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SPECTRAL REPRESENTATIONS OF UNBOUNDED
NON-LINEAR OPERATORS ON HILBERT SPACE

PALLE E. T. JORGENSEN

Let % be a separable complex oo-dimensional Hubert space and let
? be the Fock space of symmetric tensors over %. We consider non-lin-
ear operators T from % to Ψ defined on a dense subspace <3) in % with
range in W. A symmetry and reality condition is imposed on the operators
T under consideration. They are generally unbounded and have different
extensions f defined on subspaces Φ in % containing ty. Generalizing a
result of Arveson for bounded operators (alias functions from % to ίF),
we show that if T is affiliated with a maximal abelian von Neumann
algebra in B(%)9 then it follows that there is an extension f of T which
is unitarily equivalent to a (non-linear) multiplication operator.
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1. Introduction. Work on spectral theory of non-linear filters has
been restricted so far to filters / which satisfy one of several possible
boundedness conditions. In the expansion into power series/— (fn)™=o9

when the coefficients fn are sure functions, the finiteness condition
Σ | | / J l i 2 < oo is customarily assumed (cf. [Wi] and [McK]), and this is
done for important mathematical reasons. Recently, Arveson [Ar: 1,2]
established a spectral theorem for non-linear "normal" processes. Here a
different boundedness was assumed. The coefficients fn were treated as
operators on the space of symmetric π-tensors, n— 1,2,..., and the
boundedness was expressed in terms of the resulting operator norms.

The various boundedness conditions, in the literature, seem to have
been dictated by the mathematical framework, rather than the applica-
tions.

In this note we consider the spectral representations of non-linear
processes where the boundedness condition is dropped.

The mathematical formulation is that of [Ar: 2]. We consider non-lin-
ear functions T from a given oo-dimensional complex Hubert space %
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into the symmetric Fock space % over %. But our function T is only

defined on a dense linear subspace tf) in %. Generalizing Arveson, we

drop the assumption that T be holomorphic (in the weak sense, i.e., for all

n = 1,..., all z,,... ,zn E Θ, and/ G 5", the function

al9...9an -*(T(axzλ + ••• + anzn),f)(S [inner product in 9]

is entire analytic in the w complex variables α,,... ,an).

Moreover, we do not place any boundedness condition on T\ but

instead, we restrict attention to symmetric functions. The symmetry condi-

tion is expressed in terms of coherent vectors in Φ. These are vectors of

the form

/ifold

(1) Ω + z + 2~ι/2z ® z + --• + (n\)~l/2z® -. ®z +

where Ω is the normalized basis vector in % (ground state), and z is a

fixed vector in %. The vector in (1) is denoted by e\ and we have

||e'||=exp(iW2).

We say that T is symmetric if

(T(z), ew) = (ez, T(w)) for all z, w G ty.

2. Symmetric functions and holomorphy. Arveson considered

bounded holomorphic functions T i.e.,

sup | |Γ(z) | |<oo.

Such a function is said to be normal if it is affiliated with a maximal

abelian von Neumann algebra & in B(%) (cf. [Ar: 2] for the definition of

affiliation).

Multiplication operators are examples of such normal functions T. Let

(X, μ) be a finite separable measure space, and let tn = ^(JCJ,. .. ,xπ) be a

sequence of measurable symmetric functions (ίrt on Xn) with a certain

growth condition on HfJI^. Let ^(X, μ) be the symmetric Fock space over

L2(X9μ). Define

(2) Γ π (z)(x , , . . . ,xn) = tn(xl9... ,xn)z{xλ) - - z ( x n )

forz GL 2(X, μ). Then

is a multiplication operator.
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THEOREM A (Arveson [Ar: 2]). Let T:%-> ®ίbe a bounded holomorphic
normal function. Then T is unitarily equivalent to a multiplication operator
based on some finite separable measure space \ and conversely.

