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THE SPACE OF EXTENDED ORTHOMORPHISMS
IN A RIESZ SPACE

B. DE PAGTER

We study the space Orth°°(L) of extended orthomorphisms in an
Archimedean Riesz space L and its analogies with the complete ring of
quotients of a commutative ring with unit element. It is shown that for
any uniformly complete /-algebra A with unit element, Orth°°(Λ) is
isomorphic with the complete ring of quotients of A. Furthermore, it is
proved that for any uniformly complete Riesz space L the space Orth°°( L)
is isomorphic to the lateral completion of L. Finally, it is shown that for
any uniformly complete Riesz space L the ring Orth°°(L) is von Neu-
mann regular.

The main subject in this paper is the space Orth°°(L) of extended
orthomorphisms in an Archimedean Riesz space L. By an extended
orthomorphism we mean an order bounded linear mapping π from an
order dense ideal D in L into L with the property that πf ± g for all / E D
and g E L with / ± g. As shown in [10], Orth°°(L) is an Archimedean
/-algebra with unit element which is, in addition, laterally complete.

The definition of Orth°°(L) for an Archimedean Riesz space is in
some sense analogous to the definition of the complete ring of quotients
Q(R) of a commutative ring R with unit element (see [8], §2.3). A natural
thing to do, therefore, is to compare these two objects for Archimedean
/-algebras with unit element. In §2 of this paper it is proved that for any
uniformly complete /-algebra A with unit element, the algebras Orth°°(,4)
and Q(A) are indeed isomorphic.

For any/-algebra A = C(X)9 where X is a completely regular Haus-
dorff space, the complete ring of quotients of A is precisely the lateral
completion Aλ of A. So, by the above-mentioned result, in this case
Orth°°(v4) is the lateral completion of A. In §3 we study the relation
between Orth°°(L) and the lateral completion Lλ for an arbitrary Archi-
medean Riesz space, and it will be shown that Orth°°(L) = Lλ holds for
uniformly complete Riesz spaces.

Another interesting property of the ring of quotients Q(R) of a
semiprime commutative ring R with unit element is that Q(R) is von
Neumann regular. In the last section of this paper it will be shown that
Orth°°(L) is a von Neumann regular/-algebra for any uniformly complete
Riesz space L.
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1. Preliminaries. For terminology concerning the general theory of
Riesz spaces and order bounded operators we refer to [1] and [11]. We
assume that all Riesz spaces considered are Archimedean. The order
bounded linear mapping π from an order dense ideal D in the Archi-
medean Riesz space L into L is called an extended orthomorphism whenever
πf ± g for all / E D and g E L with f±g (see [10], §1 or [9], Chapter IV,
§1). The collection of all extended orthomorphisms in L will be denoted
by Orth°°(L). Since any extended orthomorphism is order continuous
([10], Theorem 1.3), it is natural to consider two extended orthomorphisms
as equal if they agree on their common domain of definition or, equiva-
lently, if they agree on some order dense ideal in L. With respect to the
pointwise operations and ordering, Orth°°(L) is an Archimedean Riesz
space.

An element IT E Orth°°(L) which is defined on the whole space L is
called an orthomorphism in L. The collection of all orthomorphisms in L
is denoted by Orth(L), and Orth(L) is a Riesz subspace of Orth°°(L).
Properties of Orth(L) can be found in [9] and [12].

A Riesz space A is called a Riesz algebra (or a lattice ordered algebra)
if there exists in A an associative multiplication such that A is an algebra
with the additional property that uv > 0 for all 0 < w, v E A. The Riesz
algebra A is called anf-algebra if u Λ v = 0 in A implies that (wu) Λ v —
(uw) Λ v — 0 for all 0 < w E A. For the general theory of /-algebras we
refer the reader to [4], [7], [9] and [12]. In particular we recall that any
Archimedean /-algebra is commutative. Observe that for any / E A the
mapping πf, which assigns to each g E A the element /g, is an orthomor-
phism in A. If A has a unit element, then any orthomorphism in A is of
the form πf for some/ E A.

Both Riesz spaces Orth°°(L) and Orth(L) can be given an/-algebra
structure by taking composition as multiplication (see [10], §1). Clearly
Orth(L) is an/-subalgebra of Orth°°(L). Observe that the identity map-
ping in L serves as unit element in Orth°°(L) as well as in Orth(L).

The Riesz space L is called laterally complete if every positive disjoint
system in L has a supremum in L (e.g. [1], Chapter 7). It is proved in [10],
Theorem 1.4, that Orth°°(L) is laterally complete. Any Archimedean
laterally complete Riesz space has the projection property (see [1], Theo-
rem 23.4). The Riesz space L is called universally complete if L is laterally
complete and Dedekind complete. Every Archimedean Riesz space L has
a universal completion L", i.e., there exists a universally complete Riesz
space Lu such that L can be identified with an order dense Riesz subspace
of Lu (see [11], Theorem 50.8). In fact Lu is a Riesz space C°°(Ω) for some
appropriate extremally disconnected compact Hausdorff space Ω. This
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shows in particular that for any weak order unit e in Lu there exists an
/-algebra multiplication in Lu with e as unit element.

The laterally complete Riesz space Lλ is called a lateral completion of
L if L can be identified with an order dense Riesz subspace of ZΛ The
lateral completion, as well as the universal completion, is essentially
unique (this follows e.g. from [1], Theorem 23.16), and therefore Lλ can be
considered as the intersection of all laterally complete Riesz subspaces of
Lu in which L is contained.

