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CIRCLE ACTIONS ON HOMOTOPY SPHERES
WITH CODIMENSION 4 FIXED POINT SET

RONALD FINTUSHEL AND PETER SIE PAO

In this paper we give a complete equivariant classification of smooth
S] actions on homotopv spheres with codimension 4 fixed point set and
point out a relationship with a natural generalization of the twist-spinning
process for knots.

Semifree S] actions on homotopy spheres with codimension 4 fixed

point set have been classified by J. Levine; so we concentrate on actions

with exceptional orbits. There are some obvious linear models for these

actions. Let £ be the standard generator of the complex representation

ring of S]. Then in some sense the actions with one exceptional orbit type

are modeled after ξk θ £ θ 0 and those with two exceptional orbit types

are modeled after ξk θ £m θ 0. Let S£ denote the set of diffeomorphism

classes of pairs (Σ£~ ], Δ) where Σ " " 1 is a homotopy (n — l)-sphere and

Δ£ is a smooth Z^-acyclic orientable codimension 2 submanifold with

boundary an integral homology sphere. Similarly, for relatively prime

integers k and m, let §>£ m denote the set of triads ( Σ " " 1 ; ΔA, Δm) where

Δk and Δm are respectively Zk and Zw-acyclic orientable codimension 2

smooth submanifolds meeting tangentially such that 9ΔΛ = 3ΔW = Δ^Π

Δ w is an integral homology sphere. In these two cases the classification

theorem states that actions on homotopy /7-spheres with one exceptional

orbit type Zk, or two exceptional orbit types Zk and Zm are in 1-1

correspondence with ξ>k and S£ m. These 1-1 correspondences are realized

by associating with an S] action on a homotopy /i-sphere its structured

orbit space and viewing Δ^ and Δ w as the images in the orbit space of the

fixed point sets of Zk and Zm.

That these two types of actions do not comprise all S1 actions on

(homotopy) spheres with codimension 4 fixed point set was shown by E.

V. Stein in answer to a question of Frank Raymond. It turns out that all

these other actions correspond in a 1-1 fashion via their structured orbit

spaces to the set ^km of diffeomorphism classes of triads (Σ Λ ~ 1 ,Δ j t ,Δ / M )

as in the definition of S £ w , except that the interiors of ΔA and Δm

intersect transversely in a (perhaps disconnected) n-5 manifold without

boundary. This intersection manifold corresponds to the image in the

orbit space of the exceptional orbits of type Zkm. The intersecting aspect
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of these examples is that they have more orbit types than their slice

representation at the fixed point set. Our description gives rise to an easy

construction of all these actions.

Our classification of Sι actions is carried out in terms of weak

equivalence. (Recall that a weak equivalence of smooth S'-manifolds Mλ

and M2 is a diffeomorphism/: Λf, -> M2 satisfying f(tx) = a(t)f(x) for

t E S\ x E Λf, where a is an automorphism of Sι.) Since r -> t ' is the

only nontrivial automorphism of S\ a weak equivalence of ^'-manifolds

is just an equivariant diffeomorphism up to a change of direction of the

action in one of the manifolds. This can be avoided by carrying along a

specified orientation on the normal bundle in Σn ι of 3ΔA (the fixed point

set image), see [L]; however, we have opted for the simplicity that goes

along with classification up to weak equivalence.

In §4 we use S] actions on homotopy spheres to introduce a class of

knots which generalize the twist-spin knots of Zeeman [Z], It is then a

corollary of the classification theorem for Sι actions that the knot

complements of knots in this class fiber over the circle with fiber a

punctured cyclic branched cover of the original knot. A special case of

this is Zeeman's main theorem [Z]. Furthermore, this class of knots gives

rise to infinitely many counterexamples to the ^-dimensional Smith Con-

jecture.

