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HOMOLOGY OF COVERINGS

JOHN HEMPEL

This paper deals with an analysis of the first homology of a finite
sheeted covering space of a complex and gives applications to some
questions about 3-manifolds. Section 2 considers the relation between
the property that a 3-manifold be virtually Haken and the, seemingly
stronger, property that some finite sheeted cover has positive first betti
number. Section 3 gives a procedure for computing the homology of a
finite cover in terms of a presentation of the fundamental group of the
base, and its action on the fiber and includes generalizations of the
Fox-Goeritz theorem for cyclic covers to arbitrary abelian covers and to
dihedral covers. Section 4 applies these theorems to 3-manifolds which
have various types of symmetry and include some conditions which
guarantee finite covers with positive first betti number. The paper
concludes with a section of examples.

1. Introduction. The homology groups of the various covering
spaces of a space M are of interest for a variety of reasons. For one thing,
when restricted to some "characteristic" collection of coverings (the cyclic
coverings of a knot space, for example) they provide invariants of the base
which are much more tractable than its homotopy groups and, in general,
much richer than its homology groups.

There is another point of particular interest to the study of 3-dimen-
sional manifolds which we proceed to describe.

Following [J] we use the term Haken manifold to mean a compact,
orientable, irreducible 3-manifold which is sufficiently large in the sense
that it contains a 2-sided incompressible surface. The study of 3-manifolds
splits nicely into the cases of finite fundamental groups and infinite
fundamental groups. The vast majority of what is known in the second
case — determination by homotopy type, existence of geometric struc-
tures, the homeomorphism and classification problems, etc. — is estab-
lished only for Haken manifolds as can be discovered in the recent works
of Jaco-Shalen [JS], Johannson [Jo], Thurston [T], and the nice summary
by Waldhausen [W3].

The examples of compact, orientable, irreducible 3-manifolds with
infinite fundamental groups which are not Haken manifolds [WJ, [CJR],
[FH], [HT] seem to have the property that some finite sheeted cover is a
Haken manifold. We will say that such a manifold is virtually Haken. This
is consistent with the terminology from group theory which says that a
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group is virtually of some class 6(e.g. solvable) of groups if it has a
subgroup of finite index in the class β. The term almost sufficiently large
has also been used.

The following question has been raised by Thurston, Waldhausen and
others.

1.1 Question. If M is a compact, orientable irreducible 3-manifold
with πx(M) infinite, is M virtually Haken?

Since any compact 3-manifold M, with βx(M) — rank HX(M\ Z) > 0,
contains a 2-sided incompressible surface (cf. [HJ, Lemma 6.6), we ask

1.2 Question. If M is a compact, orientable, irreducible 3-manifold
with π,(M) infinite, is πλ(M) virtually representable onto Z?

The condition means that there is a finite cover M -» M with βx(M)
> 0, and clearly an affirmative answer to 1.2 implies an affirmative
answer to 1.1. At first glance 1.2 may appear too strong, since there are
Haken manifolds with βx{M) — 0, and which, therefore, only contain
separating incompressible surfaces. However, such separating surfaces
often are covered, in some finite sheeted cover of Λf, by nonseparating
surfaces. Numerous examples of this are provided by 2.5, as well as by the
Seifert fibered spaces [WJ, which all have finite covers by circle bundles
over a surface. It is natural to ask if this is always the case:

1.3 Question. If M is a Haken manifold, is πx(M) virtually representa-
ble onto Z?

In §2 we investigate this question further — paying particular atten-
tion to the case of manifolds which are the union (along their incompressi-
ble boundaries) of two knot spaces. The complement, in S3, of an open
regular neighborhood of a knot is called a knot space.

We show that the answer to 1.3 is always yes for the union of two
torus knot spaces (Corollary 2.5) and discuss means for resolving this
question for other knots.

In §3 we consider the problem of computing HX(M) for an arbitrary
finite sheeted cover p: M -> M of a finite CW complex from a presenta-
tion of πx{M). There is a combinatorial procedure for doing this intro-
duced in [F3] which we present in Theorem 3.1. Beginning with a presenta-
tion of ττx{M) with, say, m generators and applied to a #-sheeted covering,
one is led to an mq X mq matrix of integers which presents HX(M) Θ Z r l .
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Unfortunately even in cases of moderate complexity this becomes too
large to be of much value and the procedure appears to have been largely
neglected in general. However, in the case of finite cyclic covers (i.e.,
regular with cyclic covering group) there are elegant tricks for simplifying
the situation, and much has been written on the subject, particularly as it
applies to the cyclic covers of knots and links as in the Goeritz-Fox
theorem [G], [F3] with improvements by Gordon [Go], Hosokawa-Kinoshita
[HK], and others.

Put in the proper setting, these results generalize to any finite, abelian
(regular) cover M9 of any CW complex M, as we present in Theorem 3.5.
The mq X mq matrix of integers can be replaced by q m X m matrices
with entries in the extension of Z by the qih roots of unity which, modulo
^-torsion, also presents HX(M). This gives a computational simplification
and has theoretical interest as well, since the Galois group of the extension
permutes these matrices. Thus, for example, βλ{M) = βλ(M) mod2
(Corollary 3.6) where M -> M corresponds to the elements of order two in
Aut(M -> M) (M = M if q is odd).

These techniques extend, somewhat, to other situations. In 3.7 we give
a version which applies to an analysis of irregular dihedral covers of any
complex, and in 3.8 we apply this to the 3-fold irregular branched covers
of S3 branched over a knot. Recall [Hi], [M] that every closed oriented
3-manifold can be so expressed.

In §4 we consider closed 3-manifolds which have a Heegaard splitting
whose "sides" can be interchanged by an involution τ of the manifold and
which we call (±)-symmetήc according as deg τ — ± 1. These occur com-
monly as double branched or unbranched covers of other 3-manifolds —
perhaps with "conical singularities" as described further in this section.
The fundamental group of such a 3-manifold has a presentation with a
strong form of symmetry (Theorem 4.5). Applying the results of §3 to this
presentation yields additional information about the homology of the
finite coverings of such manifolds. The symmetry reflects itself in the
abelian coverings of these manifolds as explained in Theorem 4.3. Re-
garding Question 1.3 we show that if M has a ( —)-symmetric splitting
relative to an involution τ: M -> M and HX(M/Ί\ Z2) φ 0, then πx(M) is
virtually representable to Z (Corollary 4.5 — see also Example 5.4).

In §5 we discuss a number of examples to illustrate the theorems.
In 5.2 we show that, for every k, the 3/c-fold cyclic covers of S3

branched over the figure eight knot has fundamental group virtually
representable to Z.

Examples 5.4 and 5.5 illustrate symmetric Heegaard splittings as well
as the calculational techniques from §§3 and 4.
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2. Coverings with positive first betti number. It is convenient to
consider, for any space X, the class %(X) of normal subgroups of finite
index in πx( X), and to note its functorality: For a map f\ X-* Y we have a
function^/): φ(Y) -* φ(X) given by f(f)(N) =fϊ\N).

