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MINIMAL POLYNOMIALS FOR
CIRCULAR NUMBERS

S. GURAK

In a recent paper I gave polynomial expressions to compute the
beginning coefficients of the minimal polynomials for the Gauss periods
and cyclotomic units lying in the cyclotomic field Q{im\ where £ m is a
fixed m-root of unity for a prime m. Here I extend these results for
circular numbers lying in Q(ζm) for m composite. My methods explain
the linear recursion relations found among the beginning coefficients of
the minimal polynomials for certain such circular numbers.

1. Introduction. For any positive integer m set £m = exp(2π//m)
and let G(m) denote the group of reduced residues modulo m. For any
congruence subgroup A defined modulo m, let A be the canonical set of
least non-negative integral representatives for the elements of A. Now fix
a congruence subgroup H defined modulo m and of order /. Choose
integers tλ — \9t29...,te to represent the e — φ(m)/f cosets of H in G(m).
The circular numbers

(1) Σ_&* ( l ^ i s s e )
χ(ΞH

are conjugate over Q and, if they are distinct, have minimal polynomial

(2) g{x) = x* + axx
e~x + -• +ae_λx + ae.

I consider the general question of determining the coefficients of the
minimal polynomial for a sum of circular numbers of the form (1).
Specifically let C denote a finite set of k positive integers (repetitions
allowed), and consider the sum

(3) θ= 2 ( Σ C ) > of circular numbers (1).

If θ has degree e over the rational field Q then its minimal polynomial has
the form (2) and equals g(x) = Πf=1(x - 0 (O), where for 1 < / < e,

(4) β ( />= Σ ( Σ tt''x).

It is well known from the theory of equations [2] that the coefficients ar of
g(x) can be computed in terms of the symmetric power sums Sn = Σ(θ(ι))n
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using Newton's identities

(5) Sr + axSr_x + a2Sr_2 + +ar_]Sι + rar = 0 (1 < r < e)

Λ , V , 2 n 2 β 1 S n _ f f + 1 + aβn_e = 0 (Λ > e).

To compute the power sums I must introduce certain functions
Tn(m9 d). Specifically for each positive d\m9 let Tn(m9 d) equal the
number of times a relation

(6) GCD(cxxλ + c2x2 + -" + cnxn9 m) = m/d

is satisfied by a choice of tuples (c,, c 2,... ,cπ) in C"1 and (JC^ x2,... ,xπ)
in/fn.

In the next section I shall explicitly determine the power sums Sn in
terms of the Tn(m9 d)\ namely,

(Here φ and μ are the usual Euler phi and Mobius functions.) This result
suggests that the functions Tn(m, d) can be expressed in terms of certain
appropriately defined power sums Sn(d) for d\m. I treat this in §3, and
then proceed to investigate certain multiplicative properties of the Tn(m9d)

D. H. and E. Lehmer [5] have recently found curious linear recursion
relations among the beginning coefficients of the minimal polynomials for
certain circular numbers of the form (1) with H cyclic of order / < 4,
where m is a product of two distinct primes. For instance, if m = 35 and
H is the cyclic congruence group of order / = 2 generated by 29 modulo
35, then the circular number £35 + £™ has minimal polynomial

g(x) = x12 - x11 + 2;c10 - 3x9 + 5xs - Sx7 + 13x6 + 8JC5

+ 5JC4 + 3X3 + 2X2 + X+ 1.

Its initial coefficients 1, - 1 , 2, - 3 , 5, - 8 , 13 are the first seven terms of
the alternating Fibonacci sequence. The theory I describe in §§2-4 can be
applied to study the presence of such linear recursion relations. In the
concluding section of the paper I explain in broad generality this curious
phenomenon detected by the Lehmers.

2. Minimal polynomials for circular numbers. Before explicitly de-
termining the power sums used in (5) to compute the coefficients of the
minimal polynomial for the circular numbers given in (1) and (3), I first
wish to give conditions that ensure that the circular numbers in (1) are all
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distinct, and thus of algebraic degree e over Q. This entails describing the
notion of a conductor for congruence groups.

