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THE FLAT CAUCHY PROBLEM FOR
RADIALLY HYPERBOLIC OPERATORS FROM A

CHARACTERISTIC MANIFOLD OF
HIGH CODIMENSION

CARL N. MUTCHLER

We consider the flat Cauchy problem from a characteristic submani-
fold Σ of high codimension (greater than 1).

Introduction. In the case of a characteristic hypersurface (codimen-
sion 1), several have studied the flat Cauchy problem for operators of
"Fuchsian type". Baouendi and Goulaouic [4] considered the case where
the operator had coefficients analytic in the space variable. In the C00

case, S. Alinhac [1], [2] studied hyperbolic Fuchsian operators. He showed
that when the operator was strictly hyperbolic for / > 0, one had well-
posedness in the flat Cauchy problem. Uniqueness results for a more
general class of Fuchsian operators have been obtained by G. Roberts [8]
when the coefficients are smooth.

For submanifolds of higher codimension, Alinhac and Baouendi [3]
studied the uniqueness question. In particular, they defined (strictly)
radially hyperbolic operators, and, when Σ was simply a point, proved
uniqueness for such operators if the solution to Pu = 0 was sufficiently
flat at t = 0. They showed the same result for second order (strictly)
radially hyperbolic operators when Σ had dimension greater than or equal
to 1. We present here results of existence, regularity, and flatness for those
two cases and use their uniqueness results to obtain well-posedness in the
flat Cauchy problem.

When Σ is just a point, Theorem 3 proves well-posedness for (strictly)
radially hyperbolic operators of any order. Using pseudodifferential
calculus on a compact manifold without boundary, Theorem 1 shows
existence of "nice" distribution solutions to the equation Pu = /. This is
done via an energy method involving Sobolev norms. For a good review of
these notions, the reader is referred to Alinhac [2], Hόrmander [5],
Nirenberg [6], [7], and Treves [9]. Theorem 2 gives better regularity to the
solutions of Theorem 1; it provides solutions flat to any finite order
desired. Theorem 3 then follows from Theorem 2 and the uniqueness [3].
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When dim Σ > 1, Theorems 4 and 5 yield the same well-posedness
result for second order (strictly) radially hyperbolic operators and similar
first order hyperbolic systems respectively.

1. Results for radially hyperbolic operators when Σ is a point. Let

W = {x e R": \x\ < T) with 0 < T < oo. We use the notation
«1

for a multi-index a e Nn, |α| = ax + + αrt, and assume P(x9 dx) to be
an mth order linear partial differential operator with smooth coefficients
defined in W. We further assume that in polar coordinates (ί, θ) e [0, T]
X iS""""1, x = tθ, t = |x|, our operator P takes the form

(1.1) />(/, β, /a/f 3,) = (/3jm + Σ Pm-j{t, θ> 9φ)(tdt)
J

9

where Pm_} is a linear partial differential operator defined on the sphere
iS"1"1, of order m - j , depending smoothly on the parameter t. Let τ be the
dual variable to t and (0, η) be the variable in T*(Sn~ι). For p = tr and
pm-j(t, θ, TJ) denoting the (globally defined) principal symbol of
Pm-j(t9 θ, 9fl), we say that P of the form (1.1) is (strictly) radially hyper-
bolic at the point 0 e Wif its principal symbol, namely

pm(t9 θ9 p, η) = (ip)m + mΣpm-j(t9 θ9 η)(ip)\
7 = 0

has (distinct) real roots in p, i.e.
m

(1.2) A,-i "Π(p-/*(ί.^il))
A: = l

with the /Λ's real (and distinct) for all (ί, 0, η) e [0, Γ] X (Γ*(5"-χ) \0).

REMARK. If P is radially hyperbolic at the point 0 e ̂  then it is
hyperbolic with respect to the hypersurface {t = ε} for each ε, 0 < ε < Γ,
but at the point 0 e fF, P becomes characteristic, i.e. for / = 0, r = 1,
η = 0, we see that /?w vanishes.