The evidence which suggests Question 1.3 is that a separating incom-
pressible surface in a 3-manifold M is often covered, in some finite
sheeted covering of M, by a nonseparating one. The conditions for this to
occur are given by the following theorem.

2.1 THEOREM. Let the finite CW complex M be expressed as M — Mλ

U M2, where Ml9 M29 and S — Mx Π M2 are connected subcomplexes, and
S is bicollared in M. Then there is a finite sheeted covering p: M -» M such
that some component ofp~ι(S) is nonseparating in M if and only if there are
groups Nk E f(Mk) (k = 1,2) such that

(i) ^(ηλ)(Nx) = ^(V2)(N2), ηk: S -> Mk inclusion, and
(ii) 11^(^(5)) Nk^πx(Mk) (k - 1,2).

Proof. Suppose we are given p: M -»M such that p~\S) has a
nonseparating component. We may assume p is a regular cover; otherwise
intersect the finitely many distinct conjugates of p^τrx{M) and consider
the corresponding regular cover.

LetΛ^ = <$(θk)(p*πλ(M)) e &(Mk) (θk: Mk -* Minclusion).
Property (i) follows from functorality. For (ii) note that for any

component Mk of p~ι(Mk), p*πx{Mk) = Nk. Since some (hence, by regu-
larity, every) component of p~\S) is nonseparating, each component of
p~\Mk) must contain at least two components of p~ι(S). However, the
number of components of p~ι(S) contained in a given component of
p~\Mk) is the index of ηk^π}(S) - Nk in π}(Mk); so property (ii) follows.

Conversely, given the subgroups Nk9 we form the corresponding finite
sheeted regular covers pk: Mk -> Mk. By (ii) pk

ι(S) has components
SkΛ,... ,Sktnk(nk > 1). By (i) pλ \βλi and p2 \ S2J are equivalent coverings.
We take [nl9 n2]/nx copies of M,, [/i,, n2]/n2 copies of M2 and identify,
in some order, the copies of the 5 l f/ with the copies of the SXj by the
equivalence mentioned above. The result will yield a cover/?: M -> M, as
desired. This cover will probably be irregular, but one may pass to a
regular one, if desired, as in the first part.

We will say that L E§(S) is proper modulo η: S -> M if L = ^(η)(N)
for some N ε f ( M ) such that N η*πx(S) Φ π,(M) and, when S C M,
we will denote by ̂ M(S) the set of subgroups which are proper modulo
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the inclusion S ~> M. Observe that properties (i) and (ii) of Theorem 2.1
can be abbreviated:

Observe also that if S is an incompressible torus in the boundary of a
3-manifold M, and if N G ̂ (Λf) is such that πι(M)/N is nonabelian,
then r?;

1(7V)E 9ΦM(S).
In order to apply Theorem 2.1 to Problem 1.3 we are faced with

2.2 Problem. For M a 3-manifold and S an incompressible surface in
dλf, describe

We caution that this is a difficult problem. In case M is a knot space
and S — 3Af, a complete solution would presumably settle the question of
whether the knot has property P [S] (or produce a 3-manifold M for
which 7r,(Λf) has no nontrivial finite quotients).

Nonetheless, the case in which S is a torus is still the most tractable
case of Problem 2.2 and we proceed to make some observations on it. For
this we need a normal form for elements of Φ(S) which is easily given by

2.3 LEMMA. Let (μ, λ} be a free basis for a free abelian group G. Then a
subgroup H of finite index in G is uniquely of the form H ~ gp{μα, μhλc)
where a,c> 1, 0 < b < a. Moreover, H is fully invariant in G if and only if
a — c and b = 0.

Proof. H — gp{μ*, μbλc), where a is the index of H Π gp{μ} in gp{μ},
c is the index of H in H gp{μ} and b is the least nonnegative integer
such that μ*λc e H.

Since gp{μα, λa) = Ha, it is fully invariant, and a calculation shows
that every fully invariant subgroup of finite index must have this form.

2.4 LEMMA. Let M be a {p,q) torus knot space and a > 2 an integer
relatively prime to bothp and q. Then 9^M(dM) contains the fully invariant
subgroup of index a2.

Proof. We can (cf. [H2]) represent πx(M) = (x9 y: xp — yq) where
πx(dM) is freely generated by μ = xry~s (whereps — qr — 1), and λ — xp

— yq. Note that λ is not a longitude in the traditional sense (λ 6
[7r,(M), τr,(M)]), but, being central in τr,(M), is more convenient to
consider here.
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Let Q be a finite group which contains noncommuting elements α, β
which have orders O(a) = /?, 0(β) = #, and with 0{aβ~λ) = #. For
example, the triangle group T7 = T(p,q,a) contains a torsion free normal
subgroup N of finite index [F4], and we could let Q — T/N. We define a
homomorphism

η:πx{M) ^QX (τ:τa= 1)

by putting IJ(JC) = (cΓq

9 τ~q), η(y) = (βp

9 τ'p) and noting that η(xp) =

Now η(μ) = (a'qrβ'ps

9 τps~rq) = (αjS"1, T) and τ»(λ) = (1, τ~pq).
Since (/?#, α) = 1, 0{τ'pq) = β. Also O(aβ~\ T) = #, and the proof is
completed by reference to Lemma 2.3.

Similar arguments can be used to establish that certain other sub-
groups are in ^M(dM)\ however π(μ, λc) (£ ̂ M(dM) for any c, since μ
normally generates πx(M). We leave the exact structure of ^^M(dM)
open.

Combining 2.4 and 2.1 we immediately obtain a proof of

2.5 COROLLARY. Let Mx and M2 be torus knot spaces, f: dMλ -> 3M2 α
homeomorphism, and put M — λfx UfM2. Then <πx(M) is virtually represen-
table to Z.

Note that βx(M) > 0 if and only if / takes the longitude of Mλ to the
longitude of M2.

For a general knot space M, it may not be possible to carry out such
complete computations; however, if we fix a standard meridian, longitude
pair (μ, λ} of generators for π,(9Af) and if H = gp{μα, μbλc] E

)9 then there is a finite sheeted regular cover p: M -> M with
ΓΊ ir,(3Af) = H. If b — 0, ίΛe manifold M must embed in a closed

manifold M9 which is an (unbranched) cover of the branched a-fold cyclic
cover Ma of S3 branched over the knot. Conversely, the finite covers of Ma

corresponding to normal subgroups of τrx{Ma) which are invariant under the
group 2ta of covering transformations give rise to groups H E ^^M(dM) of

If Hx(Ma) φ 0, we can conclude that gp{μ*, λ} E ^PfM(3ZM); for
take a finite sheeted abelian cover M -» Ma corresponding to a fully
invariant subgroup of πx(Ma). Then λ lifts to M (since λ E [πx(Ma),
iΓ](Ma)])9 but the covering of M induced by M is nonabelian.