As before, G(m) denotes the group of reduced residues modulo m.
From duality theory there is a one-to-one correspondence between con-
gruence subgroups of G{m) and groups of numerical characters realizable
modulo m. If Ω is any group of numerical characters that can be realized
modulo m, I shall denote its realization modulo mbyΩ(m). The smallest
modulus/ = /(Ω) for which Ω can be realized is, of course, the conductor
of Ω. In view of the duality just mentioned a congruence group A is said
to be realizable modulo m if its corresponding group Ω of numerical
characters is realizable modulo m. In this case I shall denote that con-
gruence group which corresponds to Ω(m) by A(m). The group A(m) is
called the realization of A modulo m. The conductor of A is then the
smallest modulus f — f{A) for which A can be realized, and is, of course,
equal to the conductor of the corresponding group of numerical char-
acters. For instance if A = 4̂(12) with A — {1,5}, then the corresponding
group Ω = Ω(12) of numerical characters is generated by the numerical
character χ given by

if * Ξ 1,5 (mod 12),

i f / = 7, 11 (mod 12),

otherwise.

Hence both A and Ω have conductor / = 4 with ^4(4) = {1} and Ω(4) =
( x ) , where χ(t) coincides with the Jacobi symbol ( — \/t) for / odd.

Now if the congruence subgroup H in (1) has conductor ra, then it
corresponds through elementary classfield theory to the subfield K of
Q(ζm) left fixed by the group of Galois actions σx: ξm-* &„ (x in H).
Indeed η — Σ ^ ^ £* = Trβ (^ ) / A-(ξm). It can be shown that η generates
the subfield K and hence has degree e over Q. (See the appendix for
details of the proof of this fact.)

I am now ready to verify that the power sums Sn in (5) satisfy (7). I
shall always assume that the congruence group H has conductor m, and
that the set C has been chosen so that θ in (3) has algebraic degree e over
the rationals Q.

Fix a positive integer n. For any d\ m the number of primitive d-roots
of unity in the multinomial expansion of any (θυ))n is Tn(m9 d). Since the
terms (θ{i))n in Sn are permuted by the action ξm -> gm for any (t9m)= 1,
each primitive d-root of unity must occur an equal number of times in Sn

when taking into account the total contribution of each term (θ{ι))n. Thus
one finds a total of eTn(m, d) primitive d-roots of unity, explicitly
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eTn(m, d)/φ(d) occurrences of each of the φ(d) primitive d-roots of
unity. Since the Mobius function μ(d) equals the sum of the primitive
J-roots of unity, the value Sn must be Σ^eTJ^m, d)μ(d)/φ(d). This
yields formula (7).

Utilizing (7) for the example cited in the introduction (where m = 35
with Jy = {1,29}, / = 2 and C= {1}) one finds the following values

n Γn(35,l) ΓB(35,5) Γn(35,7) Γn(35,35)

1
2
3
4
5
6

0
0
0
0
0
0

0
0
0
0
0
0

0
2
0
6
2

20

2
2
8

10
30
44

1
- 3

4
η

11
-18

- 1
2

- 3
5

- 8
13

7 14 114 0 0 -174 8
8 0 0 70 186 -47 5
9 0 0 72 440 76 3

10 0 0 254 770 -123 2
11 0 0 330 1718 199 1
12 0 0 948 3148 -322 1

3. Inversion formulae for the Tn(m, d). Fix a congruence group H
as before of conductor m and of order/. For each positive divisor d|ra set
%d — [x E Z\x = xf (mod d) for some x' E H). The set DĈ  determines
a congruence subgroup if̂  of G{d) having order f(d). Using the e(d) —
φ(d)/f(d) cosets of Hd in G(rf) one obtains sums ηl9 η2, .. ,ηe(ί/) °f
circular numbers as in (4) which are conjugates of η — ΣcBC(^χeHd^dX)-
Define the symmetric power sums

(8) sn(d) = Σ n7.

Note though that the polynomial Πfi^ί* — τjf), which is determined from
the values Sn(d), need not be the minimal polynomial of TJ, but perhaps
some power of it. Indeed, the stipulation that H have conductor m and the
choice of the set C in (3) does not guarantee that η will have algebraic
degree e(d) over Q. Since the group Hd need not be of conductor d, it is
even possible that η = 0.