The question of which homotopy spheres admit Sι actions with

codimension 4 fixed point set has been answered separately by J. Levine

and R. Schultz in the semifree case. Recently Schultz has shown that any

homotopy sphere which admits an Sι action with codimension 4 fixed

point set must also admit one which is semifree, and in fact he gives much

more precise information [S]. We wish to thank Reinhard Schultz for

explaining his results to us and for encouraging the publication of our

results. We also wish to thank Allan Edmonds for his excellent advice

which has led to the restructing of our original format.

1. Orbit space and orbit structure. In this section we describe the

general features of the orbit structure of a smooth S1-action on a homo-

topy ^-sphere Mn whose fixed point set has codimension 4. We identify

the circle group S] with the group of complex numbers of unit modulus. If

S] acts on M and X is a subset of M then X* denotes its image in the orbit

space M* and p: M -> M* denotes the orbit map. Given a subset F* of

M* we let Y = p~\Y*) when this causes no confusion. Let F denote the

fixed point set of M and E the union of the exceptional orbits (those with

finite nontrivial isotropy group). The union of the exceptional orbits of

type Zk will be called Ek, and Fk will denote the fixed point set of Zk (so



CIRCLE ACTIONS ON HOMOTOPY SPHERES 351

Let S] act smoothly on a homotopy ^-sphere Mn (n > 5), so F is an

integral homology sphere [B]. If F is codimension 4 then the S'-action on

a slice Dn at a point of F must be equivalent to

Sx X D2 X D2X D"~4 -> D2 X D2 X Dn~4,

tX (z , ,z 2 ,w) ^ ( z ^ ^ f ' S i v ) ,

where k and ra are relatively prime positive integers. Since F is connected

this slice representation is the same at each point of F.

PROPOSITION \Λ.Ifk>2 (resp. m > 2) then Fk (resp. Fm) is a smooth

orientable Zk {resp. Zm)-homology n — 2 sphere.

Proof. Suppose k > 2. It is easily seen that FA is a smooth submani-

fold of M}\ and if k is not a 2-power Fk is orientable since it is the fixed

point set of a ZA-action ([B, IV.2.1]). For any prime p dividing k we have

Fk C Fp\ so Fp is a Z^-homology « — 2 sphere. The connected component

of Fk which contains F is a closed w — 2 submanifold of i7^; hence

Fk — Fp. It now follows from the universal coefficient theorem that Fk is a

ZA-homology sphere. If /: is a 2-power it follows that Fk is a Z2-homology

sphere and so is orientable. D

PROPOSITION 1.2. There are the following possibilities for the ap-

pearance of exceptional orbit types:

(i) no exceptional orbit types (semifree action),

(ii) one exceptional orbit type,

(iii) Zk and Zm-orbits,

(iv) ZA, Z m , and Zkm-orbits,

where in (iii) and (iv) k and m > 2 ύwd #re relatively prime.

Proof. Let / X (z,, z2, w) -»(z,/Λ, z2/m, w) be the slice representation

at a point of i7. If p is any prime then FpS is a Z^-homology sphere

containing F. Thus ή k — m — 1 then (i) holds. If A: > 1, m = 1 and Zt is

an isotropy type, r > I, then each prime/? dividing r also divides k. Let/?v

be the highest power of p dividing r, then Fp* is a Z^ homology « — 2

sphere; so Fp ~ Fp, = FA. Suppose r = /?{• •/?*«. Then jpr = î .v,

Π Πi^^ = FA. So r — k since Zr and ZA are isotropy types.

If k > 1 and m > 1 and if Zr is an isotropy type with r — p\x /?£« >

1, the above argument shows that each Fp*, = Fk or F m . Thus Fr — Fk, Fm,

or JFA Π Fm = Fkm. So r = k, m, or /:m. D
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Note that the submanifolds Fk and Fm meet transversely.

That M* is a topological manifold follows from slice considerations.

We now describe how it can be smoothed. For details see the forthcoming

paper of R. Schultz [S]. Consider first the semifree case which is presented

in a paper of J. Levine [L]. Let N(F) be an equivariant tubular neighbor-

hood of F and note that iV*(i7*) is the total space of a Z)3-bundle over T7*.

