and θ yields:

±y = a3 + 9ab2i and 24 = 3a2b + 3b3i.

Then Z>|8 and the solutions (x, y) are easily obtained. However, none of

those satisfies (3.1).

(2) ±y + 240 = (1 + i + θ)(a + bθ)3.

Equating coefficients of 1 and θ yields:

±y = (\+ i)a

3 + 9ia2b + 9(-l + i)ab2 - 9b3

and

24 = a3 + 3(1 + i)a2b + 9iab2 + 3(-l + i)b3.

Clearly 3|# and hence 3|j. However, 33\y implies 33|24. Hence a solution

(x, y) of (2.5) cannot possibly satisfy (3.1). This completes the case

Next we consider K— Q(p); we recall that 9 — \{\ + /^3"). Let

(x, j ) be a solution of (2.5) with ε = ±p, ±p 2 , coming from an elliptic

curve over Q(p) with a global minimal equation (1.1) and (x, j ) = (c4, c6).

According to (1.2) and Lemma (2.4), (x, j ) must satisfy

(3.5) 2\x9 ( 2 p - l ) | / = . ( 2 p - l ) 3 | j ; .

Clearly, also (x, y) solves (2.5) and satisfies (3.5). Since p = -p2 and

jo = -p2, we need only consider the equation

(3.6) x 3 -σp2 6 3 3 =>> 2 ,

with σ = ± 1 .

(3.7) LEMMA. Ifζ — ζ9 = -exp ττ//9, then the cyclotomic field Q(f) has

the following properties:

(1) The set {1, £, f2, f3, f4, f5} w on integer basis for Q(f).

(2) The principal ideal (2) is prime and the ideal (3) factors as \>\.

(3) TΛe c/α 5̂ number ofQ(ξ) equals 1.

(4) ΓAe .yer {1 + £, 1 + ξ5} is a set of fundamental units.



REDUCTION OF ELLIPTIC CURVES 459

The above statements are all well known. For (1) and (2), see [5], p.

39; for (3) see [14], Ch. 7, and for (4) see [1], p. 378.

We return to (3.6) and observe it may be written as

y2 — (x + 12σf )(Λ: + \2σζ4)(x + llσξ7).

Since 2 does not divide x, we deduce that

(3.8) (JC + 12σf) = pa

3%
2

with a — 0 or 1 and integral ideal 21. The conjugation maps ξ h-> ξ4 and

ξ h-> ξ7 take p into p while p3 too remains unchanged. Hence from (3.8) we

obtain the conjugate ideal equations

(x + \2σζΛ) = pa

3(%f and (x + \2σζΊ) = pa

3(%")\

Then (y)2 = p\a(%%'W)2 and, consequently, 3a = 0 (mod 2) or a = 0.

As a result (3.8) becomes

( J C + 12σ£) = (α + j8f + γ f 2 ) 2 withα, β, γ G Z[p],

and this gives in integers of Q(f):

\2σζ = τΓ(l + ξ Ϋ{1 + ?5)C(« + βϊ + y£2)\

(3.9)

x + nσf = τVa{\ + Γ)*(i + ?8)c(« + βV +

where τ = ± l , 0 < α , 6, c < l and a, b, c G Z. All this is a consequence

of Dirichlet's unit theorem and the fact that the only roots of unity of

Q(ζ) are ±ζk,k E Z. Multiplication of the three equations (3.9) yields

(3.10) y2 = τ ( - l Γ + y + 2 * + V - pβ3 + p2γ3 + 3paβy)2.

We observe that we may assume a = 0 in (3.9). For f can be written as a

square and thus ξa

9 ζΛa, and f7α, respectively, may be absorbed in the

square on the right-hand side of the equations (3.9).

We investigate the four cases (6, c) = (0,0), (1,0), (0,1) and (1,1)

separately.

( l ) 6 = c = 0.

Then (3.10) shows that T = 1. Equating coefficients of 1, ξ, ζ2 in the

first equation of (3.9) gives

x = a2 - 2βγp, 12σ = 2αβ - γ 2 p and 0 = β2 + lay.
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It is clear that 2 \ α, 2\β and 2|γ. Put β = 2βλ and γ = 2γ,. A common
prime divisor of a and γj divides 3. Thus αγj = -β2 implies

a = e,(2p - 1 ) V and γ, - ε2(2p - if/2,

where/? = 0 or 1 and εl9 ε2 are units such that eλe2 — -δ 2 . Now, because
of (3.5), we have

x = a2 = (-3)pey (mod 8),

which impliesp = 0. Further βλ — 8(2p — l)pst = δs/ and thus

(3.11) 3σ = αjβ, - γ,2p = ^ { ( δ s ) 3 + p(ε 2ί) 3}.

Apparently ί|3 and hence we may write t — ε(2p — \)q with q — 0, 1 or 2.
Substitution of these values of / in (3.11) gives a contradiction in all cases.

(2) b = 1, c = 0.
Now T = -1 as can be seen from (3.10), and we arrive at the

equations

x = -a2 + 2αγp + β2p + 2βγp,

-12σ = a2 + 2aβ - 2βyp - γ2p,

0 = ->S2 — 2aβ - 2ay + γ2p.

From the last two equations we find that a = β = γp2 (mod 2). Elimina-
tion of a and /? modulo 2, reduces the last equation to 2γ2ρ2 = 0 (mod 4).
And thus 2|γ, 2\a and 2\β. The first equation then shows that 2\x.

(3)b = 09c= 1.