For the sake of convenience we recall that the Riesz subspace K of L
is called order dense in L whenever for any 0 < / E L there exists g E K
such that 0 < g < / or, equivalently, for any 0 < / 6 L we have / =
sup{g E ί : 0 < g < / } . Clearly, if K is order dense in L and fτ jO in K
then fτ | 0 in L as well. Furthermore, if K is order dense in L, then every
band in L is equal to the band generated in L by some band in K, and any
band in K is the intersection of K with some band in L (see [4], Theoreme
11.1.15).

The next proposition provides a useful characterization of the lateral
completion. Recall that the linear mapping P from L into itself is called
an order projection whenever P2 = P and 0 < Pu < u for all 0 < u E L.

PROPOSITION 1.1. Let L be an Archimedean Riesz space with universal
completion Lu and lateral completion Lλ C ZΛ For any 0 < / G L " the
following two conditions are equivalent.

(i)/ezλ
(ii) There exist disjoint order projections Pa in Lu and 0 < ua E L such

thatf=supaPaua.

Proof. The above proposition can be deduced from [2], §5 and [3],
Theorem 1. However, it can also be proved directly as follows. Define M +

to be the subset of Lu consisting of all 0 < / E Lu for which there exist
disjoint order projections Pa in L" and 0 < ua E L such that/ = supα Paua.
Let M be the set of all f-g with f,gS M+ . Now it is easily checked that
M is a laterally complete Riesz subspace of L" and L C M C L". Assume
now that # is a laterally complete Riesz subspace of Lu such that
L C K C Lu. We assert that M C K. Indeed, as noted before, since K is
laterally complete, K has the projection property. Furthermore, since K is
order dense in L", the order projections in K are precisely the restrictions
of the order projections in ZΛ Hence, if P is an order projection in Lu and
0 < M E L , then Pu E K. Now take 0 < / E M. Then by the definition of
M, / = supαPαwα, where {Pα} are disjoint order projections in L" and
0 < wα E L. As observed, Pαwα E # for all α, and therefore the lateral
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completeness of K implies / E K. Hence M C K, and we may conclude
that M is the lateral completion of L.

We proceed with some further terminology. Given v > 0 in the Riesz
space L, the sequence {/„:«= 1,2,...} in L is called v-uniformly conver-
gent to / E L if for every real number ε > 0 there exists a natural number
nε such that \f — fn |< εϋ for all « >: iVε. This will be denoted by fn -* /
(υ-uniformly). If /„ ->/ (t>uniformly) for some 0 < t ) G L , then the se-
quence {/„} is called {relatively) uniformly convergent to /, which is
denoted by fn ->/ (r.u.). The notion of (t>) uniform Cauchy sequence is
defined in the obvious way. The Riesz space L is called uniformly complete
if every uniform Cauchy sequence in L has a unique limit. For details we
refer to [11], §§16 and 63.

Finally we recall some facts about commutative rings. For the proofs
we refer to [8], §2.3. Let R be a commutative ring with unit element. The
ring ideal / in R is called dense if it follows from s E R and sr = 0 for all
r E / that s = 0. A mapping q from a dense ring ideal I C R into R with
the property that q(sr) = 5^(r) for all 5 E i? and r E / is called a fraction
in /?. Two fractions will be considered equal if they agree on their
common domain of definition. Note that two fractions are equal iff they
agree on some dense ring ideal in R. The collection of all fractions in i?,
with the above identification, is denoted by Q(R). With respect to
pointwise addition and composition as multiplication it turns out that
Q(R) is a commutative ring with unit element (see [8], §2.3, Proposition
1). Now Q(R) is called the complete ring of quotients of R. By assigning to
each r E R the element qr E Q(R) defined by qr(s) = rs for all s E i?, R
is embedded in Q(R) as a subring. Note that /? consists precisely of those
q E: Q(R) which have as domain the whole ring R. If q E β(i?) with
domain / and r E /, then q - qris the multiplication by the element q(r)
in iί. Indeed, let the dense ideal / in R be defined by / = {s E R:
rs E /}. For any s E / we have (# gr)(»ϊ) = q(rs) = <7(r)s, and hence
^ #r agrees with multiplication by r on the dense ideal /.

If the ring R is semiprime (i.e., rn = 0 implies r = 0), then β(i?) is a
von Neumann regular ring, i.e., for any r E R there exists an element
η E /? such that r = rλr

2 (see [8], §2.4, Proposition 1).

2. Orth°°(Λ) as the complete ring of quotients of A . Let A be an

Archimedean /-algebra with unit element. As before, for any / E A we
denote by πf the orthomorphism in A defined by πfg — fg for all g E A.
Since Λ has a unit element, any orthomorphism in A is of the form πf for
some f & A, i.e., A and Orth(^4) can be identified as /-algebras. Since
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Oτth(A) is an /-subalgebra of Orth°°(yί), we may consider A as an

/-subalgebra of Orth°°(Λ).

Suppose π E Orth°°(^4) with domain D and take / E D. Then the

domain of 7rτ3yis Dλ — {g E A:fg E £>}, and for any g G ΰ , we have

vτ(τrg/) = (πirg)(f) = (πg

Hence the extended orthomorphism T77τy agrees on the order dense ideal Dλ

in A with the multiplication by πf9 i.e., with the orthomorphism π ^ . We

conclude that ππf — ππj and, hence, if we identify/and 77y(i.e., we consider

A as an /-subalgebra of Orth°°(^4)), then πf=π f. In other words, 77/

may be considered as the image of / under 7r as well as the product of π

and/ in Orth°°(^).