If HX(M) φ 0 one can iterate this process by taking a finite sheeted
abelian cover M -> M corresponding to a fully invariant subgroup of
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πx(M). We cap conclude that gp{μ", λc} e 9^M(dM) where c is the order
of λ mod π,(M).

The procedures developed in the next two sections are particularly
suited to analyzing these poly-abelian covers. In §5 we give some illustra-
tive calculations in Example 5.2.

3. Presentations of HX(M). We give an account of the procedure
intoduced by Fox [F3] for calculating the first homology group Hλ(M) of a
finite sheeted cover M -> M of a finite CW complex M in terms of a
presentation of ττ,(M), and we give some techniques for simplifying its
application to the case of abelian and dihedral covers which are well
suited to the analysis of 3-manifolds as given in the next section.

We regard the symmetric group Sq as either the group of permutations
of {1,2,...,#} or, equivalently, as the subgroup of Gl(g, Z) of matrices
which permute the standard basis elements. In either case the action is on
the right and σ E Sq will denote either the function

or the matrix

as the context dictates.
Given a covering space p: M -> M with q < oo sheets there is a

homomorphism

defined as follows. Put H = p*π{(M, m,) and label the right cosets of H

It is a standard fact that θ is well defined up to conjugation, that
imaged is a transitive subgroup of Sq9 that H = θ~ι{σ G Sq: (l)σ = 1),
and, in fact, that the correspondence

is a one-to-one correspondence between equivalence classes of ^-sheeted
coverings of M with conjugacy classes of representations of πx(M) onto
transitive subgroups of Sq. We call θ the permutational representation of
ττλ{M) associated to p: M -> M9 and call θ regular precisely when the cover
is regular.
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A matrix ( λ / y ) (1 < i < n, 1 < y < m) with entries in a ring A.presents

a (left) Λ-moduleΛ if Λl = coker((λ 7 ) : Λm -» Λ"), i.e., if yl is isomorphic

to the quotient of the free Λ-module on generators {ul9...9un} by the

submodule generated by {Σy λ / y w7 ; 1 < / < w}.

Two matrices which are equivalent in the sense of [F2] present

isomorphic modules. For a presentation (xl9...9xn: rX9...9rm) of a group

G, the equivalence class of the Jacobian matrix of free derivatives J —

(θryθx,), with entries in ZG, depends only on G [F2]. For G — πx{M) and
p: M ^ M a regular covering space whose group of covering transforma-
tions is T9 the image of / over ZT is known to present HX(M, Φ'\m0)) as
a module over ZΓ[C], [H3], [TJ.

The following theorem is a variation of this result applicable to
nonregular, finite coverings. The proof we give below is a modification of
the one given for Theorem 2.5 of [H3].

3.1 THEOREM. (FOX [F3].) Let p: M -»M be a q sheeted (q < oo)
covering of a finite CW complex M9 φ: πx(M) -» Sq the associatedpermuta-

tional representation, and (xl9...,xn: r 1 ? . . . 9rm) any presentation ofπx(M).

Then the nq X mq matrix of integers ^(3rz/3xy) is a presentation matrix,

over Z, for

HX(M) 7 - 1

Alernate proof. The result is independent of the particular presenta-
tion of τrλ{M). We choose the presentation naturally associated with a cell
structure for M which, with no loss of generality, we may assume has a
single 0~cellmo.

We then show that θ(drt/dXj) is the matrix, in terms of certain bases,
of the boundary map of the cellular chain complex

3: C2(M) ^

It then follows immediately that θ(drι/dxJ) presents

To determine the appropriate bases we choose characteristic maps

for the 1-cells of M and

f,2: (I2, 3/2,0) - (Jl/ffl, Λ/<'\ m0), 1 < / < m,

for the 2-cells of M. So x = [/'], η = [f2 \ dl2].
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We can label the points of p~\m0) as (m^.. . 9mq) where

pjrx{M9 ma = {g G πx(M): (i)θ(g) = /}.

We let ejtl (eftk) be the 1-cell (2-cell) of M whose characteristic map is
the lifting/of/j.1 (/•*) such that/(O) = m z (= wΛ).

Regarding the {ejt/} and {e?Λ} as bases for Cλ(M) and C2(M),
respectively, and putting θ(dη/dxj) = (a^kujj))* o n e m u s t vei*ify that

< (̂ι,*) = Σ a(ιΛ),(jjf(j,l)

to complete the proof (see [H3] for related details).
While Theorem 3.1 gives a complete description of Hλ(M) as an

abelian group its application is hindered by the fact that, even in relatively
simple situations, the matrix θ(dη/dxj) will be large and a straightfor-
ward analysis of the group — say by reduction to an equivalent diagonal
matrix — will be tedious. We offer some simplifications of both theoreti-
cal and practical interest.

Recall that for a matrix / with entries in a commutative ring Λ, the
/th elementary ideal &t(J) is the ideal generated by all (n — i) X (n ~ i)
minor determinants of /, where n is the number of columns of /. If Λ = Z
we identify an ideal with its nonnegative generator. The elementary ideal
theorem asserts

3.2. If the matrix J of integers presents the abelian group A and
r = min{/: S.(/) φ 0} then

Λ — L Φ £jc- /c- \V £jf /c- U7 * * .
®/b+\ fol/fo2

In particular, r = rank A and &r is the order of the torsion subgroup Aτ of A.

Since similar matrices are equivalent, one can use linear algebra to
help analyze the abelian group presented by a matrix. Usually this
requires an extension of the coefficient ring. One should try to extend
minimally to preserve as much information as possible. However, regard-
ing extensions to C one can say:

3.3 LEMMA. Let the square matrix J of integers present the abelian group
A — coker(/: Zn -» Z"). Suppose ker/ = ker/" (which holds if J is simi-
lar, over C, to a diagonal matrix) and let the characteristic polynomial of J
be xkg(x) where g(0) φ 0. Then

(i) rank A — k(the multiplicity of0 as a characteristic root and)
(ii) O(AT) divides g(0) (the product of the nonzero characteristic roots

of A).
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Proof, The first conclusion is immediate from the fact that the rank of
A is the nullity of /.

For (ii) let

F 0 - { t ) E Z": vJk = 0} and Vx = {v E Zn: υg(J) = 0}.

Then V = Fo Θ F, is a subgroup of finite index in V = Z" and Fo = ker /.
If F' = Fthe conclusion holds with equality: O(AT) — g(0) = det A.
In general we have exact sequences

0 -» F//FV -> K/FV -> Λ -* 0,

0 -» V'/V'J -» K/FV ^ F / F -> 0.

From the first and the fact that VJ/V'J is finite, we have

O(AT) - O(V/rj)τ/O{VJ/VJ)T9

and from the second that

O(V/V')τis a multiple of 0 ( F / F / / ) Γ / 0 ( F y F / / ) Γ .