It follows that every Γ, satisfying the conditions in Arveson's theo-
rem, can be expressed in the form

T = F + iG

where F and G are commuting (see below) symmetric functions from % to
<$. Simply, let F be a unitarily equivalent copy of the multiplication
operator, given in (2) with tn(xl9... ,xn) replaced by Re tn(xx,... ,*„), and
similarly

G*>{Ίmtn(xl9...,xn)}.

A simple application of Segal's duality transform [Se: 1, §4] shows
that every bounded symmetric function T: % -> ̂ extends to a symmetric
(i.e., hermitian) linear operator f in φ. However, even if T is bounded, the
extension Γmay be unbounded.

Suppose a function T from % to <$ can be expressed in the form
T(z) = F(z) + iG(z) where each of the functions F and G is symmetric.
We then say F and G commute if the hermitian linear extensions F, resp.
G, satisfy (Ff.Gf) = (G/, Ff) for all/in the common domain.

It follows that every Γ, satisfying the conditions in Theorem A, has a
decomposition of the above form.

DEFINITION 1. A function T: %-*<&(%) is said to be strongly
bounded if there is a bounded linear operator f:<&(%)-*&(%) such that

(3) f(ez) = T(z) for all zG%.

PROPOSITION 2. Every strongly bounded function is bounded and holo-
morphic.

Proof. Assume T is strongly bounded, and let f be a bounded linear
operator in ^which satisfies (3). Then

sup||Γ(z)| |<||2l|exp(|)
z

where the supremum is taken over z i n 3 C , | | z | | < l . Hence Γis bounded.
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For / e 9 we have (Γ(z), /) = (f(ez), f) = (e\ f*(/)), and the
entire analytic property is clear from the following:

LEMMA 3. Let § be the Fock space over a given complex Hubert space
%. Then for all n = 1,2,..., α//z,,...,zΛ G %, and all f ε f , /λe function

(4) Λi,.-.^ n

w entire analytic on Cn.

Proof. There are three steps in the reasoning. Consider first / = ew for
w E 3C, second / = some linear combination of coherent vectors ew, and
t h i r d / 6 f , | |/ — fn\\9-> 0, where/„ is a sequence in the algebraic linear
span of the ew 's.

Consider now/ = ew, and z = Σ ap^ Then

( ^ / ) = Σ (* 0" !(* ® ®z, w ® - ®w)rt = 1 (π !)"!(z, w)n

0 0

= e x p ( z , w ) = exp(έi 1 (z 1 ,w) + ••• +an(zn9w)).

Hence, if / is chosen as in the first and second steps, the inner product
(ez, f) is entire analytic in the complex variables al9... ,an.

In the third step we note that if \\f — fn\\$ -> 0, then

We have thus an approximation of the function al9...9an-+ (e\ / ) , given
in (4), with entire analytic scalar functions, and the approximation is
uniform on compact subsets of C", i.e., the variables al9... ,an.

The lemma follows now from the Montel theorem.
At an important point in the proof of our Theorem 5 (§3), Lemma 3

yields a corresponding automatic holomorphic property of unbounded
symmetric functions (T from % to 9) which are affiliated with a maximal
abelian von Neumann algebra <£ C ®(3C).

EXAMPLE 4. Let % be a complex Hubert space with Fock space 9. Let
A be a linear operator in % and let Ω(A) be the corresponding "quan-
tized" operator in 99 defined in [Co, Definition 3]:

Q(A) = f Σ Λ*(/>1) ® ®A*v-n\
n = 0 ι = l

where 8(i, j) = 1 if i =j9 and 0 if i φj (we define A0 to be the identity
operators/ in %).
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Then define TA(z) = Q(A)(ez) for all z in the domain of A.
(i) The function Tτ: % -> f is symmetric, bounded, but «6tf strongly

bounded. Moreover, 7} w holomoφhic.
(ii) Let the operator A in % be hermitian, i.e.,

(Az,w) = (z, Λw) for all z, w E Φ(Λl), the domain of A. Then 7̂  is
symmetric and, moreover, TA is bounded if and only if A is bounded.