Since A is a commutative ring with unit element, A is also a subring of

the complete ring of quotients Q(A). Note that Q(A) is in fact an algebra

and A is a subalgebra of Q(A). Now we shall study the relation between

Q(A) and Orth°°(Λ). We start with a definition.

DEFINITION 2.1. The algebra homomorphism Φ from Orth°°(yί) into

Q(A) is called natural if Φ leaves A invariant (i.e., if Φ(ττy) = qf for all

f t A).

The next theorem shows us the existence of a natural homomorphism.

THEOREM 2.2. If A is an Archimedean f-algebra with unit element, then

there exists a unique natural homomorphism Φ from Orth°°(yl) into Q(A).

Moreover, Φ is injectiυe.

Proof. We first define a natural homomorphism. Let 7r E Orth°°(^4) be

given with domain D. Denote by (D) the ring ideal generated by Z), i.e.,

Σridι:rieA,dιED9i= 1, . ..9n,n E

We define the mapping q from (D) into A by q(2?=x ^ ) = Σ"=] r^dt. In

order to see what q is well defined, suppose 2?= 1 ^d, = 0 (r7 E ,4, dι E Z>).

In Orth°°(^) we then have Σ?= 1 τ τ r ^ = 0, so π(Σ" = 1 πΓf7rrfj) = 0, which

implies Σn

i= λ πrππdι — 0. Since dt E D, it follows from the remarks above

that ππdι — ππdι and therefore Σ" = 1 πrππdι = 0, i.e., Σ" = 1 rl*ndl — 0 in A.

Hence q is well defined. It is clear that q is an A -linear mapping from (D)

into ^4, and it follows from D C (D) that (D) is a dense ring ideal in A.

Therefore q E Q(A). We now show that q is independent of the domain
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of definition D of π. For this purpose, suppose π' E Orth°°(̂ 4) with
domain D' and π = π' on D Π Z>'. Let the mapping #' from (D') into ̂ 4
be defined as above. It is clear from the definition that q — qf on
(D Π Z>'), and since (D Π £>') is a dense ring ideal, this implies 9 = #' in
Q(A). Defining Φ(π) = #, it is evident that Φ is an injective linear
mapping from Orth°°(̂ 4) into Q(A) which leaves A invariant. We shall
show now that Φ is a homomoφhism. Take πl9 π2 E Orth°°(̂ 4) with
domains Dx and D2, respectively. Then the domain of π — πxπ2 is π2\Dx)
= {/E Z>2: ττ2/E Dλ). Put qx = O(^), #2 = Φ(ττ2) and 4 = Φ(ττ). The
domain of ^ ^ 2 is ^((-^l))* a n ( ^ s i n c e (^2ΐι(D\)) ^ ί^ίί ^i))* ^ ^s suffi"
cient to prove that q — qλq2 on (^"^-^l))- This, however, follows im-
mediately from the definition of Φ. We may conclude, therefore, that Φ is
a natural homomorphism.

Finally, we show Φ is unique. To this end suppose Ψ is a natural
homomoφhism from Orth°°(,4) into Q{A\ and take π E Orth°°(^) with
domain D. Put q = Φ(π) and let / be the domain of q. Take r E / (D),
i.e., r = Σ"= ι ridi with </,- E D and r,. E /(/ = 1,2,...,«). Then

«ω= Σ^ίW= Σ (^)W= Σ
1 = 1 1 = 1 1 = 1

= Σ
1 = 1

= Σ
1 = 1

This shows q = Φ(τr) on the dense ring ideal / • ( / ) ) , so # = Φ(ττ) in

). Hence Ψ = Φ, and the theorem is proved completely.

The natural homomoφhism Φ is in general not surjective. This is
shown in the next example.

EXAMPLE 2.3. Let A be the collection of all realvalued continuous
functions on [0,1] which are piecewise polynomials (finitely many pieces).
With respect to the pointwise operations, A is an Archimedean /-algebra
with unit element. Let vr E Orth°°(;4) be defined by (πf)(x) =
(x + l)f(x) for all/ E A and 0 < x < 1. Now 77 E A implies Φ(ττ) = q is
also multiplication by x + 1. In Q(A) the element 9 has an inverse
(multiplication by the function (x + I)"1 on the dense ring ideal (x + \)A).
However, m does not have an inverse in Orth°°(;4). Indeed, suppose TΓ, is
the inverse of π in Orth°°(̂ 4) with domain Dλ. Then π(πxf) — f for all
/ E Z>j. For any 0 < M E ί), we have (x + IXTΓ^XJC) = u(x) for all
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x E [0,1], which implies 0 < mλu < w, so mλu E Dv Therefore (x + 1).
(TT?U)(X) = (^wXx), from which we deduce that w(x) = (x + 1 ) 2

(TΓ1M)2(X) on [0,1]. Repeating this argument we conclude that there
exists a sequence un E A (n = 1,2,...) such that u(x) = (x + \)nun{x)
for all 0 < x < 1 and all n, which is impossible. Hence the natural
homomorphism cannot be surjective.