EXAMPLE. The following operator, with av a2, and a3 smooth near
(0,0) e R2, is characteristic at (0,0):

P = {x2 - y2pl - df) + 4xydβy
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But in polar coordinates we have

P = {tdtf - dj + a{t, θ)tdt + b(t9 θ)dθ + c{t9 θ)9

and hence P is strictly radially hyperbolic at (0,0) e R2.
The main result of this section is Theorem 3, which solves the flat

Cauchy problem for radially hyperbolic operators at a point. The problem
in this case is

(Pu=f, /€=C°°([0,Γ] x r 1 ) , 3//U0 = 0 for ally G N

\ u e C°°([0, T] X Sn~ι), 3/wUo = ° f o r aΠy G N

As a prelude to Theorem 3, we first prove existence of somewhat
"nice" distribution solutions to Pu = /. We shall use the notation u e L2_k

to mean Γku <Ξ L2 ίoτ k& positive integer.

THEOREM 1. Let M be a smooth compact (n — 1) dimensional manifold
without boundary, and let s and k be arbitrary positive integers. Assume P of
the form (1.1) satisfies (1.2) with M replacing Sn~ι. Assume too that for
0 < T < oo? / e C°°([0, T]\ HS(M)) where HS{M) denotes the usual Sobo-
lev space on M, and that f is flat at t = 0, i.e. 9//| r=0 = 0 for all j e N.
Then there exists usk e L2__k([0, T]\ HS{M)) such that Pusk=f in
&'((0, T) X M).

Theorem 1 is not proved by solving directly the equation Pu = f.
Instead, we introduce the new operator Qλ = P(t, 0, tdt 4- λ, 9̂ ) for λ e N
and solve Qλw = t~λf, λ large. In doing so, since Qλ(t~λv) = t~λPυ, we
have a solution of the form u = tλw, i.e.

Pu = P(tλw) = tλQλw = tλΓλf = f.

To solve <2λw = Γλ/we use the Riesz Theorem and the following lemma
concerning the adjoint operator Q*.

LEMMA 1. With the assumptions as in Theorem 1, there exists λ ^ N

such that for every λ>λs and all v e C0°°((0, T) X M) we have

\\V\\L2([0,T];H_S(M)) ^ \\QλV\\L2([0,T];H_s(M))'

The preceding lemma utilizes pseudodifferential calculus by factoring
the operator Qλ. For each root lk(t,θ,η) we have the corresponding
factor

Λ^ + λ = tdt + λ - Lk(t, θ, Dθ),
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where Lk e C°°([0, T]\ ££\M)) is a pseudodifferential operator of order
1 on M, smooth in t9 with principal symbol equal to ilk(t,θ,η). The
inequality for Ql is shown to follow from similar inequalities for each of
its factors.

If we assume more regularity in the right-hand side function /, the
following theorem then shows us we can expect more regularity in the
solution.

THEOREM 2. In addition to the assumptions of Theorem 1, let f be in
C°°([0, T] X M). Then for To e (0, Γ) , there exists usk in
C*([0, To]; HS(M)) such that

Pus,t=f i π [ 0 , Γ 0 ] x M and d/usjί=o = 0 forO<j<k.

Theorem 2 is a consequence of Theorem 1, Sobolev's Embedding
Theorem, and the following lemma.

LEMMA 2. With assumptions as in Theorem 2, let s\ r, and Γ be positive
integers such that s' > Γ + m — 1 and r > Γ + m — 1. Then there exists
I / J V V e L2_r([0, Γ]; iϊ^(M)) M/wj&wig

iPus\ι\r=f in@'((O9T)xλf),

Combining Theorem 2 with the uniqueness result of Alinhac and
Baouendi (Theorem 2 of [3]) yields Theorem 3 below.