In any case, the power sums Sn(d) can be evaluated from an analog of

(7):
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where for any δ \ d, Tn(d, δ) equals the number of times a relation

(10) GCΌ(cιxι + c2x2 + +cnxn, d) = d/δ

is satisfied by a choice of tuples (cl9 c 2,... ,cπ) in Cn and (x,, x2,... 9xn)
in ΛΓJ. Setting Γπ(d) = Tn(d, 1) it follows from (10) that Tn(d) equals the
number of times a congruence

(11) cxxx + c2x2 + +<?Λ — 0 (mod d)

is satisfied by a choice of tuples (cl9 c 2,... ,cπ) in C 1 and (x ]? x2,... ,xπ)
in Hd. The following lemma gives an expression for Tn(d, δ) in terms of
the Tn(d') for d'\d.

LEMMA 1. For any δ | d,

(12) W

the d'.

Proof. For a fixed tuple c = ( c 1 ? c 2 , . . . , c n ) in C Λ and any divisor
d'Irf, let N(c) denote the number of tuples (xl9 x29...9xn) in H% satisfy-
ing GCD(cλxx + +cnxn, d) — δ, and let N(c9 d') be the number of
solutions cxxλ + + c r t x w = 0 (mod d') with xz in Hd. By the principle
of inclusion-exclusion,

(13) N(c)= Σ μ(d'/δ)N(c9d')9

8\d'\d

where the sum is over d'.Since N(c, df) is (\Hd\/\Hd,\)n = (f(d)/f(d'))n

times the number of solutions of cλxλ + +cnxn = 0 (mod d') with xz

in Hd. one has

(.4)

Summing in equation (13) over each of the tuples c of Cn

9 the result (12)
follows from (14).

Before deriving the formulas for the Tn(m9d)9 I need two additional
results.

LEMMA 2. If d\m then Σdyμ
2(m/d')/φ(m/d') = d\μ(rn/d)\/φ(m).

LEMMA 3. If d\m then Σ^^μid^/d' = μ(d)φ(m)/(mφ(d))9 where
the sum is over d'.
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Since the above lemmas are proved in a straightforward manner,
exploiting the multiplicativity of the functions μ and φ, I shall omit their
proofs.

Denoting the greatest common divisor and least common multiple
functions by ( , ) and [ , ] respectively, I now prove

T H E O R E M 1. The functions Tn(m, d) for d\m are expressed by

(15) TH{mtd)=l2
m S\m

In particular,

(16) Urn) = ±

and

(17) Tn(m,m)=±

Proof. Using (12) I first derive an alternate form of (9) which can be
inverted to yield (16). Explicitly

_ 1 _ y φ(d)Tn(d,d/δ)μ(d/δ)
Λ ] fid) £ Φ(d/δ)

- φ(d)μ(d/δ)

ί *(W) W U / " \f(d')

from (12) or equivalently upon interchanging the order of summation,

(18)

Now
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otherwise equals

d\y μ2(d/δ) ^ d'μ(d/d')
d') * φ(d/δ) φ(d)

using the multiplicativity of the Mobius function and the result of Lemma
2. Thus (18) becomes

Substituting this expression for Sn(d) in the sum

a straightforward manipulation gives (16).
To obtain the general expression (15) for the Tn(m, d), it is conveni-

ent to use Tn{m, m/d). From (12) and (16) I find that

r^f(s)sn(δ)(f(dyf(δ)y
P\-71\7Π>\ I

d\d'\m

where the initial sum is over d' with m and d fixed. Upon replacing d' by
ddf this last expression becomes

(20)

or, equivalently,

U δ\m \ J\°) I 8\dd'\m U

upon interchanging the order of summation. The final sum Σ W m μ{df)/df

of (21) is over dr and is the same as

v Ad')
ί* d' '

δ/(d,δ)\d'\m/d

which equals
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by the result of Lemma 3. Thus

which, upon replacing d by m/d, gives (15). Since the last formula (17) is
immediate from (15) the proof of the theorem is complete.

That the sequence [Tn(m, d)} satisfies a linear recurrence relation for
any d\m is an immediate consequence of Theorem 1. Indeed it follows
from the theory of linear recurrence sequences that

COROLLARY 1. For any d\m the sequence {Tn(m, d)} satisfies a linear

recursion relation over Z of order at most Σ δ ( w | μ([m, dδ]/m) | e(δ).