If A is a uniformly complete /-algebra, then the situation improves.
This is shown in the following theorem.

THEOREM 2.4. For any uniformly complete f-algebra A with unit ele-
ment, the natural homomorphism Φ is an isomorphism from Orth°°(y4) onto
Q(A).

Proof. We need only show that Φ is surjective. Take q E Q(A) with
domain / and define the ideal D in A to be the collection of all / E A for
which there exist gl9...,gn El such that | / | ^ Σ " = 1 g 2 . We assert that
DC I. Indeed, if |/ |< Σ?=1 g

2 (g, E /) then 0 </+ ^ ΣΓ=i *?. so> bY t h ^
Riesz decomposition property ([11], Corollary 15.6 (ii)),/4" = Σ?=1 w, with
0 < w,- < g? (/ = 1,... ,/ι). Since A is uniformly complete and has a unit
element it follows from [7], Corollary 3.12 (ii), that there exist hi EA
(i — 1,...,/?) such that w7 = h^. Hence w/ E I (i = 1,... ,w), which im-
plies f* E /. Similarly we find that/" E / and therefore/ E /.

Now we show that D is order dense in A. Suppose g E A is such that
g ±f for all / ε ΰ . Then g±h2 for all A E / so gA2 = 0 for all A E /.
This implies g2Λ2 = 0 and, hence, gA = 0 for all A E / (recall that any
Archimedean /-algebra with unit element is semiprime; see e.g. [7], Pro-
position 3.2 (iii)). Since / is a dense ring ideal we see that g = 0.

Let π denote the restriction of q to the order dense ideal D. If / E D
and g GA such that / J. g, then fg = 0 and so q(f)g = q(fg) — 0. This
implies q(f) ± g, i.e., πf ± g (again using that A is semiprime). Hence
7r E Orth°°(Λ).

We claim that Φ(ττ) = q. Indeed, let (D) be the ring ideal generated
by D in A and take r E (£>), i.e., r = Σ"= 1 r ^ with r, E ^ and d{ E Z)
(i = 1,. . . ,π). Then

n

z=l

n

ι) = Σ
1 \

Hence Φ(π) = <y on (Z>), and therefore Φ(77) = q in β(^4). We have thus
proved that Φ is surjective, which concludes the proof of the theorem.
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It follows immediately from the above theorem that in this situation
the complete ring of quotients Q(A) can be equipped with a partial
ordering in such a way that Q(A) becomes an/-algebra. In fact we define
qλ < q2 whenever Φ " 1 ^ ) < Φ ' 1 ^ ) holds in Orth°°(v4). It is easy to see
that qx < q2 in Q(A) is then equivalent to qx(u) < q2(u) for all positive
elements u in their common domain of definition. This remark yields the
following result.

COROLLARY 2.5. Let A be a uniformly complete f-algebra with unit

element. For qu q2 E Q(A) we define qx < q2 whenever qx(u) < q2(
u) holds

for all positive elements in the common domain of definition. Then Q(A) is

an Archimedean f-algebra with respect to this ordering.

As noted in §1, the complete ring of quotients Q(R) of a commuta-
tive semiprime ring R with unit element, is von Neumann regular. It
follows, therefore, from Theorem 2.4 that for any uniformly complete
/-algebra A with unit element the /-algebra Orth°°(y4) is von Neumann
regular. In §4 we shall show that Orth°°(L) is in fact von Neumann
regular for any uniformly complete Riesz space L.

For any completely regular Hausdorff space X we denote by §( X) the
collection of all dense open subsets of X. The complete ring of quotients
of the/-algebra C(X) is the space C[§(X)] of all continuous functions
defined on some G in §( X) (with identification of functions which agree
on some member of §(X)). It is not difficult to see that C[β( X)] is also
equal to the lateral completion of C(X) (for a survey of all kinds of
completions of the space C(X) see [6]). Hence for the Riesz space C(X)
the lateral completion is precisely the space Orth°°(C(X)). In the next
section we shall study the relation between Orth°°(L) and Lλ for arbitrary
Riesz spaces L.

3. Orth°°(L) as the lateral completion of L. Let L be an Archi-
medean Riesz space with universal completion ZΛ We choose in L some
maximal disjoint system (e τ), which will be fixed in all of the following
considerations. Then e — sup eτ exists in Lu and e is a weak order unit in
ZΛ We consider in Lu the /-algebra multiplication for which e is the unit
element. As usual for /-algebras with unit element, we may identify
Orth(Lw)andZΛ

Take 0 < π E Orth°°(L) with domain D C L. Since D is order dense
in L, the universal completion of D is ZΛ Since π is order continuous, π



EXTENDED ORTHOMORPHISMS IN A RIESZ SPACE 201

can be extended to an order continuous Riesz homomorphism TΓ from the

ideal D* generated by D in Lu into Lu (observe that D* is the Dedekind

completion of D). Now it follows for [1], Theorem 23.16, that πΛ can be

extended to an order continuous Riesz homomorphism π* from Lu into

itself, and it is easy to see that TΓ* E Orth(L"). Putting π* = Ψ(π), we

define an injective Riesz homomorphism from Orth°°(L) into Orth(Lw).