Since p | F is a homeomorphism F* has an induced smooth structure and

7V*(F*) thus inherits a smooth structure. Since the S^-action on M" — Fis

free, M* — F* also inherits a smooth structure. These structures agree on

the overlap and so make M* a smooth manifold.

Consider next the case where the action has one exceptional orbit

type Zk. Then as above there is a smooth structure induced on M/Zk

by the semifree Zλ-action and it can be seen that the induced semi-

free Sι/Zk = S] action on M/Zk is smooth [S]. Hence M* =

(M/Zk)/(S]/Zk) is a smooth manifold.

In case there are two or three exceptional orbit types we use the

diagram:

M

i

M/Zm

- M/Zk

I
- M/Zkm

\
M*

where each map is the orbit map of a semifree action. The diagram can be

used in two different ways to make M* a smooth manifold; but it can be

seen that the two smooth structures agree.

The existence of these smooth structures has been known for some

time, and the following summary of their properties appears in [S].

PROPOSITION 1.3. Let M* have the smooth manifold structure described

above. Then:

(a) p: M -» M* is a smooth map.

(b)p\Fis a diffeomorphism andF -» M* is a smooth embedding.

(c) If k > \ (m > 1) then Fj* (F*) is smoothly embedded in M*

extending the embedding of F*.

(d) If the slice representation at F is equivalent to

S ' X C X C X RnA -> C X C X Rn'\

tX (zX9z29w) ^(z]t
k,z2t

n\w)
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then:

(i) at F, p is smoothly equivalent to

C X C X R n 4 -> C X R X i ? " ~ 4 ,

( z 1 , z 2 , w ) - ( z f z - - , | z 1 | 2 ^ - | z 2 | 2 - , w ) .

(ii) at Ek,p is smoothly equivalent to

C X Rn~3 X R -> C X i?"~3,

(z,w,s) ->(z*, w),

#ft<i α similar statement holds for Em.

(iii) α/ Z?Am (k, m > \), p is smoothly equivalent to

C X C X # " ~ 5 X ϋ ^ C X C X i?'7~5,

( z l 5 z 2 , w , J ) -+(zf,z 2

w ,w).

Furthermore, any two smooth manifold structures & and % on M* which

satisfy (a)-(d) are equivalent in the sense that there is a diffeomorphism

(M*, 6£) -> (M*, %) which is topologically isotopic to the identity. •

PROPOSITION 1.4. (a) M* is a homotopy n — 1 sphere.

(b) F%, i7*, i 7 *^ ^ * (and Fk u ^m w c a s e (iϋ) ^/ ^ ^ P . 1-2) are
orientable smooth submanifolds ofM*, and dF£ = dF* = T7*.

(c) F* is an integral homology Sn~4; F* (resp. F*) is Zk~acyclic (resp.

Zm-acyclic). (So in case (iii) of Prop. 1.2, F* U F* is a rational homology

S"~\)

(d) In case (iv) of Prop. 1.2 E%m is an orientable closed n — 5 submani-

fold of M* which is the transverse intersection of E* and E*.

Proof. Part (a) follows from [CF]. Except for the orientability (b)

follows from slice considerations and Prop. 1.3, and (c) follows from

Smith theory and Prop. 1.1. To see that F* is orientable, let γ* be any

loop in Int F£ = F* — F*. Since E*m is codimension 2 in F* an isotopy

moves γ* into E£. For a tubular neighborhood TV* of γ* we have

p~ \N*) = N = N* X Sι. But N is orientable since Fk is orientable, thus

TV* is orientable and F% is also. To prove (d) note that the Z^m-action on a

slice D2 X D2 X Dn~5 at a point of Ekm must be

eim/km χ ( Z ] ? z2,w) ^ (zxe
2"ι/n\ z2e

2vi/k, w).
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All of (d) follows from this except for the statement about orientability.