But V/V = VJ/V'J, and since / | F r has the same characteristic poly-
nomial as / it follows as above that O(V'/V'J)T — g(0). Combining we
get the desired result.

Note that the assumption on / is necessary (e.g.

- (

and equality in (ii) does not hold in general (e.g.

a ac
J — \ 2

, ac acEquality does hold in (ii) if A is finite. The statement of Theorem 5.3.3 of
[N] seems to be based on the assumption that equality holds in general,
and is incorrect — see Example 5.6.

In applying Theorem 3.1 to abelian, regular coverings we let

be an abelian group of order q = qλq2 qk9 and note that under point-
wise multiplication the character group

T* = Hom(Γ, S])

is a group isomorphic to T under the correspondence which associates

t = if' φ G T
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with

ψGΓ*,

where ψ(ίy) = ξ*aj/% ξ = cxp(2πi/q).
With this notation we have:

3.4 LEMMA. There is a regular, faithful representation

and for any n a matrix W E Gl(nq, Z[l/q, ζ]) such that if J is any n X n
matrix with entries in ZT then

WΘ(J)W~ι =

is in block diagonal form where there are q n X n blocks with entries in Z[ζ]
corresponding to the q-choices ofψ E T*.

Proof. For t E Γ, θ(t) will be the matrix of the map ZT -> ZT defined
by multiplication by t in terms of the Z-basis Γ = {if1 ta

k

k\ 1 < at < qt)
(given some ordering — which for computational purposes it is convenient
to choose as lexicographical on the exponents on the generators).

Let Λ = Z[\/q, f ] C C and regard ZT C AT. A Λ-basis for ΛΓ is
% = {wψ:ψ E Γ*} where

and

=4 Σ
The action of Γ on ΛΓ in terms of this basis is given by

Now / is the matrix, with respect to the standard basis, of a ZΓ-linear
map /: (ZΓ)" -»(ZΓ)W as well as of its natural extension /*: (ΛΓ)n -*
(ΛΓ)" as a ΛΓ-linear map.

If we use the basis Γ on each ΛΓ summand and order the resulting set
lexicographically first by the ordering of the summands and secondly by
our fixed ordering of Γ, we get an ordered Λ-basis for (ΛΓ)" with respect
to which the matrix of/* is Θ(J).
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If we use the basis % on each summand and order first by the order
of the subscripts (as elements of T* ^ T) and secondly by the ordering of
the summands, we get an ordered Λ-basis for (AT)n with respect to which
the matrix of/* is the block diagonal of the conclusion. The two matrices
must be similar over Λ and the proof is complete.

In applying Lemma 3.4 it is convenient to deal only with spaces
whose fundamental group has a presentation whose deficiency (number of
generators — number of relators) is nonnegative. In this case by adding
trivial relators, and accordingly adding rows of zeros to the Jacobian, we
may assume the Jacobian is square.

For cases of negative deficiency one could add columns of zeros, but
this corresponds to adding free generators to the group and complicates
the analysis somewhat, and we will not consider these cases. Note that the
fundamental group of any compact 3-manifold has a presentation of
nonnegative deficiency.

The matrices Θ(J) and WΘ(J)W~ι have the same rank and the same
elementary ideals — as ideals of Λ. These ideals have integer generators
which are uniquely determined modulo units of Λ. If integers ml9 m2

generate the same ideal of Λ then mx/(mλ, m2) and m2/(mv m2) divide
some power of q. Thus we have, continuing to use the same notation,

3.5 THEOREM. // the finite abelian group T is the group of covering
transformations of a regular covering p: M -* M and if the square matrix J
is the image over ZT of the Jacobian of some presentation of πx(M)9 then
Θ(J) presents H}(M) θ Zq~ι. The rank and the torsion numbers prime to
q = O(T) can be computed from the block diagonal WΘ(J)W~λ. In particu-
lar, if for ψ E 71*, ψ(J) has nullity n(ψ) and S n W (^(/)) has generator g(ψ)
then

βλ(M)=l-q + Σn(*) and θ{Hλ{M)τ) = «Π*(Ψ),
ψ ψ

where u is a unit of Z[\/q, ξ].

Proof. The action of Γ on ZT is free and transitive. Thus the
θ

composition πx(M) -> T->Sq must be the permutational representation
associated to p: M -> M. By 3.1 Θ(J) presents H{(M) θ Zq~\ But Θ(J)
and WΘ(J)W~λ have the same nullity: Σw(ψ) and the same elementary
ideals (as ideals in Z[l/#, ξ ]); the first nonvanishing one is generated by
Π g(ψ). The conclusion then follows from 3.2.
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Note that the elements g(ψ) need not be (associate to) integers — only
their product is. In cases where the g(ψ), or certain subproducts, are
integral, much stronger conclusions can be drawn (cf. Theorem 4.3).

3.6 COROLLARY. Let T={teT: t1 = 1} and let M -* M be the
regular covering corresponding to Ker(7Tj(M) -* T -» T/T2 = T). Then

βx{M)=βχ(M) mod 2;

in particular, ifo(T) is odd,

βλ{M)~βλ{M) mod2;

in fact ifo(T) is an odd prime then

βχ(M) = βλ(M) mod o(T) - 1.

Proof. The automorphism f -> f"! of Λ takes ψ(/) to ψ" ](/); thus
= n(ψ~ι) and Σ{w(ψ): ψ2 ¥= 1} Ξ 0 mod2. From 3.5 we have

Ψ } ( ) 1 mod2.

Applying 3.5 to M we see that

Since o(T) = o(f)mod2, the first part follows.
The second part is immediate, since if T is odd, M — M.
For the third one, note that iiq = o{T)is prime, Γ* = {ψz: 0 < / <

<7 — 1), where ψ;(ί) = Γ (/ a generator of T and f = exp(2π//^)). For
1 < / < 9 -- 1 there is an automorphism of Λ taking ζ to Γ Thus

= Λ(ψ,)and

modq- 1.

Note that for Λf a knot space (Γ cyclic), iβ^Λf) = βx(M) = 1; thus
we can recover the result (Theorem 2.14 of [Go]) that the first betti
number of any (unbranched) cyclic covering of a knot space is odd.

The proof of Lemma 3.4 can clearly be adapted to finding representa-
tions in other groups. We state below a version for the dihedral group:

D2q = (s,t:s2 = tq = \,sts~ι = r 1 )

This is pertinent, since [Hi], [M] every closed, oriented 3-manifold is a
3-fold cover of S3 branched over a knot corresponding to an irregular
representation of the knot goup into D6.
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We let S and T be the subgroups of D2q generated by s and t,
respectively. Note that every element of ZD2q is uniquely expressible in
the form

fλ{t)+f2{t)-s,

where/(/) is a polynomial of degree < q in t.
As before we let ζ = exp(2πi/q).