Using the above-mentioned identification of Lu and Orth(L"), we thus get

an embedding of Orth°°(L) into ZΛ In fact, Orth°°(L) corresponds to the

set of all p E Lu for which there exists an order dense ideal D in L such

that/?/e L for all / E Zλ

As before we denote by Lλ the lateral completion of L. Then both Lλ

and Orth°°(L) are laterally complete Riesz subspaces of ZΛ We shall now

show that Orth°°(L) C ZΛ The following observation will be used in the

proof of the next theorem. Let A be an Archimedean /-algebra with unit

element e and suppose P is an order projection in A. If we put p — Pe,

then we have Pf — pf for all / E A.

THEOREM 3.1. For any Archimedean Riesz space L we have Orth°°(L)

C Lλ C ZΛ

Proof. In this proof we use the multiplication in Lu introduced above,

and we identify Orth°°(L) with an /-subalgebra of ZΛ Let 0<p E

Orth°°(L) be given with domain Z), i.e., pf^ E L for all / E D. Given the

band B φ {0} in L", there exists 0 <u E B Π D such that 0 < u < eΊ for

some eτ. Let n be a natural number with the property that (nu — eΎγ > 0

and put Bλ — {(nu — e τ ) + }dd in ZΛ Denote by Pλ the order projection in

Lu onto Z?j and put p] = Pλe. Note that it follows from pxe — px and

px E {eτ}
ddihaApxeΎ — px. Since nu Λ eT E Z), the element w = p(nu Λ e τ)

satisfies H Έ L . NOW

Pxw=pxp(nuΛeτ) =ppx{eτ- ( nu

We thus have proved that for any band B φ {0} in LM there exist a band

Bx in L" and an element 0 < w E L such that {0} ¥= Bx C B and PjW =

P ^ , where Z^ denotes the order projection in Lu onto ^ ^ Now it follows

by a standard argument that condition (ii) of Proposition 1.1 is satisfied,

and we may conclude, therefore, that/? E ZΛ

The inclusion Orth°°(L) C Lλ can be proper, as shown by the follow-
ing example.
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EXAMPLE 3.2. Let L be the Riesz space of all piecewise linear real

continuous functions on [0,1]. Since L is order dense in C([0,1]), the

universal completion Lu of L is the same as the universal completion of

C([0,1]). Therefore Lu is the space of all real continuous functions which

are defined on some dense open subset of [0,1] (with identification of

functions which agree on some dense open subset). It is not difficult to see

that Lλ consists of all real functions / defined on some open dense subset

S of [0,1] which are locally linear, i.e., for any x E S there exists an open

interval around x on which / is linear. However, Orth°°(L) consists of

those functions in L λ which are locally constant.

REMARK 3.3. Let A be an Archimedean/-algebra with unit element e.

Since e is a weak unit in A, there exists an/-algebra multiplication in Au

for which e is the unit element. In other words, the multiplication in A can

be extended to an /-algebra multiplication in Au. As above, we consider

Orth°°(yl) as an/-subalgebra of Au. Now the natural embedding of A into

Orth°°(v4) is precisely the inclusion of A in Au

9 and so in this situation we

have A C Orth°°(yl) C Aλ. Since Orth°°(^) is laterally complete, this im-

plies Orth°°(yϊ) =Aλ.

We shall show now that Orth°°(L) = Lλ holds for any uniformly

complete Riesz space L. To this end we need the following lemmas.

LEMMA 3.4. Let M be a Riesz space with the projection property, L a

Riesz subspace of M and I an ideal in L. Take 0 < e E / and 0 < u E L,

and let Pe be the order projection in M onto [e}dd. Then there exist mutually

disjoint components [vn: n — 0,1,...} of elements of I in bands generated by

elements of I such that sup vn = Peu.

Proof. For n = 09l9... we define the bands Bn = {(ne - u)+ }dd.

Note that (ne - u)+ E / for all n. Since Bn = {(e - u/n)+ }dd (n φ 0), it

follows from (e - u/nγ T e that Bn T [e}dd and, therefore, Pn T Pe9 where

Pn denotes the order projection onto Bn. Observe that Bo — {0}, so Po = 0.

Now define υn — (PnΛ.λ — Pn)u, i.e., υn is the component of u in the band

Bn+, Π Bd (n = 0,1,...). Clearly, [υn: n = 0,1,...} is a disjoint sequence

in M9 and ίor N — 1,2,... we have

N

SUp Vn= 2 (^,+ 1 - ?n)U = PN+lU~ P0U = P tP
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Hence sup υn — u. If we now define un = u Λ ne for all n — 0 ,1, . . . , then

ϋΛ = ( ^ , + i - ^ , K + i Indeed,

Therefore each ϋrt is a component of the element un+λ E /.

LEMMA 3.5. Le/ the Archimedean Riesz space L be an order dense Riesz

subspace of the laterally complete Archimedean Riesz space M. Let I be an

order dense ideal in L, and suppose K is a laterally complete Riesz subspace

of M such that I C K. Then L C K.

Proof. Since M and K are laterally complete, both M and K have the

projection property. Let {er} be a maximal disjoint system in /. Then {er}

is also a maximal disjoint system in M. If we denote the order projection

in M onto {eτ}
dd by PT9 then we have for any 0 < w E L that u = sup Pτu.

Since K is laterally complete, it is sufficient to show that Pτu E K for all T.

For any fixed r there exists, by Lemma 3.4, a disjoint sequence {vn:

n = 0,1,...} in M consisting of components of elements of / in bands

generated by elements of / such that PΎu — sup υn. Since K has the

projection property and K is order dense in M, we have vn E K for all ft.