Proof. By [Co, Theorem 2] the operator Ω(A) is never bounded in §
when i ί ^ O . It is unbounded in particular when A ~ I. Note that
Ω(/) = N is the number operator; indeed

Q(/) = | φ a/C) = N.
n = 0

The function z -* (ez, /) is entire analytic on every finite-dimensional
subspace 91L C X, for all fixed vectors / in $", according to Lemma 3.
Fixing ξJIL and an orthonormal basis z,,...,zΛ? set z(a) = Σaizi and
/ = ew. We may then use the chain rule on the composed mapping from

and

Each of the two mappings is entire analytic so the chain rule applies.
The analyticity of the second map is clear from the identity

{N(em),ew) =Σn\-ιn{m,w)n = (m, w)exp((m, w)).

The analyticity of (7}(z), /) for all f G ̂ now follows from the approxi-
mation argument at the end of the proof in Lemma 3. This concludes the
proof of (i).

(ii) Suppose first that TA is bounded. Then we have

where the supremum is taken over all z in % such that ||z|| < 1, and ez is in
the domain of Ω(^4). We have

= Uz,z)eχp(| |z| |2).
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Hence:

\(Az,z)\=exp(-\\z\\2)\(TA(z),e*)\

<exp(-||z||2)||Γ,(z)||exp(i||z||2).

Taking the supremum over z E tf)(A\ \\z\\ < 1, we get

sup \(Az,z)\<M.
z

Since A is hermitian, this implies boundedness of A, and \\A\\ < M.
Assume, conversely, that A is bounded. Then

\\TAω\\2 = Σ(n\rλn\\Az\\2\\zfn-l)

+ Σ(n\yln(n-l)(Az,z)2\\z\\2("'2)

It follows that TA is bounded, and for the norm M we have

To check that the hermitian symmetry of A implies symmetry of
non-linear function TA, a more general observation is appropriate.

Observation 1. Let T be a function from % to ^ with domain D̂, and
suppose there is a hermitian symmetric operator f in f such that ez E
<3)(f) and f(e^) = T(z) for all z E φ. Then it follows that T is symmet-
ric.

Proof. Obvious.

Note that the observation applies to f= Ω(A) for hermitian A, since
then Q(A) is hermitian in ^by [Co, §1].

3. The extension theorem for unbounded symmetric functions. The

verbatim parallel in the formulation of the spectral theorem for linear, and
non-linear, operators (which is so striking in Arveson's theorem) is broken
when the boundedness condition is dropped. Affiliation to a maximal
abelian von Neumann algebra in B{%) is not enough to insure a spectral
representation (2) when T is unbounded symmetric, and non-linear, but is
for unbounded linear operators, as is reflected in the interesting theorem
of Stone [St].
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THEOREM B (Stone [St]). Let T be a densely defined linear operator in a

complex Hilbert space % and assume T is affiliated with a maximal abelian

von Neumann algebra & in B(%).

Then it follows that T is unitarily equivalent to a multiplication operator

(in particular, T is essentially normal, i.e., the closure T~ is a normal

operator).

Our main result is an analogy to Theorem B (just as Arveson's

theorem generalizes the spectral theorem for bounded linear normal

operators). But for unbounded T, additional structure is needed for

establishing a spectral representation.

We need the presence of a conjugation J on %, i.e., / conjugate-linear,

and satisfying/2 = /, and (Jz, w) = (Jw, z), z, w E %.

We have

THEOREM C (von Neumann [vN; RS]). Let S be a hermitian symmetric

linear operator which commutes with a conjugation in a Hilbert space %.

Then it follows that S has self adjoint extensions in %.

A given conjugation J on % clearly extends to a conjugation / on

Fock space ^over % (by direct summing appropriate tensor powers of / ) .