Since k and m are relatively prime, we may suppose that m is odd. Now

Ekm is a component of the fixed point set of the induced Zm action on the

orientable manifold Fk. Thus Ekm is orientable ([B, IV.2.1]), and the

argument given above to show F$ is orientable also shows tht E£m is

orientable. •

2. Actions with one exceptional orbit type. Consider a smooth Sι

action on a homotopy ^-sphere Mn (n>5) with codimension 4 fixed

point set and one exceptional orbit type Zk. Then F* is a smooth

codimension 2 submanifold of M* with boundary F*, where M* is a

homotopy n — 1 sphere, FA* is an orientable ZA-homology n — 3 disk and

F* is an integral homology n — 4 sphere. Call the pair (M*, F*) the

structured orbit space of the action. In view of the above facts we define

the set of potential structured orbit spaces SA to be the set of diffeomor-

phism classes of pairs ( Σ " " 1 , ΔA), where ΔA is a smooth orientable n — 3

dimensional ZA-acyclic submanifold of the homotopy n — 1 sphere Σ"~~ι

and ΘΔA is an integral homology n — 4 sphere.

For a smooth S] action on a homotopy ^-sphere M" (Λ? > 5) with

codimension 4 fixed point set and one exceptional orbit type ZA, the

structured orbit space (M*, FA*) E S£. We shall show in this section that

for each σ E S£ there is up to weak equivalence a unique action M(σ) of

5 1 on a homotopy π-sphere with structured orbit space σ.

Given σ = ( Σ ; I ~ \ ΔA) E SA we now proceed with the construction of

M(σ). According to [L] if we fix an orientation of the normal bundle of

3ΔA in Σ' 7^ 1 we determine up to equivariant diffeomorphism a semifree S]

action on a homotopy π-sphere N" with fixed point set F = ΘΔA and

smooth orbit map μ: N" -> Σ ' ^ 1 with μ(F) ~ 9ΔA. Let Fk ~ μ~ ι(ΔA); so

Fk is a smooth codimension 2 submanifold of N".

Claim. Fk is an orientable ZA-homology sphere.

Proof. μ | F A - > Δ A is the orbit map of a semifree Sι action with

codimension 2 fixed point set. It follows from [B, V.I0.1] that Fk is

homeomorphic to Δ X Sι/(x91) — (x, t') for t, tf E S]. I.e. Fk is homeo-

morphic to ΔA X S ' U 3ΔA X D 2 = 3(ΔA X D2)\ so FA is orientable since

ΔA is orientable, and duality implies that Fk is a ZA-homology sphere. D

Since HX(NU - Fk\ ZA) « H"'2(Fk; Zk) « ZA there is a fc-fold cyclic

branched cover M" of TV" branched over Fk. According to [DK] Mn has a

unique smooth manifold structure such that v: M" -* N" is the smooth
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orbit map of a smooth semifree ZA action, and such that the smooth

structure on Nn which is imposed via the semifree action (as in §1) is just

the original smooth structure on N".

Claim. The Sι action on N" lifts to a smooth S*1 action on M"

containing the Zk action.

Proof. By [B, 1.9] there is a unique Sι action on M — v~x(Fk) covering

the S] action o n i V - F λ ; i.e. v{t x) — tk v(x) for all x E M — v~\Fk)

and / G S 1 . This action is smooth because the smooth structure of

M — v ~'(Fk) is lifted from N — Fk via the cover. The normal bundle of Fk

in N" is trivial [MS, §11]; thus it followsJrom [B, VI.11.1] that the S]

action on an equivariant normal bundle of Fk in N is equivalent to

Sι X Fk X D2 -> Fk XZ) 2,

/ X (JC, z) ->(/ x, ztu)

for some integer u, where / x denotes the action of S] on Fk. Now M is

diffeomorphic to the union of M — v~\Fk) with the tubular neighbor-

hood Tof v~\Fk) in M, and Γcan be identified with Fk X D2 (see [DK;

p. 160]). Under this identification v\FkX D2 is v(x, z) = (x, zA). Define

the 5 1 action on T = Fk X D2 by t X (JC, z) -»(ίA JC, zίw). This covers

the Sι action on Fk X D2 C Λ̂ ; so by uniqueness of covering action on

T — v~\Fk) the actions on T and M — v~\Fk) patch together to give a

smooth Sx action on M containing the given Zk action. D

Claim. 77,(M) = 0.