Now it follows from the lateral completeness of K that Pτu £ K. This

concludes the proof of the lemma.

As above, let {eΎ} be some fixed maximal disjoint system in the

Archimedean Riesz space L, and consider in Lu the /-algebra multiplica-

tion with e = supe τ as unit element. We identify Orth°°(L) with an

/-subalgebra of Lu. It follows from Theorem 3.1 that we then have the

following situation:

L
C

L λ CLU

C
Orth°°(L)

THEOREM 3.6. // L is a uniformly complete Riesz space, then L C

Orth°°(L), and therefore Orth°°(L) = Lλ.
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Proof. Denote by Iτ the principal ideal in L generated by eT and put

/ = Θ τ / T . Clearly / is an order dense ideal in L. It follows from Lemma

3.5 that it is sufficient to show that / C Orth°°(L); therefore if we show

Iτ C Orth°°(L) for each T, we are done. To this end fix T and take

0 < / E Ir. Let πf E Orth°°(L") be the multiplication by/in ZΛ Since Iτ is

uniformly complete and eτ is a strong order unit in Zτ, there exists

π E Orth(/T) such that πeτ = /(this follows immediately from the Yosida

representation of Iτ as some C(X) space; see [11], Theorem 45.4. The

existence of the orthomorphism m can also be proved without using

representation theory; see [12], Remark 19.5 (ii)). We now extend π to the

order dense ideal Zτ θ If by defining π — 0 on if. It is clear now that

π E Orth°°(L), and we denote the extension of π to L" by m again. It

follows from the definition of π that πeμ = πfeμ for all μ, so we may

conclude πf = π E Orth°°(L).

The following two results are immediate corollaries of the above

theorem.

COROLLARY 3.7. If L is a uniformly complete Riesz space, then there

exists a multiplication in Lλ such that Lλ is an Archimedean f-algebra with

unit element.

COROLLARY 3.8. Let L be an order dense Riesz subspace of the

uniformly complete Riesz space M. Then any π E Orth°°(L) has an exten-

sion 77* E Orth°°(M).

It follows in particular from Theorem 3.6 that Orth°°(L) = Orth(L λ)

holds for any uniformly complete Riesz space L. If we do not assume that

L is uniformly complete, then we can still prove one inclusion.

THEOREM 3.9. For any Archimedean Riesz space L we have Orth°°(L)

C Orth(L λ). In other words, any π E Orth°°(L) can be extended to an

orthomorphism in ZΛ

Proof. Suppose 0 <p E Orth°°(L) with domain D, i.e., D is an order

dense ideal in L and/?/ E L for all/ E D. We have to show/?/ E Lλ for all

f<ΞLλ. To this end take 0 < / G L λ . By Proposition 1.1 there exist

disjoint order projections Pa in Lu and elements 0 < ua E L such that

/ = sup Paua. A moment's reflection shows we may assume each Pa is the

order projection onto the band in Lu generated by an element 0 < υa E D.

Since pf — sup pPaua, it is sufficient to show/?Pαwα E Lλ for each a. For
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this purpose fix a and denote by Qn the order projection in Lu onto the
band generated by (nva — ua)

+ (n — 0,1,...). Clearly Qn T Pa. Now
define wΛ = ( β π + 1 - β > α (/i = 0,1,...). Then {*/„: /ι = 0,1,...} is a
disjoint sequence and supwn = Paua9 which implies ρPaua = sup/nvπ.
Therefore it is sufficient to show that/?>*>„ E Lλ for all ft. Observe now that

wn = ( β π + 1 - Qn)ua = ( β n + 1 - βπ){«β Λ (Λ + l) ϋ β },

so pwn = ( β Λ + 1 - Qn)p{ua A (n + l)ι?α}. It follows from D α G ΰ that
/?{wα Λ (« + l)fα} E L , and since Lλ has the projection property, we
conclude that pwn E ZΛ

The following corollary is immediate.

COROLLARY 3.10. If L is an Archimedean laterally complete Riesz space
then Orth°°(L) = Orth(L).

COROLLARY 3.11. For any Archimedean Riesz space L we have that
Orth°°(L).

Proof, Since Orth°°(L) is laterally complete, it follows from the above
that Orth^Orth0 0^)) = Orth(Orth°°(L)). Furthermore, since Orth°°(L)
is an Archimedean /-algebra with unit element it follows that
Orth(Orth°°(L)) = Orth°°(L) (usual identification).

REMARK 3.11. It follows in particular from Theorem 3.6 that any
uniformly complete Riesz space L can be embedded as a Riesz subspace
in Orth°°(L). Recently this result has also been proved by M. Duhoux and
M. Meyer [5] (Theorem 2.14 and Corollary 2.15). One of the main
differences between their approach and ours is that we always consider
Orth°°(L) as an/-subalgebra of Lu, whereas they do not make use of the
multiplicative structure of ZΛ In the same paper also the results of
Corollaries 3.10 and 3.11 appear (see [5], Remarks 2.8.2 and 2.13.2).

4. Some algebraic properties of Orth°°(L). As we saw in §2, if A is
a uniformly complete /-algebra with unit element, then Orth°°(̂ 4) is
algebra isomorphic to the complete ring of quotients Q(A). Since A is
semiprime, Q(A) is von Neumann regular (see [8], §2.4, Proposition 1),
therefore OτUf°(A) is von Neumann regular in this case. It is natural to
ask whether Orth°°(L) is von Neumann regular for each Archimedean
Riesz space L. In general the answer is negative, as shown by Example
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2.3. The main purpose of this section is to prove that for any uniformly

complete Riesz space L the/-algebra Orth°°(L) is von Neumann regular.