3.7 LEMMA. There is a faithful representation

θ:D2q^SqCGl(q,Z)

with S = θ'\σ: (l)σ = 1}, and for any n there is a matrix WE
G\(nq, Z[\/q, ζ ]) such that if J = J(t) + J2(t) s is any nX n matrix with
entries in ZD2q, then

WΘ{J)W~X

~Jλ{\)+J2{\)

0

0

0

0

0

7,U2)

0

0

0

0

. Let Z[D 2 /5] C A[D2q/S] be the free Z, respectively Λ =
, f ]> modules on the set D2q/S of right cosets of S. For g E Z>2(?,

θ(g) is the matrix of the action on Λt^^/S] given by right multiplication
by g in terms of the basis

{s,st,...,i

So

0(0 =

0 1 0

0 0 1

0 0 0
1 0 0

θ(s) =

1 0
0 0

0 1

Let {M0,. .. ,uq_x) be the basis for A[D2q/S] defined by
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Note that for fx(t) + f2(t)s E ZD2q,

97

The proof is completed in the same way as that of Lemma 3.4.

3.8. COROLLARY. Let M be a knot space, (xx,.. .,xn: rx,.. ,,rn_λ) be a

Writtinger presentation of πx(M), and η: πx(M) -> D6 an epimorphism with

η(xx) — s. Let p: M -* M be the 3-fold irregular cover corresponding to

η~ι(S) and let M be the corresponding branched covering of S3. Write the

(n ~ 1) X (n - 1) matrix

9r, 9r,

3Λ:2

- 1

dxn

1

9A:
n j

/w /Λe /orm / = /j(/) + J2(t)s. Then the matrix Θ(J) presents the abelian
group HX{M) θ Z, which is also presented, modulo 3-torsion, by the matrix

W)

f = exp(2τ7//3).

Proof. In the matrix θ(drt/dXj) which presents HX(M, p~ι(m0)) =
i/,(M) θ Z 2, the first three columns correspond to lifts xw, xu, x12 of the
meridian xx — the first of which projects homeomorphically. Thus the
branch relations giving Hλ(M) from HX{M) can be expressed xw = 0,
^π + 1̂2 = 0 The cycle xn maps, under 3 to a generator of a summand
of

kετ{H0{p-\m0)) -* H0(M)) ^ Z 2

Thus putting the relations x]0 = xu = x]2 = 0 or, equivalently, deleting
the first three columns gives a presentation of Hλ{M) θ Z by Θ(J).

By Lemma 3.7 Θ(J) is similar, over Z[l/3, f], to

o.Λ(i)+/2(i) o

But /j(l) + J2(\) with a column of zeros added presents Hλ(M) = Z; so
/^l) + /2(1) is invertible over Z and the final part follows.
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4. Symmetric Heegaard splittings. In this section we show how
certain symmetry assumptions on a 3-manifold M combine with the
results of §3 to yield additional information about the homology of the
covers of M.

Recall that on the group ring ZG there is a conjunction defined by

/if. G Z, & G G.

In [H3] we showed that the fundamental group of each closed,
oriented 3-manifold M has a pair Pl9 P2 of presentation which are dual in
the sense that their Jacobian matrices over Zπx(M) satisfy

= -J(P2) .

Since the Jacobians of any two presentations of πλ(M) are equivalent, this
duality yields useful information about fundamental groups of closed
3-manifolds (e.g. symmetry of elementary ideas).

If the dual presentations are related by some geometric symmetry, we
can draw further information which is pertinent to the problems at hand.

First we note (relative to applying Theorem 3.1)

4.1 LEMMA. Let θ: G -> Sq C Gl(q, Z) be a homomorphism and J an
n X m matrix over ZG. Then the nq X mq matrix #(/), over Z, satisfies

θ(Jtτ) = θ(J)tτ.

Proof. For g E G one computes that θ(g~ι) = θ(g)tτ. Thus the con-
clusion describes the transposition of Θ(J) obtained by first transposing in
block form and then transposing each block.

The dual presentations mentioned above come from a Heegaard
splitting (cf. [HJ, Chapter 2) of M by alternately choosing (in a very
particular way) the generators to come from one side of the splitting and
the relators to come from the other. The symmetry we assume is that the
sides can be interchanged. Specifically, we say that a Heegaard splitting
(Kj, V2) of a 3-manifold M is symmetric relative to the involution T: M -> M
if τ(Kj) = V2. The splitting will be called ( + )~symmetric or (-)-symmetric
according as deg T = +1 or deg T = - 1 .

To construct examples, note that given a handle body Vλ and an
involution τ0: Wx -> ΘK,, there is a uniquely determined Heegaard split-
ting (Vl9V2) which is symmetric relative to an extension r: Vx U V2 -*
K,UK 2ofτ 0.
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To detect symmetric Heegaard splittings in a more intrinsic way, it is
helpful to think in terms of the quotient space M/τ and to consider cases
according to the dimension of the fixed point set Fix τ.

If F i x τ = 0, their M/τ is a 3-manifold and p: M-> M/τ is a
covering map. The splitting of M induces a one-sided Heegaard Splitting
[Ru] of M/τ, i.e., a union along the boundary of a handlebody and a
twisted /-bundle over a closed surface (which will be oriented if and only
if the splitting is (— )-symmetric). Conversely given a 3-manifold Mx with
a one-sided Heegaard splitting (which will exist, for example, if Mx is
orientable and HX(M;Z2) ¥=Q [Ru; Theorem 1]) there is a symmetric
Heegaard splitting of the appropriate double cover of M}. See Example
5.5.

If dim(Fixτ) = 1, then M/τ is an orientable 3-manifold and p:
M -* M/τ is a branched covering. The manifold M/τ has the form
V/{x = f(x)}9 where V is a handlebody, 3F = So U S1? where So and Sλ

are homeomorphic surfaces with So Π S} — dS0 = dSl9 and/: So -> 5, is a
homeomorphism (called the monodromy) such that/| 9S0 = 1.

If, in addition,

(F; So, S,) = ( 5 X / ; S X 0 , 5 X 1)/ {x X /, * G 35}

for some oriented surface S, then the structure on M/τ is called an open
book decomposition, and M has an open book decomposition whose
monodromy is / 2 , Conversely, if M has an open book decomposition
whose monodromy has a square root, then M has a ( + )-symmetric
Heegaard splitting. The 2A:-fold branched cyclic covers of S3 branched
over a fibered knot are such manifolds. See Example 5.2.

Note that every closed, oriented 3-manifold has an open book decom-
position with connected binding [My].