THEOREM 3. Let M be as before and assume P(t9θ9tdndθ) is of the
form (1.1) and satisfies (1.2) with S"'1 replaced by M. If

/ e C°°([0,Γ] XM), 0 < Γ < oo,

and flat at t = 0, /Λejz ίΛere exίsto « unique u e C°°([0, Γ] X M) 5WcΛ r/zβ/

(1.3) P u = / m [0, Γ ] X M α«J u is flat at t = 0.

REMARK. The uniqueness result proved by Alinhac and Baouendi [3]
is stated as one for flat functions; however, as indicated by their proof for
the hyperbolic case, functions flat to some finite order will suffice. This is
exactly what our Theorem 2 provides.
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COROLLARY 3. Assume that P has the form (1.1) and that its principal
symbol has only real roots in p of constant multiplicity, i.e.

(1.4) Pm = imή(p-lj(t,θ,
7 = 1

with the ijS (j = 1,... ,r) real and distinct.

Also assume that P satisfies the following Levi-type condition: For each
j = 1,...,/% P can be written

rrij

(1.5) P= ΣQjΛ^^rttΛ)^-*,
k = 0

with QJk a pseudodifferential operator on (0, T) X M, differential in tdn of
total order m — m 9 where Λy = tdt — Lj is defined as before. Then the
conclusion of Theorem 3 remains true.

The Levi-type condition implies a factorization for Qλ similar to the
one in the strictly hyperbolic case. This factorization also shows that the
uniqueness result of Alinhac and Baouendi [3] still holds.

2. Results for radially hyperbolic operators when dimΣ > 1. With
Σ a ̂ -dimensional submanifold of Rn+P containing the origin (v > 1), and
P(z, 3Z), z e Rn+\ an mth order linear partial differential operator with
smooth coefficients defined near 0 G R^", we assume there exists local
coordinates (x, y) near 0 so that Σ = {y = 0} and P, written in cylindri-
cal coordinates t = \y\,y = tθ, θ e Sn~ι, takes the form

m - l

(2.1) p = (td,)m + Σ Pm-jU, x, θ, rix, dβ)(td,y.

Here

pm-j= Σ Qa

m-j-]al(t,χ,θ,dθ)(tdxy,
\a\<m-j

with <2^_y_|αj a differential operator defined on the sphere Sn~ι, of order
m - j - \a\9 depending smoothly on (/, x) e [0, T] X Ω, 0 < T < oc, Ω
some open set in R" containing the origin.

We let T, ξ be the dual variables to /, x respectively and (0, η) the
variable in T*(Sn~ι). Denoting the principal symbol of β^_7_)α| by
q^-j-\a\ a n d setting p = tτ, ζ = tξ, we say that the operator P of the form
(2.1) is (strictly) radially hyperbolic with respect to Σ near 0 if its principal
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symbol,

pm(t9x9θ9p9ζ9η) = (ip)m + Σ Σ q^j^(t9x9θ
7 = 0 \a\<m~j

has (distinct) real roots in p, i.e.
m

(2.2) pm-imU(P"Ik(t9x9θ9ζ9η))9
k = l

with the lk 's real (and distinct)

forall(i,jc,0,{,7i)e [0, T] X (Γ*(Ω X Sn'ι)\0).

REMARK. If P is radially hyperbolic with respect to Σ near 0, then for
each ε, 0 < e < T, it is hyperbolic with respect to the cylinder {t = ε},
but is characteristic with respect to Σ.

EXAMPLE. The operator in R3,

P=(y2- z2)(d2 - d2) + Ayzϊfr ~(y2 + z2)d2 + 2{ydy + zθz),

with Σ = {y = z = 0} becomes in cylindrical coordinates

P=(tdtf-t^-di,

and hence, is strictly radially hyperbolic with respect to Σ near (0,0,0) e
R3.

The following theorem solves the flat Cauchy problem for second
order operators which are radially hyperbolic with respect to manifolds of
any dimension. The question regarding higher order operators is currently
under study.