EXAMPLE. For the example given in §2, one finds from (16) that

ΓB(35) = £[5,(1)2" + 2Sn(5) + Sn(Ί)2" + 2Sn(35)]

where

5,(1) = 1, 5,(7)= £ # " ,
1 = 1

Sn(5) = (€5 + €,">)" + ({? + ξ;2)" and 5,(35) = 1 ( & + {??')"
( = 1

from (8) with /(I) = 1, /(5) = 2, /(7) = 1 and /(35) = 2. The product of
the minimal polynomials associated to the power sums in the expression
for Γn(35) is

(x - 2){x6 + 2x5 + 4x4 + 8Λ;3 + \6x2 + 32x + 64)(x2 + x - 1)

• (xn - xu + 2x10 - 3x9 + 5xs - 8JC7 + \3x6

+ Sx5 + 5x4 + 3x} + 2x2 + x + 1)

or

(xΊ - 128)(JC14 + 29JC7 - 1) = x21 - 99JC14 - 3713JC7 + 128.

Thus the {Γπ(35)} satisfy the recursion Tn+n = 99Γn+14 + 3713Γn+7 -
1287;. Alternatively one finds that Tn(35) = ^(2" + 2Ln) if 71 n, otherwise
0, where {L n | «>0} is the alternating Lucas sequence —1, 3, —4, 7,
-11, 18, -29,. . . .

4. Multiplicative properties of Sn(d) and Tn(d,δ). Here I investi-
gate certain multiplicative properties of the functions Sn(d) and Tn(d, δ)
discussed in the previous section and give some explicit computations. I
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assume the congruence subgroup H of conductor m and the set C is fixed
throughout as before. For any tuple c — (c l 5 c 2 , . . . ,c π ) in Cn and any
divisors 8\d\m let Tn(c,d,8) denote the number of tuples x =
(xl9 x25 9χ

n) ^n Hd satisfying (c]xι + + cnxn9 d) — d/δ. Then
clearly

(22) Tn(d9δ) = ΣTn(c,d9δ).
c

The components Tn(c9 d,δ) are bimultiplicative in the following sense.

PROPOSITION \.Ifd9d'\m with (d9 d') = 1 and if %dd, = %dΠ %d,
then

(23) Tn{c9 dd\ δδf) = Tn(c9 d9 δ)Tn{c, d'9 δ')

for any tuple c in Cn and choice δ\d9 δ'\d'.

Proof. I first note that from the definition of the congruence sub-
groups Hd for d\m the inclusion %dd, C %d Π %d, always holds. If
%dd, — %dΠ %d, then the canonical set Hdd. is just that obtained from
the Chinese Remainder Theorem for finding the least nonnegative solu-
tions x of each of the systems of congruences given by

(24) x = x (modi/), x = x' (mod d') (x e Ήd9 x' E Hd).

Consequently the relations e(dd') = e(d)e(d') and f(dd') = f(d)f(d')
hold. From these remarks it follows that each pair of tuples (xl9 x29... ,xn)
and (x{, x'2,...,x'n) satisfying (c]x] + +cnxn, d) = d/δ and (cxx[
+ +cnx'n, d') — d'/δ' with JCZ E Hd and x[ ^Hd> corresponds to a
unique tuple (xλ9 xl9. . . 9xn) with x̂  E Hdd, satisfying {cxxx

+ +cΛ3cπ, ώ/') = dd'/δδf and conversely. Thus (23) is proved.

If C— {1} then the power sums £„(*/) are multiplicative in the
following sense.

PROPOSITION 2. // d9 d'\m with (d9 d
f) = 1 and %dd. = %dn %d,9

then, if C= {1},

(25) Tn(dd'9δδ') = Tn(d9δ)Tn(d'9δ') foranyδ\d9δ'\d'9

(26) Sn(dd') = Sn(d)Sn(d').

Proof. Statement (25) is clear from Proposition 1. In view of (8) and
the fact that η — Σxen ξd and if — Σ y e ^ ^ ' are linearly disjoint over Q
(since (d, d') = 1), together with the remarks I made at the beginning of
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the proof of Proposition 1, to deduce (26) it suffices to show that the
circular number η = Σ j e # ,ξdd> is conjugate to the product ηη' =
ΣxE:Hd,x'ϊΞHd,ζ

ddd'+dx' Since (d + d\ dd') — 1 one can find an integer a
such that a(d + d') = 1 (mod dd'). I claim that

(27) η= 2 iίf

the conjugate of ηη' under the action ξdd, -» £2</' To verify this assertion I
must show that the residues ad'x + adx' run through the elements of Hdd,
modulo dd' as the x and x' run through Hd and //^ respectively. Since
(d9 d') = 1 and (a, Λ/') = 1 the f(d)f(d') = f(dd') residues ad'* + adx'
are all distinct modulo dd'. Also each lies in both Hd and //^ since

ad'x + αdx' is congruent to x modulo d and to x' modulo d' by the choice
of a. But %dd, — %d Π OĈ , so my assertion will follow, thus completing
the proof of (26).