Proof. By Van Kampen's theorem π^M) is the free product of

πx(M - v~\Fk)) and T7,(Γ) amalgamated over τr,(Γ - v~~\Fk)). Now

M - v~\Fk) = (μv)-\Σ"-~ι - Δk). But Δk is codimension 2 in Σ' 7 " 1

and 3ΔA φ 0; so the usual piping argument shows that 7r,(Σ'7"] — ΔA) = 0.

Hence the exact sequence

\Σ"-' - Δj) - ^(Σ"-' - ΔA) = 0

shows that ττ,(M — v~\Fk)) is generated by a circle orbit. Since the S]

action on M has a nontrivial fixed point set πx(M — v~\Fk)) -* π}(M) is

the 0-map. Also, since dT

homomorphism77,(Γ — v~\

It follows that πλ(M) = 0.

Γ _>

(Fk

V

) ) = 77,

: ) ί S

(37)

an 5 1 bundle projection, the
— 77,(Γ) is onto.

D
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Now for R — Q or Zp, p prime not dividing k, we have

H*(M; R) « H+(M; R)Zk « H*(N; R) « H*(S»; R)

where the first isomorphism is due to the fact that Zk action is contained

in the S] action and the second isomorphism follows from [B, III.2.4]

since p is prime to k.

Claim. H*(Mn; Zk) » H*(Sn; Zk).

Proof. Since ΔkisZk acyclic, Alexander duality implies that Σ"~ι — Δk

is Zk acyclic. But M - v~\Fk) = (μp)~ι(Σn~x - Δk) is a circle bundle

over Σ"~ι — Δk\ hence M — v~\Fk) has the Zλ-homology of a circle. We

have seen above that the tubular neighborhood T of v~x{Fk) — Fk is

T = Fk X Z)2, and Fk s Fk is a ZA, homology « — 2 sphere. The claim now

follows from a simple Mayer-Vietoris argument. D

It now follows from the universal coefficient theorem that H*{M, Z)

« H+(Sn; Z); so M is a homotopy n sphere. Letting M(σ) — M we have

proved the realization theorem:

THEOREM 2.1. Given σ E S£ //zere ώ # smooth Sι action on a homotopy

n-sphere M{ σ) with structured orbit space σ. D

In order to prove that this action is unique we need the next lemma.

LEMMA 2. Let X and Y be S] spaces and consider the actions of Zk

embedded in the Sλ actions. Suppose we have the commutative diagram

x L Y

X/Zk Λ Y/Zk

where f is Zk-equivariant and g is S]-equivariant with respect to the induced

actions. Then f is S]-equivariant.

Proof. Let t G S] and x G X. Then

*γ{f{t x)) = g(vx(t - x)) - g(t τrx(x)) = t - g(πx(x))

= t πγ(f(x))=*γ(t f(x)).
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Thus there is an s E Zk such that / f(x) — s f(t x). But s — 1 when

t — 1, so a continuity-connectedness argument implies that s is always 1;

so / is S1 -equivariant. D

THEOREM 2.3. Let M" be a smooth Sι-manifold with codimension 4

fixed point set and one exceptional orbit type Zk. Suppose that Mx has

structured orbit space σ G §['. Then Mx is weakly equivalent to M(σ); in

particular Mx is a homotopy sphere.

Proof. Let /* be a diffeomorphism of pairs (M,*, Fk(Mx)) ->

( Σ ' 7 " 1 , ΔA) = σ. As in §1, Mx/Zk has an inherited smooth structure such

that M, is the smooth A:-fold cyclic branched cover of Mx/Zk branched

over Fk(Mx). The induced Sι/Zk action on Mx/Zk is semifree and (after if

necessary a change in the orientation of the S] action on Mx) Levine's

theorem [L] yields an Sι-equivariant diffeomorphism/

M /7 -» N

1/ k

μ\ i iμ
M* f-> Σ"~ι

Note that

f{Fk(Mx)) = μ-ψμx{Fk(Mx)) = μ-ψ{F*{Mx)) = μ-'(Δj - Fk.