Again r = - 1 . As before we find

x = -a2 - γ 2 - 2aβp2 + 2βyp,

12σ = -2aβ - β2p2 + γ2p - 2αγp2,

0 = -α2p + β2 + 2ay + 2β γp2.

From the second and third equation we find that β = γp (mod 2) and
/? = αp2 (mod 2). Elimination of α and /? modulo 2, reduces the last
equation to 2γ2 = 0 and (mod 4). Consequently, 2|γ, 2\a and 2\β. The
first equation then shows that 2\x.

(4)6 = c = 1.
From (3.10) and (3.9) we obtain, respectively, T = 1 and

x = a2p- β2p -y2 + 2<xβp2 - 2ayp - 2βyp2,

12σ = a2 + β2p2 - γ 2 p 2 + 2α^8p + 2αγp2 - 2βyp,

0 = a2p- β2p + γ2p - 2aβ - 2ayp - 2βyp2.
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The second equation shows a + βp + γp = 0 (mod 2), and the third
shows a + β + γ = 0 (mod 2). Hence 2|α and 2\(β + γ). The last equa-
tion then reduces to 2/?γ = 0 (mod 4) and hence 2\β and 2|γ. Again the
first equation shows 2\x.

This completes the case K= Q(ρ). D

4. The exceptional cases. Second proof. We will give yet another
proof of the Main Theorem (1.7) in the exceptional cases K— Q(i) and
K — Q(p). This proof depends on the appropriate parts of the following
theorem.

(4.1) THEOREM. Let E be an elliptic curve defined over K = Q, Q(/),
Q(/-2^) or Q(p) with non-degenerate reduction at all discrete valuations of
K outside 2. Then E has a point of order 2 rational over K.

Proof. Since the class number of K equals 1, an elliptic curve E over K
has a global minimal equation (1.1) which coefficients at belonging to the
ring of integers 0 of K. Let Δ be the discriminant of this equation. A
transformation (1.4) with u — \, r — 0, s — - \ax and t — - ja3 leads to
an equation

(4.2) yfl = x'3 + a'2x
fl + a\xf + a'6,

for E with a\ E β, which is minimal with respect to all discrete valuations
of K outside 2. In fact Δ' = 212Δ. Assume the points (x\0) of order two
on (4.2) are not rational over K, i.e. x' £ K. Then the polynomial
f(x) = x3 + a2x

2 + a4x + a6 €Ξ &[x] is irreducible. If £ is a root of
f(x) — 0 and L — K(ξ), then L/Kis unramified at all primes not dividing
2. This is because the discriminant of / divides Δ'. Let M be the splitting
field of the extension L/K. Then M/K is Galois and [M: K] = 3 or 6.
Moreover M/K is unramified at all primes not dividing 2 (cf. [14], 4-10-9
and 4-10-10, p. 178). Let N be the subfield of M corresponding to the
subgroup of order 3 in the Galois group G(M/K). In case \G(M/K)\ — 6,
the extension N/K is only ramified at the single prime above 2. For N/K
is unramified everywhere else and N/K cannot be unramified at all primes
by class field theory, since the class number of K equals 1. This knowledge
enables us to list all possible fields N for each of the given fields K:

(2) K= Q(0; N = Q(/), Q(a)9 Q(β) or Q(β), where a and β are
roots of x4 + 1 = 0 and JC4 — 2x2 + 2 = : 0 , respectively.

(3) K = Q(v^2); N - Q(i/=2), Q(α), Q(γ) or Q(γ), where a and γ
are roots of x4 + 1 = 0 and x4 + 2 = 0, respectively.
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(4) K = Q(p); N = Q(p), Q(p, /), Q(p, fi) or Q(p, ^=
All possible fields TV have class number 1, as is easily established using the
Minkowski bound in each case. Consequently, the only prime that rami-
fies in M/N is the single prime p above 2. Now M/N is abelian and
G(M/N) = Z 3 . By class field theory, to be more precise, by Artin's
reciprocity theorem (cf. [5], 5.7 p. 164), the order of G(M/N) divides the
order of the ray class group modulo pn for sufficiently large exponent n
(cf. [5], p. 109). In its turn, the order of the ray class group is a divisor of

in case K φ Q(p) and of

h(N)NoτmN/Q(ϊ"-1) = 4""1

in case K — Q(p). Here h(N) stands for the class number of TV (cf. [5], 1.3
p. I l l and 1.6 p. 112). This contradicts the fact that \G(M/N)\ = 3. This
completes the proof of the theorem.

We remark that Theorem (4.1) was proved by Ogg [7] in case
K=Q. D

We return to the problem at hand. Suppose K — Q(i) or K = Q(p),
and let E be an elliptic curve defined over K with good reduction
everywhere. According to Theorem (4.1) E has a point of order two
rational over K. Now E has a Weierstrass equation

y2 — x3 + a2x
2 + a4x + a6

with at G Θ and Δ = ε212, where ε is a unit of Θ. Transforming the point
(c, 0) of order two with c E 0 to (0,0) by means of (1.4), one obtains

Y2 = X* + A2X
2 + AΛX

with Ai E 0 for E. Expressing C4 and Q in terms of A2 and A4 leads to
the equation

(4.3) A2{A2 - 4A4) = ε28 (see (1.3)).

The last equation is easy to deal with, because the only possible prime
divisor of A4 is the prime divisor of 2. In fact it follows easily that no
solution of (4.3) comes from an elliptic curve E defined over K having
good reduction everywhere.
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