Applying (26) for special choices of the congruence group H, I next
obtain some explicit computational results.

COROLLARY 2. Let H be the group of e-powers modulo a prime p so that
θ in (I) is a Gauss period of degree f = (p — X)/efor p. Then

(28) Sn(p)=pTn(p)/f-f"-\

where, if p > nφ{f\ the Tn(p) are determined for prime f — I by

n\(29) ™-«.//)»'
and for f — 4 Z?y

(30)

ifl\n, otherwise 0,

D. H. Lehmer [5] attributes the case / = 2 in the above corollary to
Sylvester, and he has found the cases / = 3 and 4. In the general case,
formula (28) follows easily from (7) or (19) and is my result (10) in [3].
Only equation (29) needs to be proved but, in view of the comments made
at the beginning of the proof of Theorem 1 in [3], this is achieved by a
straightforward counting argument involving multinomial coefficients.

COROLLARY 3. For distinct odd primes p and q let H be the congruence
group determined from the set

%= {x G Z\x =±l (mod/?); x = 1 (mod^)}
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of conductor pq. The functions Tn(pq) and Sn(pq) associated to the circular
number (1) corresponding to H for n < p satisfy

(31) Tn(pq) = (n/2) or ° as(n,2q) = 2ornot;

if(n,2q)

if(n,2q)

02) * ( / * ) = , ,_ 1V1J,_, {nM)

COROLLARY 4. For distinct odd primes p and q let H be the intersection
of the groups ±1 modulo p and q. The functions Tn(pq) and Sn{pq)
associated to the circular number θ in (1) corresponding to H satisfy for
n < p and q,

( n \2

n/2)
 or 0 as2\nornot;

(34)

ln 2 otherwise.

Moreover, the coefficients ar of the minimal polynomial (2) for θ satisfy
ar = Pr(p9 q), where for each r, Pr is a polynomial of degree 2[r/2], wA/cA is
of degree [r/2] in bothp and q and whose leading term has sign (— l ) [ ( r + 1 ) / 2 ]

(Here [ ] denotes the greatest integer function.)

The expressions for Tn and Sn in Corollaries 3 and 4 are easily
obtained from Corollary 2 and Proposition 2. The last statement of
Corollary 4 is proved by an argument similar to the one I employed to
deduce Theorem 1 in [3]. In fact, the same techniques readily give the
following generalization of Corollary 4.
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PROPOSITION 3. For prescribed positive integers f\,f2^"Js choose

distinct odd primes ll9l2,...9Is with lt = 1 (mod / ) , and for 1 < / < s, let

H{ be the group of (/, — X)/fi powers modulo /z. Let pt denote the smallest

prime factor of f (1 < / < s). Let H be the intersection of the congruence

groups Ht with θ its corresponding circular number (1). // each lt > rφ(fι)

(1 < i < s) then the coefficient ar for the minimal polynomial (2) of θ

satisfies ar — Pr(lv / 2,.. Js) where for each r, Pr is a polynomial of degree

5. Recursive relations among the beginning coefficients. Using ex-

plicit formulas similar to (31) and (33) to compute the power sums Sn for

a circular number θ of form (1) for which m i s a product of two distinct

primes and H is cyclic of order / < 4, the Lehmers [5] have shown that the

beginning coefficients of its minimal polynomial are the initial part of a

linear recurrence sequence B = {bn\n>0} which is readily determined

from H. Moreover, for any positive integer s they construct circular

numbers of similar type for which the first s + 1 coefficients of their

minimal polynomials are identically Z?o, bl9... ,bs in the sequence B. These

results can be deduced from formula (7) using the results of the previous

section and completely generalized to treat sums of circular numbers in

(3) without such restriction on the modulus m and choice of congruence

subgroup H. I shall give this generalization next, but first I need an

important lemma.