By the uniqueness of smooth cyclic branched covers [DK] there is a

ZA-equivariant diffeomorphism/:

Mx L M(σ)

I i

Mx/Zk L N

and/is S^equivariant by Lemma 2.2. D

3. Actions with 2 or 3 exceptional orbit types. The classification

theorem of the previous section is the main tool used in studying smooth

S*1 actions on homotopy ^-spheres with codimension 4 fixed point set and

two or three exceptional orbit types. For n > 5 and /c, m relatively prime

positive integers define S£ m to be the set of diffeomorphism classes of

triads ( Σ " 1 ; ΔA, Δ w ) where Σ " " 1 is a homotopy sphere, Δk is a smooth

orientable ZA-acyclic n — 3 submanifold, Δm is a smooth orientable Zm
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acyclic n — 3 submanifold, ΔA Π Δ w = 3Δλ = 3Δm is an integral homol-

ogy n — 4 sphere, and ΔA U Δm is a smooth submanifold of Σ"~~!.

Define ?ίA

n

m to be the set of diffeomorphism classes of triads

( Σ " " 1 , ΔA, Δm) as above except that Int ΔA and Int Δ w meet transversely

in ρ a (perhaps disconnected) n — 5 dimensional smooth submanifold,

and ΔA U Δ w — ζ) is a smooth submanifold of Σ' 1 " 1 .

If S1 acts smoothly on a homotopy ^-sphere Λ/'? with codimension 4

fixed point set and two or three exceptional orbit types we call (M*;

Z7*, F*) the structured orbit space of the action. If n > 5 it follows from §1

that (M*; /;*,/;*)£§;',,„ or !)/',„.

THEOREM 3.1. Suppose that the S]-manifolds Mι and MΊ have the same

structured orbit space σ E SA m or Ώ"/2

W. Γ/ze/7 Mj α«<ί M2 ί2rβ weakly

equivalent.

Proof. Let /* be a diffeomorphism (M,*; Ff(M,), F*{MX)) -» (M2*;

/Γ*(M2), jP/?*(M2)). The induced S1 action on Mi/Zm has one exceptional

orbit type ZA and structured orbit space (M7*, ,F*( MJ), so by Theorem 2.3

there is a weak equivalence /: Mλ/Zm -» M2/Zm covering /*. Hence

f(Fm(Mλ)/Zm) = Fm(M2)/Zm. Now Λf# is the smooth m-fold cyclic

branched cover of Mι/Zm branched over Fm(Mt)/Zm; so we may apply

the uniqueness of branched covers and Lemma 2.2 to finish the argument

as in the proof of Theorem 2.3. D

The rest of this section is devoted to showing that for each σ G S [ ' m

or ?TA'
7

w there is a smooth S1-action M(σ) on a homotopy /?-sphere with

structured orbit space σ. So let σ = ( Σ " ~ ' ; Δ A , Δ m ) G § A m or ?TA"m.

Proceeding as in §2 we may orient the normal bundle of 9ΔA = 9Δ/;ί in

Σ/? ' and obtain a smooth semifree Sι action on a homotopy sphere Nn

with orbit map μ: N -*Σn~ι and fixed point set μ 1(3ΔA). Let Fk —

μ~ !(ΔA) and Fm — μ ' (Δ m ). As in §2 the respective k and m-fold cyclic

branched covers Mk and Mm are homotopy π-spheres with smooth S]

actions and structured orbit spaces ( Σ " ~ \ ΔA) and (Σ" ι, Δ,;2). Now form

the pullback diagram:

M ^ MA

Mm - N

n - - 1
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The pullback M is a topological manifold because Fk and Fm meet

transversely in N. Also v'k and v'm are branched k and m-fold covering

projections. So M inherits a smooth structure as in §2 in two different

ways and the S'-actions lift to S] actions on M, smooth in their respective

structures. However since both actions have the same structured orbit

space σ, by Theorem 3.1 they are weakly equivalent. In particular the

above two smooth manifold structures on M are diffeomorphic.