THEOREM 4. Let M be a smooth compact (n — 1) dimensional manifold
without boundary, and let f e C°°([0, T] X Ω X M) where 0 < T < oo and
Ω is some open neighborhood of the origin in W. Assume P has the form (2.1)
with m = 2 and satisfies (2.2) with M replacing S"'1. Then if f is flat at
t = 0 there exists a unique u e C°°([0, Γ] X Ω X M) such that

Pu = f in [0, T] X Ω X M and u is flat at t = 0.

Theorem 4 is proved by obtaining an estimate similar to the one of
Lemma 1 (although the techniques are different) and uses another unique-
ness result due to Alinhac and Baouendi (Theorem 4' of [3]). Finally, we
have the same result for certain first order hyperbolic systems.

THEOREM 5. With M, T9 and Ω as before, let

L{t9 x, e9 tdί9 tdχ9 DΘ) = tdt + ΣM*> *> θ)t\ + A(t, x, e9 DΘ)
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be a first order operator defined on [0, T] X Ω X M with each Ai a smooth
N X N hermitian matrix, and A an N X N matrix of operators in 3? ι(M)
depending smoothly on (t, x) Ξ [0, T] X Ω. Assume that the principal sym-
bol {matrix) of A, defined now by oλ{A), satisfies σλ(A) = — σ^Λ*). Then,
given f e C°°([0, T] X Ω X M)9 f flat at t = 0, we have existence of a
unique u e C°°([0, Γ] X Ω X M) satisfying

Lu = / in [ 0 , Γ ] x Ω x M and u is flat at t = 0.

3. Proof of Theorem 1. We begin by proving Lemma 1. Since the
principal symbol of P satisfies (1.2), each root lk(t,θ,η) is positively
homogeneous of degree one with respect to the fiber variable η and
smooth in t and θ. We let Lk(t9 0, Dθ) be a pseudodifferential operator of
order 1 on M, smooth in /, with principal symbol equal to ilk9 and set
Λ^ = tdt - Lk. From (1.1) and (1.2) one can easily check that

w - l

(3.1) P = ΛXΛ2 Λm + Σ (tdt)
JO(m -j)9

7 = 0

where O(j) will be used to denote various pseudodifferential operators on
M, of order y, smooth in /. For k Φj9 we know by (1.2) that Lk - Lj is
elliptic, so there exists a parametrix QkJ of order — 1 on M9 smooth in t9

such that (Lk - LJ)Qkj = 1 mod O( -1). Applying this fact repeatedly in
(3.1) yields

m - l

(3.2) P = Λ1 . Λ m + Σ (ritY Σ Ara°n
7 = 0 \I\<m-j

where

f/= (il9...Jk) c ( l , . . . ,m), k<m9

Λ7 = l, if|/| = 0?

κAr = A. A^ - Aik, if |/| = k9 ά°r e C~([0, T] -S?°(Af)).

The existence of βΛ>y. also shows that (tdt)
J = Σμ^jAjbj, and so

(3.3) P - A 1 . . . A m + Σ Λ^0, a°eC*([0,T];je°(M)).

With Qλ = P(r, 0, r3r + λ, 3#), we immediately get the factorization for
the adjoint operator

(3.4) e x* = ( A m + \ ) * . . . ( A 1 + A ) * + Σ < ( Λ + λ ) * .

For each factor in (3.4) we first shall prove the following inequality: For
s e N there exists λs e N wcΛ rΛα//ί?r all λ>λsandv e Co°°((0, Γ) X M)
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we have

(3.5) M\42

L2([0yT];H_ΛM)) < 2 | |(Λ Λ + λ)*ϋ

To prove this, let (Ω, θl9... ,θn_ι) be a local chart corresponding to one of
a finite number of coordinate patches {Uj} covering Λf9 and let {ψj} be a
square partition of unity subordinated to the {Uj}. We use the Sobolev
norm