LEMMA 4. Suppose p(x) — xe + P\Xe~l + +pe is any polynomial

with roots ωl9 ω 2 , . . . ,ωe (not necessarily distinct) and Sn = Σω" for each

n > 0. The sequence {bn} given by

( 3 5 ) b o = l , 6 , = 5 , , « * „ = & „ _ , $ , + • • • + & , $ , _ , + S B ( « > 1 )

is recursive and satisfies the linear relation bn+e + pxbn+e_λ + +pebn =

Ofor n > 0. Alternatively, the {bn} are determined by the relations

(36) bnPo + bn_λPx + -•' +bιPn_ι + boPn - 0 (n > 0)

where p0 = 1 and pn — 0 for n > e, or, equivalently, from the generating

function

<3 7>
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Proof. Clearly it is enough to show that the bn given in (35) satisfy (36)
for n > 0. Consider the square (n + 1) by (n + 1) matrix

A =

1

0

0

0

s2 ••

Sj

2

0

0

• sa

n Z.

• sλ

n

Since [bn-λ bn_2 - — bλ b0 —n] A' = [0 0 — 0] from the defining

relations (35), the matrix A is singular. Then the product

1 P\ Pi
0 1 0

0 0 1

0 0 0

Pn

equal to

0

1

0

0

SX •

2

0

•• sn_x

• • sn_2

K--\

0 0

from the Newton identities expressing the sums Sn in terms of the
coefficients of the polynomial p(x), is singular. But this is so if and only if

Now fix a circular number ΘQ of form (3) corresponding to a con-
gruence subgroup Ho of conductor m0 and order / for a given set C of
positive integers. Denote its minimal polynomial by

p(x) ^ e(mQ)

and let B = {bn} be the associated linear sequence given by (35) in the
previous lemma. For a given integer s > 0 choose any positive integer mλ

relatively prime to m0 and to each of the sums

(38) c, + c2 + +cn
(1 < n < s, Cj e C).
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Let H be the congruence group defined modulo m = momx which is
determined from the set

(39) %— [x E Z\x = JC0 (mod m 0 ) , x Ξ 1 (mod m }) for some x 0 in i/0}.

The congruence group H is of order /, and has conductor m since
(ra 0, m,) = 1 and /70 has conductor mQ. Further, it is easy to show that
for any pair of divisors d\m0 and dx\mx,

(40) %Mι = %dn%tlί,

and H = Ho. If θ is the circular number (3) corresponding to H for the
given set C then the beginning coefficients of its minimal polynomial (2)
are characterized by

THEOREM 2. Under the above hypothesis, the coefficients ax,...,as

depend on the value μ(mx) as follows:
(ι)Ifμ(mλ) = -lthenar = br(l < r < ^ y ) .

(ii) If μ{mλ) — 1 then ar—pr(\ < r < s) wherepr — 0forr > e(m0).
(iii) If μ(mx) = 0 then ar = 0 (1 < r < s).

Proof. I assert that for any 1 < w < j the sum S^/w) = μim^S^mo).
Then from the Newton identities (5) one determines the coefficients
al9...9asby

(41) μ(/n1)(51 + «15 r_1 + - - - + ^ . , 5 . ) = - r * Γ (1 < r < j ) ,

where the Sn = Sn(mQ). The result of the theorem will follow.

To prove my assertion I note that by the choice of mx in (38) that for
any fixed tuple c in Cn the component Tn(c9 ml9 dλ) for dλ \ m, is 1 or 0 as
dx — mx or not, since no cx + c2 + * + c n may have a factor in common
with mv Thus for d\ m0 and (i, | m, one finds from (22) and (23) that

(42) Tn(moml9ddι) = 2

= Σ Γπ(c, m 0 , d)Tn(c9 ml9 dx) = Tn{rn0, d)
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or 0 as dx = mx or not. But using (7) to compute Sn(m), I find that

dfn

;(w o m,, dmx)μ{dmx)

φ(mo)Tn(mo,d)μ(d)

f

from (42) and the multiplicity of φ and μ.