If dm Fix τ = 0, then the splitting is ( — )-symmetric and M/τ is not a
manifold. The singular points have neighborhoods which are homeomor-
phic to the cone over P1. The complement N of these neighborhoods can
be constructed as follows. Take an oriented surface S with an even
number, 2/c, of boundary components. Take an /-bundle W over S which
is twisted over each boundary component, a cube with (I — k — χ(S))
handles, V, and identify W-(k disks) with the 0-sphere bundle in 3W to
obtain N. Then M is the orientable double cover of N with the k 2-sphere
boundary components capped off with 3-cells. See Example 5.4.

If Fix T φ 0 we choose the basepoint m0 E Fix τ; otherwise choose
m0 E ΘF arbitrarily. For γ: /-*3Fj, a path from m0 to τ(m0),
τγ*: 7ij(M, m0) -+ πx(M9 m0) will denote the map
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Note that (τγ*)2 is conjugation by

« γ = [ ϊ " τ o γ ] .

4.2 THEOREM. Let the closed, oriented ^-manifold M have a Heegaard
splitting (VX,V2) which is symmetric relative to an involution r: M -> M.
Then πx(M) has a presentation P whose Jacobian matrix J(P) over Zπx(M)
satisfies

for any path γ from m0 to τ(m0).

Proof This theorem extends Theorem 4.1 of [H3] to which we refer
for details.

Let S = dVx = dV2 and consider the diagram of inclusion induced
maps

7Γ,(M)

Put Λ̂  = ker η, let p: S -» 5 be the regular cover corresponding to iV, and
identity τr,(Λf) with the group of covering transformations.

We have the Reidemeister pairing

φ: JV X N -» Zττ,(M)

defined by

where h: N -> HX(S) is defined by path lifting and the Hurewicz map and
( , ): H^S) X HX(S) -» Z is the integral intersection pairing. It is
straightforward to compute (cf. Proposition 3.1 of [H3]) that φ is skew
Hermitian bilinear, i.e.

φ(axuxax

λa2u2al\ v) = axφ(ux, v) + a2φ(u2, υ).

Let [άl9 a2,... ,Λ2^} be a "standard basis" for

= (al9...,a2g: Π [^-1^2/] =
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such that each a2ι (i — l,.. .,g) contracts in Vx and oriented so that

(a2ι, fl2l_,)= + 1 . Let xt = μλ{a2i_λ\ so {xl9...9xg} is a free basis for

ττλ(Vλ). Put bj — alj-\CL:Lja~2j_v Then as in the proof of 4.1 of [H 3], it

follows from the formula of Theorem 3.3 of [H 3] that for any v E N9

L e t τ 0 = τ \ S a n d p u t η = μ ^ ^ b j . T h e n P = ( x λ 9 . . . 9 x n : r X 9 . . . 9 r n )

presents πλ{M)9 and by the above formula,

Tγ*^lT~L ~ Tγ*Φ(T0γ*^/' fy ) *

Using the Hermitian properties of φ as well as naturality, the right-
hand side is in turn equal to

(degτo)φ(τo

2

γ^ z,τO γ^7)

and the proof is completed by the observation that deg τ0 = -deg r.
We note that every term in the conclusion of Theorem 4.2 is, in

general, necessary, as reference to Examples 5.4 and 5.5 will show.
However, in many cases the effect of τγ* and/or αγ can be disregarded.

Suppose we have a homomorphism

to a finite abelian group T such that ker v is invariant under r* and such

that T* induces the identity of T. This would be the case, for example, if v

factored through H{(M/τ). We will say that v neutralizes the action of τ.
Let P be the presentation given by Theorem 4.2. Then

Suppose further that v{a) has odd order, say 2m + 1 (possibly
m = 0). Then v(J(P)) is equivalent to/ } = v(amJ(P)) and

/, = deg τJ«.

Let θ: T^Sq (q = o{T)) be the representation of 3.4; so Θ(JX)
presents Hλ(M) Θ Z r l . But by 4.1 θ(Jλ) is either symmetric or skew
symmetric according as deg T = +1 or deg T = - 1 .
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Moreover, in the block diagonal WΘ(Jλ)W λ of 3.4, the blocks will be

complex (skew) Hermitian. From this we can conclude:

4.3 THEOREM. Let M have a Heegaard splitting symmetric relative to an

involution τ: M -» M. If p: M -* M is the regular covering corresponding to

a r-neutralizing epimorphism v: πx(M) -» T to a finite abelian group T such

that v{ά) has odd order', and Jx is the {skew) Hermitian matrix described

above, then the product of the nonzero eigenvalues of the block diagonal

WΘ(JX)W~X is an integer which is a multiple of o(Hλ(M)T) by a divisor of

o(T)m for some m. Moreover:

(i) 7/degτ = -1 then

βχ(M) ΞΞ o(T)(n - mod2,

when n is the genus of the splitting, and the torsion subgroup of Hλ(M) is a

direct double: Hλ(M)τ = A®A.

(ii) // deg T = + 1 and o(T) is odd, then for any prime p not dividing

o(T), the order of the p-primary component of Hλ{M) is pa+2b for some

b > 0, where pa is the order of the p-primary component of HX(M).

Proof. Hλ(M) Θ Zq~λ (q = o(T)) is presented by the nq X nq matrix

θ( Jλ) which is symmetric or skew symmetric according as deg r = +1 or

deg T = - 1 . In either case Θ(J{) is similar, over C, to a diagonal matrix

and the first part follows from Lemma 3.3. Note that this is a strengthen-

ing of 3.5 in that it gives a bound on the ̂ -torsion part of HX(M)T.

Part (i) follows from the fact (Theorems 8.6 and 32.2 of [Me]) that a

skew symmetric matrix of integers has even rank and is equivalent, over Z,

to one of the form

a2

0

0
For part (ii) let, for each ψ E Γ*, g(ψ) be the product of the nonzero

eigenvalues of ψ(Jx). Since ψ(/) is complex Hermitian, g(ψ) is real; so

g(Ψ) = g ( Ψ ) — gίΨ'1)- F° Γ Λe trivial homomorphism ψ0, we have g(ψ0)

— o(Hx(M)τ). Since q is odd we can index Γ* — (ψ0) = (ψ,,.. .,ψ(7_1}

so ψΓ1 = ψ . If σ is any automorphism of Z[l/q, ξ]9 then

0

-α,

a\
0

0
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(σψ 1 ?... ,σψ(^_1)/2} contains exactly one element from each pair
{ψ, , Ψf-, }. Thus the product P = g(ψ]) s(^{q~\)/i) is invariant under
each σ and must, therefore, be an integer. The product of the nonzero
eigenvalues of WΘ{Jx)W~λ is o(Hx(M)τ) P2, and (ii) follows.

Note that it may be the case that some g(ψ) is divisible (in Z[l/#, ξ ])
by an integer, in which case further conclusions can be drawn. For
example, if q is an odd prime and the integer R divides g(ψx), then R
divides each g(ψ, ). If (i?, o{Hλ{M)τ)) = 1, then RqX divides o(Hx(M)τ)
(cf. Example 5.2, case a = 4). I see no way to anticipate this in general.