THEOREM 3.2. For each σ E Ŝ ?

 m or ?ίA'
7

m there is a homotopy n-sphere

M(σ) with a smooth S1 action with σ as structured orbit space.

Proof. Let M(σ) = M above. As in §2 for R = Q or Zp for p any

prime not dividing both k and m (hence for any prime p) //*(M; R)

« H*(Sn; R); thus //#(M, Z) = H*(Sn; Z). So to show that M = M(σ)

is a homotopy sphere we must show that M is simply connected.

To this end consider a loop λ in M" (n > 5) based at a point in a

principal orbit, and by general position suppose λ misses E U F. Let p:

M -> Σ be the orbit map. The based loop /?λ can be homotoped in

Σ — £ * U F* to an embedding, and this homotopy can be lifted to M.

Hence we may suppose that λ and/?λ are embedded loops. Since 7τ,Σ — 0,

/?λ bounds a transversely immersed 2-disk D which meets £ * U P

transversely in a finite number of points and which misses E*m. By sliding

intersections of D with £ * U F* to Z7* we may arrange that D Π (E* U

T7*) = D Π Z7*. If Z> Π F* = 0 introduce an intersection point of D and

F* by pushing D until it meets F* tangentially at a regular point of D.

Now/? ](/)) = D X S]/~ where - identifies {x} X S1 to (JC, 1) for each

x G I) Π P ; so the map/^: πx{p \D)) -^ πλ(D) is an isomorphism, and

λ is nullhomotopic. D

COROLLARY 3.3. Let Mn be a smooth S]-manifold with structured orbit

space σ E Ŝ ' m or ^^m. Fhen M is a homotopy sphere. •

In the introduction we mentioned a question posed by Frank Raymond

[M; p. 353]. In our context it is equivalent to asking whether each F is

connected when Sι acts on S". Our theory provides infinitely many

counterexamples in each dimension > 5 for a given slice representation

(1.3(d)) at the fixed point set determined by the integers k and m. In fact

we have described how all such examples with codimension 4 fixed point

set can occur. As we have noted the first such example was constructed by

Elliott Stein [St]. In his example the structured orbit space is (S*4;

Zλ2, D^) E ίΓ,5, where Dr U D~ is the standard immersed S2 in S4 with

one double point.
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Finally, we should mention that in the case n — 4 analogous results

hold. Essentially S* is the set of homotopy 3-spheres and %4

k m is the set of

diffeomorphism classes of knots in homotopy 3-spheres; ?ΓA

4

m = 0 . See

[F] and [P].

4. Twist-spinning knots. By a "knot" we shall mean a smooth pair

Nn~3 C M"~] of homotopy spheres. The k twist-spin (k > 1) of the knot

Nn~3 c Mn-\ m a y b e obtained as follows. Let (Dn\ Dn'3) C (M, N)

be a standard disk pair and consider σ - (M"~\ Dn~~3) G §>£. We shall

find it more convenient to use the notation σ = (Mn~\ Dn 3, N"~~3 —

IntZ>'?~3) E § ; , . Write Fx = p"\Nn~3 - Int Dn~3). By Theorem 2.3,

M(σ) is a homotopy sphere, and following the proof of the first claim of

§2 we see that F1 is also a homotopy sphere. The homotopy sphere pair

(M"(σ), F[1'2) is called the k twist-spin of {M"~\ N"~3). Since F^2

carries a semifree Sλ action with codimension 2 fixed point set, F"~2 is

diffeomorphic to S"~2 [H] provided n>Ί. It is an easy exercise to see

that if Mn~ι is diffeomorphic to Sn~! then M(σ) is diffeomorphic to S".