N 2

\\42H_ΛM)= Σ \\ψjV\\H_ΛR^r

and observe that

-tdt\\φjv\f_s = 2Re((AΛ + \)*VJV^JV)^ + 2(1 - \)\\Vjv\ts

The hyperbolicity condition implies that the principal symbol of Lk9 ilk9 is
purely imaginary, and so we may estimate the last term by CJIφ^Hij.
Noting that the commutator [(Λ^ + λ)*, φ7] is of order 0, after summing
overy and integrating from 0 to Γ, we obtain

(2λ - C)ζ \\v\\2

H_ΛM) dt < lζ ||( A,

Inequality (3.5) then follows for λs > C.
Rewriting the factorization (3.4) and using inequality (3.5) allows us

to absorb terms of length m — 1 to yield for λ large enough

Σ |2
/

Applying (3.5) and this process repeatedly implies there exists
such that for all λ > λs and all υ e C0°°((0, T) X M) we have

This proves Lemma 1.
Inequality (3.6) shows that the linear functional ( Γ λ / , ^ ) L 2 ( [ T ] )

is bounded in the norm [f(f\\Q*v\\2

H_ΛM)dt]ι/2, and so, by the Riesz
Theorem, admits the representation (uOyQ*ϋ)L2^H_) where u0 is in
L2([0, T]\ H_S{M)). Therefore,

V f> V/L2([0,T]XM) = \ W 1 ' Q*V/L2([0,T]XM)
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for some uλ e L2([0, T]\ HS(M))9 and Qλuλ = Γλf in @'((09 T) X M).

With n J j λ = /λw1? we have Pusλ = tλQλuλ = f in <®' and w 5 λ is in

Li λ ([0, Γ]; HS(M)). Choosing λ sufficiently large then proves Theorem 1.

4. Proof of Theorems 2,3 and Corollary 3.

Proof of Lemma 2. Theorem 1 tells us there exists a distribution

solution us,r e L2_r(Hs) to Pw = /. We will show that this is indeed the

us,j,r needed. From now on call it simply u. Clearly u belongs to

L2_{r_m+l)(Hs,_m+ι). Manipulating the equation Pu = /, one can show by

induction on k the following sublemma.

Sublemma 1. For each k = 1,... ,m — 1 and each j = 0,1 , . . . ,m — k,

there exists Q^m_j_k), a differential operator on M, smooth in t, of order

m — j — k, satisfying

m — k

βfo) - 1, Σ WQ^^Γ^u) «= L2(Hs,_m).
7 = 0

Using Sublemma 1 with k = m — 1 implies dtu e L2_{r_m)(Hs,_m).

Applying Sublemma 1 repeatedly, by induction one can show dju is in

L2_{r_m_ι+l)(Hs,_m_ι+1), 1 = 0,...,/w - 1. For / = m the result follows

from the equation

(tdt)
mu=f- ΣPm-j(tdtyu.

7 = 0

Finally, for / > m, we operate both sides of the equation above by

(tdt)
ι~m and apply similar techniques. This concludes the proof of Lemma

2.

Proof of Theorem 2. Let k, s e N be given, and choose /', s\ and r

such that /' > k + 1, s' > s + Γ + m - 1, and r>m + Γ. Denote the

solution from Lemma 2 by w5 k. In particular, we have t~ιd/usk e L2(HS)

for 0 < y < /r. Since /' was chosen appropriately large, Sobolev's Embed-

ding Theorem implies that our solution is in Ck((0, Γ); HS(M)), and it is

easy to see that l i m ^ 0 + d/usk = 0, 0 < j < k. Thus, for any To e (0, Γ),
w,,/c e c*([°> ^ol; HS(M)) and Pw5 ^ = / pointwise in [0, Γo] X M. This

proves the theorem.