First note that Orth°°(L) is in general not uniformly complete, not

even if L itself is uniformly complete. Since Orth°°(L) has the projection

property, uniform completeness of Orth°°(L) implies Dedekind complete-

ness (see [11], Theorem 42.6), so we then have Orth°°(L) = ZΛ It is shown

in [10], Theorem 1.4 (i), that if L is Dedekind complete, then Orth°°(L) is

likewise Dedekind complete. Although Orth°°(L) is not uniformly com-

plete in general, it does have a 'local* completeness property.

PROPOSITION 4.1. Let L be a uniformly complete Riesz space and

suppose {πn: n = 1,2,...} is a uniform Cauchy sequence in Orth°°(L) such

that all πn have a common dense domain D. Then there exists an element π

in Orth°°(L) such that πn -> ττ(r.u.) in Orth°°(L).

Proof. The proof is straightforward. Suppose {πn} is a τr0-uniform

Cauchy sequence for some 0 < π0 E Orth°°(L) with domain Do. Then

\πn ~~ ^ml— εn7Γo f°Γ all /w > /ι and some sequence of real numbers εn jO.

Hence for any / E D Π DQ and m >: n we have \πnf — πmf\< enπ0\f\,

which shows {πnf} is a uniform Cauchy sequence in L. Since L is

uniformly complete {πnf} has a uniform limit πf in L. In this way we

define a mapping π from D Π Do into L, and it is easy to see that

π E Orth°°(L) and πn -> π (7r0-uniformly).

As is well known, if A is a uniformly complete if-algebra with unit

element e, then any element u'mA, such that u > e, has an inverse in A,

and for any 0 < u E A the square root, y[ΰ, exists in A (see [7], Theorems

3.4 and 3.9, or [12], Theorems 11.1 and 11.5). We shall now prove similar

results for Orth°°(L).

THEOREM 4.2. For any uniformly complete Riesz space L the following

statements hold.

(i) Ifπ E Orth°°(L) such that π > /, then π~ι exists in Orth°°(L).

(ii) 7/0 < π E Orth°°(L), then y/π exists in Orth°°(L).

Proof, (i) The proof goes along the same lines as the proof of the

corresponding statement in uniformly complete /-algebras with unit ele-

ment. Suppose first that / < π < al for some a > 1. For N = 1,2,...

define

n=0
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If we denote the domain of TΓ by Z), then the domain of σ^ is likewise D.

Furthermore (σ^: N = 1,2,...} is an /-uniform Cauchy sequence in

Orth°°(L), so by the above proposition there exists σ E Orth°°(L) such

that σN -* σ (/-uniformly). Now it is clear that τr'x — a~ισ. Observe that

the domain of σ is again Zλ Now assume π E Orth°°(L) with domain D is

such that 77 > /, and define mn = π Λ nl (n = 1,2,...). By the above, π~ι

exists for all n — 1,2,..., and the domain of each π~ι is D. Since {π~1} is

an /-uniform Cauchy sequence, it follows again from the above proposi-

tion that there exists 770 E Orth°°(L) such that τr~x -> 770 (/-uniformly).

Clearly τr0 = TΓ"1. Note that the domain of ττ~x is again D.

(ii) Similar.

In order to prove that Orth°°(L) is von Neumann regular, we need a

lemma. First note the following. Suppose π E Orth°°(L) with domain Do.

Then by the domain of π2 we shall mean the order dense ideal π~\D0) —

{/ E Do: πf E Z>0}, although it may happen that π2 can be extended to an

order dense ideal which is larger than π~ι(DQ). We shall use the same

terminology when dealing with higher powers of π.

LEMMA 4.3. Let L be a uniformly complete Riesz space and suppose

0 < π E Orth°°(L) with domain Do. If we denote the domain of πΛ by /),

then the order ideal J — {f £Ξ L: | / | < π2ufor some u E D) is contained in

τr(DQ).

Proof. It is sufficient to show that 0 < v < ττ2u with 0 < u E D

implies there exists w E DQ such that πw = υ. For n— 1,2,... it follows

from m + I/n > //« and from the above theorem that (77 + I/n)~x exists

in Orth°°(L) and the domain of (77 + I/n)~x is again DQ. Putting wn =

(77 + I/n)'ιv(n = 1,2,...), it follows from(77 + l/n\λ < « / t h a t w w E D

for all «. For m > « we then have

0 < w - ww = (77 + — / ) v-\ir + -l) vm n \ ml \ n I

m I \ n I \n m

m

m

= 11--!-)..
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Hence {wn: n — 1,2,...} is a w-uniform Cauchy sequence in L. Since L is

uniformly complete, there exists w E L such that wn -» w (w-uniformly).

Note that it follows from 0 < w E 7> and 0 < τvw e D (n = 1,2,...) that

w G ΰ and, hence, w E Do. We assert that TΓH> = v. Indeed, since π + I/n

-> 77 (/-uniformly) and wn -> w (w-uniformly), we have (TΓ + I/n)wn -* πw

(r.u.). On the other hand,

(TΓ + 7/π)wπ = (TΓ + 7/π)(ir + I/n)~lυ = υ

for all n— 1,2, Hence TΓW = v.