Some cases of particular interest:

4.4. COROLLARY. // M has a (—ysymmetric Heegaard splitting of odd
genus relative tor: M -> M, ίΛeπ βx(M) is odd, as is βx(M) for any regular
cover M corresponding to a finite, abelian representation of πλ(M) which
neutralizes the action of T.

4.5. COROLLARY. If M has a { — ysymmetric Heegaard splitting relative
to T: M -» M and Hx(M/τ; Z 2) Φ 0, then πx(M) is virtually representable
toZ.

Proof. If T is fixed point free then M covers the nonorientable, closed
3-manifold M/τ, so βx(M) > 0 (and the hypothesis Hλ{M/τ\ Z2) φ 0 is
redundant).

If FIXTT^ 0 then we may have βλ(M) = 0 (see Example 5.4).
However, the map τrj(M) -»τη(M/τ) is onto, since for Mo — M — Fix T,
Mo -» M 0/τ is a double covering and kerίTΓ^Mo/r) -» πλ{M/τ)) contains
a nontrivial coset representative of /?*(TΓ^MQ)).

Thus the composition P: TΓ^M ) -* Hλ(M/τ) -» Z 2 is onto and neu-
tralizes T. Moreover, the element α of Theorem 4.2 is trivial (since
Fix T 7̂  0), so 4.3(i) applies to the covering/?: M -» M corresponding to
ker v to show that βx{M) is odd and, in particular, positive.

Note that, in contrast to 4.5 every lens space Lpq has a ( + )-symmet-
ric Heegaard splitting induced from a one-sided Heegaard splitting [Ru] of
L2pq by the double covering Lpq -> L2pq as in the discussion preceding
Theorem 4.2.

5. Examples. Open book decompositions arise from branched cyclic
coverings of fibered knots as described in §4. They also provide good
examples for analyzing the sets ^?^M(dM) as suggested at the end of §2.
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Accordingly, let A: be a knot in a closed 3-manifold Σ (often, but not

necessarily, Σ = S3) such that the knot space M =Σ — N(k) fibers over

S1. Thus we can represent

M = F X / / ( ; c , 0 ) - ( / ( * ) , 1),

where F is a surface with connected boundary and /: F -> F is a homeo-

morphism which may be chosen so that /1 dF = 1, and so that for x G 3 F

the curve x X //(JC, 0) = (x, 1) is a meridian (bounds a disk in Σ — M).

For any positive integer a, the branched a-fold cyclic cover p: Ma -> Σ

o/ Σ branched over k has the open book decomposition with monodromy

r

5.1. LEMMA. TΓ^Λ^) has the presentation

r ^Xj, X^, ..) ' ' J*\Xi)Xi 1, / 1, Z,

w/iere (x1? x2, } freely generates πx(F).

The Jacobian matrix of this presentation is

where L is the image, over Zτr,( Mfl), of the "Jacobian matrix "

Proof. The first part is a direct application of Van Kampen's theorem.

The second is a computation using the chain rule for free derivatives [F l 5

2.6].

5.2. EXAMPLE. The figure eight knot space is fibered by the surface F

of genus one. We can represent πx(F) = (x9 y: ), where the monodromy

/ induces

y -> y x .

See Figure 1. So we have, using the notation of 5.1, that

L = -χy
y2χ-χ 1 +y
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txr1 =

FIGURE 1. The figure eight knot

This must be taken in a different context for each value of a since the

entries are in Zπλ(Ma).

It is well known (and follows from 5.1) that Hλ(Ma) is presented by

LQ — /, where

is the image of L under the trivial representation x9 y -> 1

We investigate a few values of a.

a — 2.L^ — I—[^ -4] presents Z 5 . In fact tττλ(M2) = Z 5 , and it is not

hard to show that M2 is a lens space.

Thus we can conclude (as in the discussion at the end of §2) that

if and only if c = 1.

a = 3. L3

0 — I = [_g7f] presents Z 4 Θ Z 4 . For the 4-sheeted abelian

cover M3 of M3 corresponding to

Ker(τr1(M3) -» Hλ{M3) -» (s, t: s2 = r2 = 1, rf = te»,
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(which is fully invariant in ττ1(M3)), the Jacobian fl{L) /*(L) L — /

maps to

\+s st

Since /(1,-1) = /(-1,1) = /(-1,-1) = [QOL w e c a n conclude, from the

latter part of Theorem 3.5 that βx(M3) — 3 and o(Hx(M3)τ) is a power of

2.

Using the first part of Theorem 3.5, i.e. the 8 X 8 matrix # ( / ) , we see

explicitly that HX(M3) = Z 3 .

From this we can see that πx(M3) is virtually representable to Z.

It is not hard to check that the longitude λ lifts to a loop which

represents a primitive element of HX(M3). The finite, abelian quotients of

*Γi(M3) by fully invariant subgroups are of the form (Zc.)
3 (c E Z) in

which λ maps to an element of order c. By considering the corresponding

covers of M3 we can deduce that

for all c.

0 = 4. L%- I = [_2i "33] presents Z 3 θ Z 3 θ Z 5 . For the 5-sheeted
abelian cover M 4 of Λf4 corresponding to the fully invariant subgroup

Ker(ττ1(M4) -> HX(M4) -*(t:t5= 1)),

the Jacobianβ(L) f2(L) f*(L) L - I maps to

2φ(t) + 2t4 -5φ(/) + 2(1 + t2)

-5φ(ή + 2(1 + tΛ) lφ{t)-2tA

where φ(t) = 1 + t + t2 + ί3 + t\
Now M4 has a (+)-symmetric Heegaard splitting relative to the

involution τ which is the square of the generator of the Z 4 action on Aί4.

Our homomorphism πλ(M4) -> Z5 neutrahzes r since it factors through

πx(M2) (M2 = M4/τ). Since Fix T ^ 0, Theorem 4.3 applies. In particu-

lar, we have a Hermitian Jacobian which projects in Z77 to

2 ( 1 + t + t4) t2-

We give this for comparative purposes, without justification, except to

note that it is not hard to show that J(t) and /,(/) are equivalent over ZΓ.
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Now for ξ — exp(2τr//5),

2(1 + £ + ?4) £2

Γ -2(1 + ζ2 + ?

has nullity 1 and its one nonzero eigenvalue (its trace) is

So, in the notation of 4.3, g(ψ,) = g(ψ4) = 2\/5~. Similarly, g(f2) = g({3)
= -2γ/fΓ and g(ψ0) ~ 32 X 5. From the conclusion of 4.3 we can deduce
that j β ^ ) = 0 and o{Hλ(M)τ) = 24 X 32 X 5* (k = 0,1).