EXAMPLE. Pick ΘQ = I 7 3 + {71 + ^ + ξ3

Ί the circular number (3)
corresponding to Ho = {1,6} modulo 7 and C = {1,3}. Associated to its
minimal polynomial p(x) — x3 + 2x2 — x — 1 is the sequence B =
{1,-2,5,-11,25,-56,. . . } from Lemma4 satisfyingαπ+3 = — 2an+2 +
an+\ + α« With m, = 5 the congruence group // constructed in (39) has
H = {1,6} modulo 35 and determines for the given set C the number

an for a

n

1
2
3
4
5
6

+ & + & + £35. The computation
?|35 and 1 <n < 6 yields

TaQ5,1)

0
0
0
0
0

180

ΓΛ(35,5)

0
4
6

44
130
442

ΓΛ(35,7)

0
0

24
64
64

780

of the Γn(35

Γn(35,35)

4
12
34

148
830

2694

,d),

sn

2
- 6

-49
-186

103
621

Sn(35)

an

-2
5
9

25
- 4
117

The coefficients ax and a2 agree with the sequence B above as expected
from Theorem 2. Since 1 + 1 + 3 = 5 in (38) one cannot expect a3 to
agree.

For the choice C— {1} in Theorem 2 with mλ — l, a prime not
dividing m09 one sees from (26) that ^ ( m ) = μ(mx)Sn{mQ) = —Sn(m0)
for 1 < ft < #*!• It follows from Theorem 2 and the argument used in the
proof of (26) that

COROLLARY 5. Let θ0 be a circular number (1) corresponding to any
given congruence subgroup of conductor m0. For a fixed prime I not dividing
m0, the first I coefficients of the minimal polynomial of ξ(θ0 agree with those
of the recurrence sequence (35) associated to the minimal polynomial of θ0.
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This last result explains, of course, the behavior of the initial coeffi-
cients for the minimal polynomial of £35 + ξ^t = £7(̂ 5 + £;Γ2) i n the
example cited in the introduction. However, the corollary is true in a
much broader context as I will show. The next proposition provides an
analog of the factorization formula (xι — l)/(x — \) = xι~ι + xι~2

+ +x + 1 for primes /.

PROPOSITION 4. Let ΘQ be algebraic of degree e over a field F with
minimal polynomial p(x) in F[x\ and let I be an odd prime. If the field
F(θ0) is algebraically independent of (?(£/) then the minimal polynomial of
£70O over F is given by g(x) = P(xι)/p(x), where P(x) is the minimal
polynomial of θ$ over F.

Proof. Denote the conjugates of θ0 over F by θx — 0O, 02,... ,θe. Since
F(ΘQ) is algebraically independent of β(£/) a complete set of conjugates of
£,00 over F is {ξft | 1 < t < / - 1, 1 < / < e). Thus, since

p(x') =fl(χι- θi) = Π1 Π {x - WM*)>
i = l ί = l ί = l

one finds that the minimal polynomial of |70O over F is P(xι)/p(x).

EXAMPLE. Pick ΘQ = I7 3 + I7 1 + £7 + I7 and / = 5 in Proposition 4
where /?(Λ:)=Λ: 3 + 2X 2 — x— 1. Since the minimal polynomial of 0O

5 is
P(x) = x3 + 57x2 — 16x — 1, one finds that £50O has minimal poly-
nomial

g(x) = (x15 + 57x10 - 16x5 - 1)/ (JC3 + 2x2 - x - 1)

= x12 - 2xn + 5x10 - Ux9 + 25x8 + x7 + \2x6 + 2x5

+ 9x4 - 4x3 + 3x2-χ+l.

It readily follows from Proposition 4 that the minimal polynomial
g(x) of ^θ0 given in Proposition 4 for / > e is essentially determined by
the recursion relation

(43) <*n + e+P\an + e-\ + '" +Pean = 0

and the sequence (35) associated to the minimal polynomialp(x) — xe +
pxx

e~x + - - - +pe of θ0. Indeed its first / coefficients match the terms
Z>0, bl9...,ft/_| of (35). The remaining coefficients are computed from (43)
in sequence, except that for the coefficients ar where /1 r, one finds that

(44) avl = -pxavl-λ Pe

avi-e + 4* 0 ^ v < e)>
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where P(x) = xe + qλx
e~x + +qe is the minimal polynomial of ΘQ

over F.
This behavior for the coefficients of g(x) is exhibited in the last

example.