Proof of Theorem 3. Theorem 2 provides a solution in

C*([0, Γo]; HS(M)) flat to order fc. Choosing A: large enough and applying
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the uniqueness result of Alinhac and Baouendi (Theorem 2 of [3]), gives

«,.* = «,,*+i = = "..oo e C°°([0, 7\] /f s (M))

with Γx e (0, To] and w5 ^ /far at t = 0. Since we are free to pick s larger

and larger, we have by Sobolev's Embedding Theorem that u = usoo is

actually in C°°([0, ΓJ X M). Now let 0 < T < oo and 0 < e < Tv Since P

is strictly hyperbolic with respect to [t = ε}, there exists a unique wε in

C°°([ε, Γ] X M) satisfying Pwε = / in [ε, T]XM and 3/κe |,β e = d/u\ί==£,

0 < y < m — 1. The result of Theorem 3 then follows by the uniqueness of

the solution in [ε, ΓJ X M.

Proof of Corollary 3. By techniques similar to those of K. Yamamoto

[10], we can use the Levi-type condition (1.5) to show the following

factorization for P:

\I\<m

and Aj defined to be Λ/ for every j satisfying mλ + - - - + mι_ι + 1 <j <
mι + + m/β Combining this factorization with the assumption on the
principal symbol, (1.4), implies actually

P = ΛFΛ^...Λ7'+ Σ y?{t,θ,D9)An
\I\<m-l

or, after manipulating commutators,

P = Ap - Km/ + Σ ^/ϊ/0-

This factorization is all that is needed now to get the conclusions of
Theorems 1 and 2. For uniqueness, we see that each factor has the form
Aj = tdt - Ly, and by virtue of the fact that the principal symbol of L}

has no real part, one has the estimate

(4.1) R e ( L ^ ^ > L 2 ( M ) > -C|M|2

L 2 ( Λ / ) foral l*;eCH[0,;r] ;/

Let Tx e (0, T). For functions u e CΛ([0, T}\ H2(M))> flat to order k
(with k large enough), by setting v = t~Ύu and using (4.1), one can show
for γ large enough that

2(Λ/))

for each j = 1,... ,r. This, the factorization, and the same method used in

proving Lemma 1 yields for k and γ sufficiently large
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With the desired uniqueness for functions sufficiently flat, we may now
conclude as in the proof of Theorem 3.

5. Proof of Theorems 4 and 5.

Proof of Theorem 4. To prove this theorem we shall first need an
energy estimate similar to that of Lemma 1.

LEMMA 3. With the same assumptions as in Theorem 4 {except here we
assume 0 < T < oo), given any ί £ N , there exists \ s e N such that for all
\>λs and all v e C0°°((0, Γ) X Ω X M)we have

(5-1) FIIL 2 ([0,Γ];//_ 5 (ΩXM)) — |r Q*V L2([0,Γ];/f_,(ΩxΛ/))

Proof of Lemma 3. Since P satisfies (2.1) with m = 2, we may write

P = {tdf + 2Qx{t9 x, θ, tdx, dθ)tdt + Q2(t9 x, θ, tdχ9 dθ)9

with Qλ and Q2 first and second order differential operators respectively.
The condition (2.2) says we may rewrite the operator as

P = ('3, + QiΫ ' Q>

where Q is a second order differential operator in tdx and 9^ whose
principal symbol q, considered as a function of tξ and η, is elliptic and
real. Moreover, the principal symbol of Q* satisfies §* = q < 0.

We shall first prove local estimates and then derive the global
estimate (5.1). For a local chart φ9θl9...9θn_ι), then, let w be in
CQ°((0, T) X Ω X Ω). Since -q* is positive and elliptic, we have by
homogeneity that

-q*(t,x,θ,tξ,η)7>C(\tξ\2+\η\2)

for all (/, x, 0, /£, η) e [0, Γ] X (Γ*(Ω X Ω)\0). Hence, one may associ-
ate with this a definite positive hermitian quadratic form —q*9 whose
value on {tVxw, VβW) has the coercivity

(5.2) -

Recall that for γ e N, the operator Qy is just P(t, x, θ, tdt + γ, tdx, dθ).
We may therefore write