THEOREM 4.5. For any uniformly complete Riesz space L the f-algebra

Orth°°(L) is von Neumann regular (i.e., for any TΓ E Orth°°(L) there exists

TΓ, E Orth°°(L) such that π = ττ,ττ2).

Proof. Take 0 < TΓ E OrtlΓ(L) with domain Do and let D be the

domain of τr4. By the above lemma, the ideal / = {f E L: \f\<π2u for

some 0 < u E D) satisfies / C τr(7>0). Let Nπ be the kernel of TΓ, i.e.,

Λς = {fED0: I T / = 0}, and define the ideal Dλ by Dλ = π'\J). If we

now put E = τr(Dι Π iV/), then £ is an ideal in L. Indeed, suppose

0 < ϋ < TΓW for some 0 < w E 2), Π JV/. Then TΓW E / so v E /, which

implies υ = TΓW for some 0 < w E 7)0 with 0 < w < w. We have thus

found an element 0 < w 6 ΰ , Π Λ̂ f such that υ = ΊTW, therefore v E E.

Now observe that the restriction of TΓ to Dλ Π N£ is an injective

mapping from ΰ , ( Ί N* onto £ . We can define, therefore, the mapping TΓ,

from E® Ed into L as follows. If g E £ , then g = πf for a unique

/ G 7)j Γi Λ̂ f, and we put mχg—f. For any g E: Ed we define ττ,g = 0. The

mapping TΓ, is clearly linear and we will now show that TΓ, E Orth°°(L).

Note already that the domain E θ Ed is order dense in L. Now assume

g E E ® Ed and Λ E L are such that g JL A. Then g = gi + g2 for some

gλEE and g2 E £* . Clearly g, ± Λ and g, = TΓ/, for some/, 6 f l , n iV/.

It follows from ττ(|/, | Λ| h |) < | g, | that (|/, | Λ| h |) ± h, therefore |/, | Λ

1 h IE Λς. On the other hand, /, ε 7), Π JV/ implies |/, | Λ| Λ | E JV^ there-

fore |/, I Λ |A |= 0, i.e., ττ,g, ± h. This shows ττ,g JL A, and we conclude

thatTΓ, E Orth°°(L).

We claim TΓ = τr,τr2 in Orth°°(L). It follows immediately from the

definition of TΓ, that τr/= TΓTΓ,TΓ/ holds for all / E Nπ θ (7), Π Λ^) =

Dx Π (N^® Nd). Hence, if we can show Dλ is order dense in L, we are

done. To this end suppose g E Dd Π 7). Then g ± A for all A E /),, so

g J_ TΓA for all A E 7),. Since τr(7>,) = /, this implies g J-/for all/ E /, so,

in particular, g J_ τr2w for all 0 < w E 7). Hence, g J- τr2g so τr2g ± τr2g,
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i.e., π2g = 0. This implies πg E Nv and, since, Nv C D , , it follows from

g E D* C N* that g ± πg and, therefore, πg = 0. Hence g E Nπ so g ± g,

i.e., g = 0. We have thus shown Dx Π D = {0} and, since 2) is order

dense, this implies Z^ is order dense. We may conclude, therefore, that

7r = 7r1τr2inOrth0 0(L).

Finally, take π E Orth°°(L) arbitrary. By the above, there exists

πx E Orth°°(L) such that \π\=πxπ
2. Now \π\= (πxπ)π implies π —

(πxπ)\π\, so π = (7Γ17Γ)(T717Γ2) = (π2π)π2. Hence Orth°°(L) is von Neu-

mann regular.

COROLLARY 4.6. // L is a uniformly complete Riesz space, then every

weak order unit in Orth°°(L) has an inverse in Orth°°(L).

Proof. Let π be a weak order unit in Orth°°(L). By the above theorem

there exists πx E Orth°°(L) such that π = πxπ
2. Now it follows from

π(I — πλπ) — 0 that π ± I — πxπ, hence / — πλπ = 0, i.e., τrλ — π'K

We conclude this paper with a simple characterization of weak order

units in Orth°°(L).

THEOREM 4.7. If L is an Archimedean Riesz space, then the element π in

Orth°°(L) is a weak order unit iff π is infective.

Proof. First assume 0 < π E Orth°°(L) with domain D is injective,

and suppose 0 < π0 E Orth°°(L) is such that π0 Λ π — 0. Then ππ0 = 0,

which implies 7r(τr0/) = 0 for all / E τrJ"!(Z)). Therefore τ r o / = 0 for all

/ E IΓQX(D) and, since TTQ\D) is order dense, we get ττ0 = 0. Hence 7r is a

weak order unit.

Now assume 0 < π E Orth°°(L) with domain D is a weak unit in

Orth°°(L) and take 0 < u E Nπ. Put i ) 0 = {u}dd θ {w}̂  and define the

mapping 7r0 from Do into L by πo(f+ g) = / for all / E {w}^ and

g E {w}̂ . Then 0 < 7r0 E Orth°°(L), and it follows immediately from the

definition of ττ0 that τr7τ0f— 0 for all / E Z> Π D o . Therefore τrτr0 = 0,

which implies π Λ π 0 = 0 in Orth°°(L). Since 7r is a weak order unit, we

deduce that π0 = 0, so u — 0. Hence Nπ = {0}, i.e., 77 is injective.
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