We say that a function T from % to <% commutes with J if the domain

Φ of T is /-invariant and

T(Jz) =JT(z) for all z E Φ.

THEOREM 5. Let % be a separable complex Hilbert space (oo -dimen-

sional), *$ the symmetric Fock space over %, J a conjugation in %, T a

symmetric function from % to *§ with dense domain, and & C B(%) a

maximal abelian von Neumann algebra. Assume

(i) JAJ = A* for all A G β .

(ii) T commutes with J.

(iii) T is affiliated with <$,.

Then it follows that T has a self adjoint extension, unitarily equivalent to

a multiplication operator, which is affiliated with ($,. There is a spectral

representation (2) based on some finite separable measure space (X, μ) and

on a sequence {tn(xX9...9xn)}™=0 of measurable symmetric functions with

values in the reals.

Proof. We first note that T extends canonically to the linear subspace

in φ which is spanned by the (coherent) vectors {ez: z G ̂ D}. We denote
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this subspace by £ ( φ ) and note that it is dense in the Fock space

%. Indeed, the density follows from a known ([Se 1, Theorem 3]) and easy

algebraic argument coupled with the density of Φ in X.

The following is a direct converse to Observation 1 in §2.

Observation Γ. There is a unique hermitian, symmetric, linear opera-

tor Γin ^which is defined on E(tf)) and satisfies

(5) f(ez) = T(z) forzGφ.

Proof. Consider a finite linear combination/ = Σk cke
Zk, where ck E C,

and zk E <φ for k — 1,2, If f is given as a linear operator satisfying

(5), then necessarily

(6) T(f) = ΣckT(zk).
k

Hence, the uniqueness!
But it is possible to define a linear operator f via the formula (6). For

i f / = Σ c ^ z * = 0, then

But the vectors in <$ of the form ew span a dense subspace in <$, and it

follows that f is well defined through formula (6). If we consider

/ = Σ Cjez'9 and g = Σ dke
w" (cJ9 dk E C, zJ9 wk e φ ) , then the argument

used in showing that T is well defined as a linear operator with domain

E(fy) yields the identity

1 Note that the extension argument works more generally for any function T from % to ¥
(symmetric or not) which satisfies (Γ(z), ew) = (T(Jw), eJ{z)) for all z, w G 6ϋ. The
resulting linear extension operator f with domain E^) C ̂ i s formally normal, and T
decomposes, T= F + iG, as a sum of commuting symmetric functions F, G, each
commuting with /. If selfadjoint commuting extensions F and G can be found, for example
by [Ne, Corollary 9.1], or [St] Theorem 21, alias Theorem B above, then the resulting joint
spectral representation can be restricted to a spectral representation for T.
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Indeed, the verification reduces to the identity

in view of the sesquilinearity of the inner product (•>•)• Hence, the
symmetry of T carries over to the extension f.

Observation 2. If U is a unitary operator in % satisfying

(7) T(Uz) = T(U)T(z)

for all z E. fy, then it follows that T(U) commutes with f.

Proof. It is assumed that T is symmetric, and t denotes the linear
hermitian symmetric extension constructed in Observation Γ. For / G

),/ = Σ Cjβz' (cj G C, Zj ε φ), we have

Since U commutes with T it follows that the domain tf) is invariant under
U. Hence, Γ( [/)(/) e £(<Φ), and

fT(U)(f) =

The commutativity of the linear operators T(U) and f follows.
Since commutativity for linear operators is preserved under closure, it

follows that the closure of f commutes with T(U). We shall therefore, in
the sequel, use the same symbol f for (f)~.

We now have commutativity of f and T(U) for all unitaries U in the
commutant of

&inB(%): t/G(£'= {X<ΞB(%):XA = AX for all A <Ξ&).

Since & is maximal abelian, & = &'.

Observation 3. There is a self adjoint extension operator tλ of f which
commutes with Γ(f/) for all unitaries U in &.