The classification theorems of §3 point to an obvious generalization

of this procedure. Given the knot N"~3 C M " " 1 (n > 4) let A:>2 and

m > 1 be relatively prime integers. We have (using the same notation as in

the last paragraph) τ = ( M " " 1 ; Dn'\ Nn~3 ~ Int Dn~3) e S^m. The

(k, m) twist-spin of (M9 N) is the knot / ^ ~ 2 in the homotopy sphere

M(τ). The (k,m) and (m, k) twist-spins of (M, N) form a pair of

knotted ft — 2 spheres in M(τ) which meet transversely in the n — 4

sphere F. Of course (/c, 1) twist-spinning is just k twist-spinning and in

fact we have seen in §3 that the result of (&, m) twist-spinning may be

obtained by constructing an m-fold branched cover over a k twist-spun

knot.

For a closed manifold X, let Xo be the manifold obtained by removing

a point from X. Zeeman's main theorem on twist-spun knots [Z] states

that the complement of the k twist-spin of (Afn~\ Nn~~3) fibers over the

circle with fiber Vo where V is the k-ίo\ά cyclic branched cover of M

branched over N. More specifically, it says that the complement of the

twist-spun knot is V0XφS\ the mapping torus of the canonical deck

transformation of V which rotates the normal disk oί Nn~3 through the

angle 2τr/fc.

Our generalization to (k, m) twist-spinning was motivated by a

question of Zeeman [Z, p. 493] as to whether it is possible to introduce a

new factor into the twist-spinning process so that the complement of the

knot thus obtained is VQXφmSι for 1 < m < k. The next theorem shows

that this is exactly what we have done and also gives a streamlined proof

of Zeeman's main theorem.
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THEOREM 4.1. Let (M(σ), Fm) be the (k, m) twist-spin of the knot

(M"~\ N"~3) (n > 4 ) , and let Ύ be the k-fold cyclic branched cover of

(Mn~\ N"~3) with canonical deck transformation φ. Then M(o) — Fm is

diffeomorphic to Vo Xφm S{.

Proof. S] viewed as R/kZ acts on V XφM Sι by s (y, t) = (y,t + s).

If we view the homotopy sphere N"~3 as the branch set of c\fn~] -» Mn~x

then for this action Ek — N"~3 Xφm Sι and all the other orbits are

principal. The orbit space is V/φm = V/φ = Mn~\ and E% = N"~3.

Let x E Ek. We may identify a tube about the orbit of x with

Dn~3 X D2 X Sx C Sn = 3(i)"~ 3 X Z)2 X /) 2 ) with the standard linear

Sx action / (y, z, w) — (y, ztn\ stk). Perform equivariant surgery on the

orbit of x by replacing this tube with its complementary d(Dn~3 X D2) X

D2 in 5", and let Wn be the resulting Sι-manifold. The result of this

surgery on the orbit space Mn~x is to remove a Dn~3 X D2 whose

intersection with E£ is Dn~3 X 0 and replace it with its complementary

dDn~3 X D2 C Sn~] = 5VS1 1. Since the gluing map extends over an

n — 1 disk, the orbit space of Wn is still AT1"1; and it is easily seen that

£ * U F = N " ~ 3 where F* is an Λ - 3 disk contained in Dn~3 X 0 C

N"~3. Thus the structured orbit space of Wis in S £ m and (W*, E* U F*)

= (M, N). So it follows from Corollary 3.3 that Wn is a homotopy

sphere, and the knot (Wn,Fm) is the (k, m) twist spin of (M9 N).

Furthermore, Fm is the cocore of the surgery on V Xφm Sι by which W was

constructed. Thus W - Fm = Fo Xφ« 5 1 . •

Restricting the S1 action to Zk or Z w actions we obtain counterexam-

ples to the ^-dimensional Smith conjecture whenever Fk or Fm is actually

knotted. For m = ±\ (mod k) the examples of Giffen [Gi] and Gordon

[Go] are obtained.
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