If we used the matrix /(/) and the statement of 3.5, we can no longer
use eigenvalues, since both eigenvalues of

2(1

2(1 +

are zero. However, by row and column operations we can reduced J(ζ)to

Using the statement of the last part of 3.5 we can obtain only that the
weaker conclusion that o(Hλ(MA)τ) = 24 X 32 X 5k for some k > 0. By
using either of the 10 X 10 matrices Θ(J) or θ{Jλ), one can show explicitly
that

7 / 1 ( M 4 ) ^ ( Z 2 ) 4 Θ ( Z 3 ) 2 .

Finally, the longitude λ lifts to a loop representing an element of
order 2 in HX(M4), so we can conclude that

a — 3k. It follows from Lemma 5.3 below that M,k has a 4-sheeted
regular cover M3k with βx(M3k) > 3. Actually β{(M3k) = 3, since the
8 X 8 presentation matrix Θ(J) for Hγ(M3k) Θ Z 3 can have nullity at
most 6 because H](M3k) is finite for all k. In fact, Hλ(M3k) and Hλ(M3k)
θ Z 3 must be identical modulo 2-torsion. For example, HX(M6) = Z 3 θ
Z 2 8 5 θ 2-torsion.

Just as in the case a = 3 we conclude that

for all c.
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5.3. LEMMA. Let Ma be the branched a-fold cyclic cover of S3 branched

over a knot. Then for any k >: 1 there is an epimorphism πι(Mak) -> πx(Ma).

Thus for any finite sheeted cover Ma -* Ma there is a cover Mak -» Mak of

the same index and an epimorphism π](Mak)

virtually representable to Z, then so is πx(Mak).

πx(Ma). So ifπx(Ma) is

Proof. For the associated unbranched covers Na9 Nak there is a /c-fold

cyclic covering g: Nak -» JVfl. The epimorphism πx(Na) -* πλ(Ma) kills an

element whose powers give a set of coset representations of g*nx(Nak) in

πx(Na). Thus πx(Nak) -» ^(M^) is epic, and the first part follows. The rest

is straightforward.

FIGURE 2

5.4. EXAMPLE. 4̂ ( — ysymmetric Heegaard splitting of genus 2 with

Fix T 7̂  0 is described by Figure 2. This shows the splitting surface S, the

curves aX9 a3 (using the notation of the proof of Theorem 4.2) which

represent generators xl9 x2 for irλ(Vλ) and curves cl9 c2 which are null-

homotopic in Vv The curves bx, b2 are given by bt — d^c^df, where dι is

the path which proceeds from the basepoint to the point aTι_λ Π cf along

a2i-ι in the positive direction. Note that for any based loop in S

transverse to cx and c2 the element in irx(Vx) represented by the loop can

be read off from its intersection pattern with the c/s — recording an xt

(jc,"1) each time the loop crosses c{ in the positive (negative) direction.

The involution τ0: S -» S is a rotation of 180° about an axis per-

pendicular to the paper and through the center of S. This extends to the

involution T: M -» M with τ(Vx) — V2 and deg r — -deg τ0 = - 1 .

Since Fix T φ 0, we have no basepoint problem; so we take α = 1.
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The presentation of w,(M) is given with generators x — xλ, y — x2 (to
avoid subscripts) and relations rx — μxτ*(bx), r2 — μ2τ*(b2). We can read
these using the curves τ(dλcλdχλ), τ(d2c2d2

ι) as above to get:

r\ =yχ~ιy2χy,

r2 — (x2yxy2)x~λyx~2y~ιx~ι(x2yxy2) .

Caution: If one simplifies these relations (by cyclic reduction, say)
then one is likely to loose the desired symmetry properties of the Jacobian
matrix.

One can also read from the picture that

= x2yxy2x~ι.

The conclusion

of 4.2 is valid, as can be seen by direct computation — although this
becomes somewhat tedious, and one must remember that the relations
may be needed, as this is a statement about Zπλ(λf).

If we abelianize, we get

Hλ(M) = (x9y:x4=y4= l9xy=yx).

The Jacobian reduces to

j

x3(y3-y) 1 +x3y + x3y2

-(1 + x + x2y3 + x3y3) {x2 - \)y3

and the effect of T on HX(M) becomes

It is elementary to check that

T*/ = - / t r .

The map v: πx{M) -» HX(M) ->• (x, y: x2 = Y2 = \,xy — yx) neutralizes
the action of T and maps / to the skew Hermitian matrix
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0 1 + x + y + xy'

- ( 1 + x+y + xy) 0

It is easy to check that the 4-sheeted covering M -> M corresponding to
keτvh<isHx{M) = Z3.

Thus irλ(M) is virtually representable to Z, as Theorem 4.5 guarantees
even though HX{M) is finite.

FIGURE 3

5.5. EXAMPLE. A (-)-symmetric Heegaard splitting of genus 3 with
Fix T = 0 is described by Figure 3. The procedure is the same as for
Example 5.4, except in this example the involution τ0: S -> S is a rotation
of 180° about an axis perpendicular to the paper and through the "center
hole" of S.

The basepoint change is by the path γ shown. The element αγ =
[γ τ(γ)] = x3.

The relations, in terms of generators x = x{9 y = x2, z — x3 given by

= (zxyz~]y)x~ιz~ιx~λy~ιzyz~]x~ι(zxyz~ιy)~ ,

r3 = zxyz~]yxzy~ιz~ι.

Abelianization gives

Hλ(M)= (χ,y,z:y = χ-2,z = x~η= (x: ).

as 4.4 guarantees. The map τγ*: x -> z cy"2*;"^"1, etc. reduces to the
identity on HX(M), so every abelian representation neturalizes T.
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The abelianized Jacobian of this presentation is

1
- jx

2χ-3

-x~Λ - x'3 - x~2
X

-x-M

+
-3

- x

1 +
- l
-2 _|.

-x~2

X
-2

-2
- x
—

-1 + l

This is easily seen to satisfy

/ = _X-3/tr

in accordance with 4.2.
The A:-sheeted cyclic cover Mk -> M can be analyzed by 3.5, the odd

sheeted ones must satisfy 4.3(i). A few values are:

/ f 1 ( M 3 ) - Z Θ ( Z 4 ) 2 ,

5.6. EXAMPLE. The knot 810 [R] has Alexander polynomial Δ(ί) =
(1 — t + t2)3, and it is straightforward to show that the abelianized
Jacobian matrix of a presentation of the knot group is equivalent to

The 6-fold cyclic cover M6 of S3 branched over 810 has

i / 1 ( M 6 ) = Z 2 θ ( Z 4 ) 2 Θ Z 9 ,

as can be computed from Theorem 3.4, together with the single branch
relation which kills an oo-cyclic summand.

However, for ξ = exp(2τπ/6), Δ(f) = Δ(f5) = 0, Δ(l) = 1, and
Δ(f2)Δ(f3)Δ(f4) = 1728 = \2o(Hx(M6)τ). This shows that the statement
of Theorem 5.3.3 of [N] is incorrect. Refer to Lemma 3.3 for the correct
statement.
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