(5.3) Q*y = (rit + i-y-Qΐf-Q*
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Let us now define the function

(5.4) z(t, w) = ||Hlks(R«y-) +1|('9, + l - γ - QΪ)M\2H-S(κ:rι)

+ I -q*(vA'_sw)dxdθ,
•ΏxΩ

with Λ'_5 some proper operator with symbol (1 4- \ξ\2 + \η\2)~s/2. We
claim there is a constant C > 0 such that if γ > 2 we have the following
estimate:

(5.5) - td,z(t, w) < C(γ - l)2z(t, w) + I β H l ^ y - y

Using the coercivity (5.2), we obtain after lengthy computations

(5.6) -td,[ -q*(vA'_sw)dxdθ

< 2Re(td,w,Q*w)_s + cί -q*(VΛ'_sw) dxdθ

+ C||(ίθ, + 1 - γ - βf)H| 2-, + C(γ - l)2||w||2_s.

For the other two pieces in (5.4), we observe that since the principal
symbol of Q* is purely imaginary we have

-/a,IMI2-, < -2Re((/3 / + 1 - γ - Q*)v9 v)_s +(C - 2y)\\v\\2_s

for all υ e Q°((0, T) X Ω X Ω). Applying this estimate for v = w, v =
(ίdt + 1 - γ - βf)w, and using (5.4) and (5.6) yields

-tdtz < -2Re((rθ r + 1 - γ - β*)2w, (tdt + 1 - γ - Qΐ)w) _s

+ C(γ- ifz

Since β x β * + β β * is a second order differential operator in tdx and 3#,
from the coercivity (5.2), we can estimate the last term by

Hence, by (5.3) and (5.4), the inequality (5.5) follows immediately.
The local estimate (5.5) can now be used to derive (5.1) in the

following way. For w e C0°°((0, T) X Ω X M), we use the Sobolev norm

N N

= Σ ll<p*HI-5> Σ <PI = 1 o n M ,
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and use (5.5) for each zk(t9 φkw). Setting Φ = Σ ^ = 1 zk(t, φkw)9 observing

that

, * C{y - 1)2Φ

and summing over k9 we have

If we let Cγ = (C/2)(γ - I ) 2 , this Gronwall-type inequality implies

t2Cyφ < l Γ Ί2Cy~ι\\θ*w\\2 dr

and from (5.4) it follows that

By (5.3), one can easily check that ίC γβ*w = Q*Ύ+C )(tCyw) Thus if
v e C0°°((0, T) X Ω X M), we set w = Γcw to obtain for all γ > 2

Since Cγ = (C/2)(γ - I ) 2 , this inequality with T < 1/2 and λs = 2

+ (C/2) implies (5.1). Hence Lemma 3 has been proved.

I f / h a s compact support in the ^c-directions, then the estimate (5.1)

shows that there exists u0 e L2([0, T]\ HS(Ω' X M)), Ωr <= Ω, such that

ρ λ ( / " 1 / 2 w 0 ) = Γλf in ^ '((0, Γ)XS2 'X M), λ large. But this gives a

distribution solution M = ΐ[λ'{1/2)]u0 to ^w = / . With To G (0, Γ) and

t e N , using the same methods as in the proof of Theorem 2 we get a Ck

solution to Pu = /, flat to the order k at t = 0. We now apply another

uniqueness result of Alinhac and Baouendi (Theorem 4r of [3]). As in the

proof of Theorem 3, then, with 0 < T < oo, Ω replacing Ωr, and dropping

the support restriction on /, we see that the conclusion of Theorem 4

follows.

Proof of Theorem 5. With Qt = -tdt - 1 + λ - Σz tdxA, + Λ*, since

Λ + Λ* is of order 0 (hyperbolicity condition), we obtain a similar

estimate to (5.1). We simply conclude now as in the proof of Theorem 4,

except here we use still another uniqueness result of Alinhac and

Baouendi—namely Theorem 4 of [3]. This completes the proof.
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