Proof. By general theory the given conjugation / on % extends to a
conjugation / on ^(by direct summing appropriate tensor powers of / (cf.
[Se: 1, 2])). By assumption we have

(8) T(Jz)=JT(z) forzGΘ,
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and

(9) JAJ = A* ίoτAG&.

It follows from Observation 2 and (8) that / commutes with f. The

conjugation / restricts to an isometry of the space §+ = {/+ E Φ: f*f+

— z/+} onto

the von Neumann deficiency spaces for f. Consider the closed linear

subspaces %(f±) generated by {T(U)f± : ί/E $ unitary}, where f±

denotes a pair of vectors in the respective spaces $+ and <$_. We have

(10) JT(U)f+ = T(JUJ)Jf+ = T(U*)j'f+ E %(jf+),

and it follows that the vectors /+ and jf+ occur in pairs.

If ^ + = 0, then f is already selfadjoint and there is nothing to prove.

If not, we may choose a family of normalized vectors /+ E $+ such that

the spaces %(f+) form a maximal orthogonal family in 3+ . It follows

from (9) and (10) that the corresponding family %(Jf+) is maximally

orthogonal in ξF . For finite linear combinations

with c^ E C, Uj^ E φ',7 = 1,2,..., we may define

(12)

We claim W is well defined as a partial isometry of the orthogonal direct

sum Σθ3Fβ(/+) onto Σ θ ^ ( / / + ) , and # commutes with Γ(ί/) for all

unitaries U in β. Finally, we have Σ θ % ( / + ) = 3+ and Σ θ ffβ(//+) = ^_

by the maximality of the chosen family { /+ }. The reader is refered to [Jo]

and [SI] for details of the proof at this point.

The essential step in the above argument is the following identity:

I I 2 1 cj

= lllcJkCj.{T(JU*UkJ)f$P,

Commutativity of Uk and Us E & is used.
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Returning to formulas (11) and (12), we see that

The asserted properties of W follow quite easily from this.
Let fx be the selfadjoint operator in ®j which extends f and has

Cayley transform

i)~l = Wx.

Then fx is the desired extension operator. It is selfadjoint since it has
deficiency indices ([RS]) equal to (0,0). Indeed, it is the inverse Cayley
transform of the isometry W with initial space, and final space, equal to

Moreover, the operator F: % -> ̂ defined by F(z) = Wx(ez) satisfies
the assumptions in Arveson's theorem (Theorem A). Indeed, the bounded-
ness and the analyticity are clear from Proposition 2 and Lemma 3. For
U E & (unitary) and z G ^ w e have

F(Uz) = Wx(eυ{z)) = WxT(U)(ez) = T(U)Wx(ez) = T(U)F(z).

There is then, by Theorem A, a unitary isomorphism R of % onto
L2(X9 μ) (for some finite separable measure space (X, μ)) such that
G = RFR* is a multiplication operator. Let G(u) = G0(u) + Gx{u) + -
be the decomposition of G in

9{X9 μ) : = L2(X°, μ°) Θ L2(X, μ) Φ L2(X2, μ2) Φ - - .

Then

Gn(u)(xλ,...9xn) =gn(xl9...,xn)u(xx) '"u(xn)

where the function gn on Xn satisfies

\gn(xl9...9xn)\= 1 fora-e.jc,,...,^.

The function

/„(*!,...,*„) = /(l + g j ( l -gnY
ι(xl9...9xn)

is defined, a.e., in X\ n = 1,2,.... Indeed, N(I - Wx) = N(I - RWXR*)
= {0}. From easy properties of multiplication operators, it follows that
the set {(*„... ,*„) I&,(•*!,... ,xn) — 1} has /xΛ-measure zero in Xn. As a
result we note that the family of functions {/n} define a selfadjoint
multiplication operator in %(X, μ) which extends the symmetric operator
RTR*. Therefore, the original non-linear operator T: D̂ -̂  *$ has an
extension which is unitarily equivalent to a multiplication operator and
the proof is completed.
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