Appendix. Generating classfields over the rational field Q. The
purpose here is to verify the assertion made in §2 that if H is a congruence
group of conductor m then the circular period η = ΣxBffζ^ generates the
classfield K/Q corresponding to H. The proof for the case K/Q cyclic of
degree prime to m is given by Hasse [4, p. 435] using Gauss sums. I treat
the general case in similar fashion with the aid of the following technical
lemma.

LEMMA. Let Ω be a group of numerical characters with conductor m and
fix an integer t relatively prime to m. The following statements are equiva-
lent:

(\)χ(t)=lforallχinΏ.
(2) χ(t) — 1 for all χ in Ω of conductor f — /(χ) satisfying (m/f, f) — 1

with m/f square-free.

Proof. It suffices to show that (2) implies (1) for m not square-free.
Suppose m — Πί"=1 p\ι Π^i4, as a product of distinct primes pλ9...,/?r,
ql9.. .,qs where each bt > 1 (1 < / < r). Since each/?f' divides the conduc-
tor m, it follows, upon analyzing the /^-components of each numerical
character of Ω, that the exponent of Ω is divisible by Πj^/jf1""1. Thus
there are characters χp in Ω (1 < / < r) of order pp with at > bx•,— 1 and
of conductor f(χp) | m satisfying

(45) Λ?ΊI/(XΛ) withf(χp)/pϊ square-free.

Let x be any character in Ω, say of order k. If f(χ) is divisible by Π[=1 jpf1

then, assuming (2), one has χ(7) = 1. Otherwise, let S be the set of primes
pt for which/?f'|/(x). Then the characters ψ = χ HpζΞSχp and ψr = χ
Up(ES XP have conductors divisible by ΠJ=! p*\ hence by (2),

Π X,(0 = l and Ψ'(O=X(O Π x P ( 0 = l.

Thus χ 2 ( 0 = ψ(ί)ψ'(O = 1 so χ ( 0 = ± 1 . If the order k is odd then
χ(/) = 1, else by raising ψ to a sufficiently high odd power one finds
χ ( 0 = 1 if 2 £ S or χ(Ox2(O = 1 if 2 E 5 since each χp is of order pa

for some integer a. In the last instance where 2 E 5 the same argument
applied to the character Π ^ χ ^ at t shows χ 2 ( 0 = 1, so in all cases
χ{t) — 1. This completes the proof of the lemma.
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Now let Ω be the group of numerical characters, say of exponent k,
which corresponds to the congruence group H of conductor m through
duality theory. For each χ e Ω define the Gauss sum τ(χ) by

(46) τ(χ)= 2 X(*)tt>
xmod m

considering χ as defined modulo m. If χ has conductor/(χ), then it is
known [4, p. 427] that

(47) τ(χ) φ 0 iff (m/f(χ)J(χ)) = 1 with m/f(χ) square-free.

In any case τ(χ) lies in the compositum <2(£m, ξk) — Q(ξM) where
M — LCM(m, k). An integer / prime to M corresponds to an automor-
phism σ of Q(ξM) given by the action ξM -» ξ'M. Conjugating in (46) by σ
one finds

(48) τ(x) = 2 x'OOδίί = x'(') 2 x'(»)«ϊ = χ'(0τ(χ').
x mod m x mod m

Next, choose coset representatives tx = 1, r 2 , . . . 9te for ΛΓ in G(m), as in

the introduction, to define the conjugate circular numbers rηi — Σ x E ^ r | ^ .

The Gauss sums are expressible in terms of the t\i and vice versa, namely:

(49) τ ( χ ) = 2 X(ί/)U,,
1 = 1

(so) IJ,

I assert that the τjf (1 < / < e) are all distinct. If not then t]λ — ηt for some
t — tt with / ¥= 1. Since there is no loss in generality in assuming that t is
prime to A:, it follows that there is an automorphism σ of Q(iM) given by
the action ξM -* ^ which fixes the ηz. Then from (49), for any χ in Ω,
τ(χ)° = ΣUiXViH = τ(χ r) so τ(χ') - χ'(r)τ(χ f) in (48). Thus if τ(χ')
7^0 then χ(t) = 1 since (/, fc) = 1. In view of (47) and the lemma,
χ ( 0 = 1 for all χ in Ω so ^ represents H. This contradicts the assumption

To summarize, I have established the following result.

THEOREM. Let K be the subfield of Q(im) corresponding through

classfield theory to a given congruence group H of conductor m. Then K is

generated over Q by
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