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INTEGRALITY OF SUBRINGS OF MATRIX RINGS

LANCE W. SMALL AND ADRIAN R. WADSWORTH

Let A C B be commutative rings, and I" a multiplicative monoid
which generates the matrix ring M, (B) as a B-module. Suppose that for
each y € T its trace tr(y) is integral over 4. We will show that if 4 is an
algebra over the rational numbers or if for every prime ideal P of A, the
integral closure of 4 /P is completely integrally closed, then the algebra
A(T) generated by T’ over A is integral over A. This generalizes a
theorem of Bass which says that if A is Noetherian (and the trace
condition holds), then A(T") is a finitely generated 4-module.

Our generalizations of the theorem of Bass [B, Th. 3.3] yield a
simplified proof of that theorem. Bass’s proof used techniques of Procesi
in [P, Ch. VI] and involved completion and faithfully flat descent. The
arguments given here are based on elementary properties of integral
closure and complete integral closure. They serve also to illuminate a
couple of theorems of A. Braun concerning prime p.i. rings integral over
the center.

One might expect that integrality of tr(y) for y € I' would be
sufficient to assure that A(T") is integral over 4. But this is not so, as we
will show with a counterexample. As it frequently happens with traces,
complications arise in prime characteristic.

1. Integrality and complete integral closure. Recall that if 4 is an
integral domain and b lies in its quotient field, b is said to be almost
integral over A if there is an a € A, a # 0, such that ab’ € A for all
integers i > 1. A is said to be completely integrally closed (c.i.c.) if every
element almost integral over 4 lies in A. Recall that a Krull domain is
completely integrally closed [Bo, §1, No. 3], as indeed is any intersection
of rank 1 valuation rings. (However, examples are known of c.i.c. domains
which are not intersections of rank 1 valuation rings — see [NK] or [G,
App. 4].) If A is a Noetherian domain, the Mori-Nagata Theorem [N,
(33.10)] says that the integral closure of 4 is a Krull domain, hence is c.i.c.

LEMMA 1. Let A be a completely integrally closed integral domain with
quotient field F, and let B be the integral closure of A in any extension field
of F. Then B is completely integrally closed.
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Proof. This is [K, Satz 11].

LEMMA 2. Let R be a ring and A a subring of the center of R, such that
A contains no zero divisors of R. Suppose the integral closure of A is
completely integrally closed. If there is an a € A, a # 0, with aR integral
over A, then R is integral over A.

Proof. If not, take ¢ € R with ¢ not integral over 4. We may assume
R = A[t], which is commutative. Let S = {b - f(¢)|b € A4,b+# 0 and
f € A[x], f monic}, a multiplicatively closed subset of R not containing 0.
Let P be an ideal of R maximal such that P N S = &. Then P N 4 = (0)
and, replacing R by R/P, we may assume that R is an integral domain.
Let B be the integral closure of 4 in the quotient field of R. By hypothesis
aR C B; hence, ¢t is almost integral over B. By Lemma 1, ¢ € B, con-
tradicting the choice of ¢.

Here is a variant of Lemma 2. It is proved in the same way, but using
S = {a'f(1)|f € A[x], f monic} and applying the Mori-Nagata Theorem.

LEMMA 2'. Let A be a Noetherian subring of the center of a ring R; let
a € A be a regular element of R. If aR is integral over A, then R is integral
over A.

These lemmas can be applied to prime p.i. rings, yielding short proofs
of one theorem of A. Braun and part of another. For, if R is a prime p.i.
ring with center C, then a theorem of Amitsur using central polynomials
[A, Th. 6] says that there is a § € C, 6 # 0, such that R lies in a ring
which is a free C-module of finite rank. It follows by the usual determi-
nant argument that 4R is integral over C.

PROPOSITION 3 (Braun, [Br,, Th. 2.7]). Let R be a prime p.i. ring
which is finitely-generated as an algebra over some commutative Noetherian
ring A. Let C be the center of R. Then R is a finitely-generated C-module if
and only if the integral closure of C is a Krull domain.

Proof. If R is a finitely-generated C-module, then by the Artin-Tate
Lemma [AT] C is a finitely-generated A-algebra. Hence, C is Noetherian,
so by the Mori-Nagata Theorem its integral closure is a Krull domain.
Conversely, suppose the integral closure of C is a Krull domain (hence
completely integrally closed). By Lemma 2 and the remarks above, R is
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integral over C. Then, by a theorem of Procesi [P, p. 128], R is a finitely
generated C-module.

PROPOSITION 4 ( Braun [Br,, pp. 13-14], Schelter [S, Cor. 2 to Th. 2]).
If R is a prime p.i. ring with center C, and if the integral closure of C is
completely integrally closed, then R is integral over C.

Proof. Apply Lemma 2 and the remarks preceding Prop. 3.

2. Integrality when traces are integral. We now return to Bass’s
theorem. Throughout this section, let A € B be commutative rings, and I’
a multiplicative monoid in the n X n matrix ring M,(B) which generates
M, (B) as a B-module. Let A(I") be the A-module (and algebra) generated
by I'. We wish to consider when the following statement is true:

(+)

If tr(y) is integral over A, for each y € T, then A(T) is
integral over A.

PROPOSITION 5. If A is an algebra over a field F, and if char F = 0 or
char F = p > n, then (*) is true.

Proof. Consider first the generic n X n matrix «, whose entries are the
commuting indeterminates x;;, X;5,...,X,,. Let Aj,...,A, be the eigenval-
ues of a in an algebraic closure of F(x,,,...,x,,), and let the characteris-
tic polynomial of a be

Xe(X)=x"4+cx" 1+ - +¢

ne

For each i, let 7, = tr(a') = N} + --- + N ; these traces are related to the
¢,’s by Newton’s identities (see, €.g., [C, pp. 436-437], or [H, p. 249]):

i—1
(1) L+ et tic=0, 1<i<n.
j=1

Now, take any y € A(T"). Then tr(y) is integral over 4, since y is an
A-linear combination of elements of I'. Specializing from « to y we obtain
formulas corresponding to (1) relating the traces tr(y') and the coeffi-
cients of the characteristic polynomial x_(x). The assumption on char F
assures that we can divide by 2,3,...,n. Therefore, we may solve recur-
sively for the c; in (1), obtaining expressions for the coefficients of x_ (x)
as polynomials in {tr(y’)|1 < i < n}. Thus, the coefficients of X,(x) are
integral over A; hence vy is integral over 4, as desired.
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REMARKS. The argument for Prop. 5 is valid for any ring A in which
the images of 2, 3,...,n are all units. Note also that the assumption that
B(T') = M,(B) was not used.

PROPOSITION 6. Suppose that for every prime ideal P of A, the integral
closure of A /P is completely integrally closed. Then (*) is true.

Proof. If not, take any ¢ € A(I'), ¢ not integral over 4. Let S =
{ f()|f € A[x], f monic} € M,(B). S is closed under multiplication and

0 & S. Let Q be an ideal of M,(B), maximal with the property that
Q0N S=@. Then Q is a prime ideal and, reducing mod Q, we may
assume that 4 and B are integral domains. Furthermore, since there is no
harm in enlarging B or replacing A by an integral extension, we may
assume that B is a field and A is integrally closed in B. Then, by Lemma
1, A is completely integrally closed.

Let c;,...,c,2 €' be a basis for M,(B) as a vector space over B.
Take any y € A(T"), and write y = ¥Lb,c,. Then, for each j,

(2) tr(yc;) = Zbitr(cicj).

By hypothesis, all the traces appearing in (2) lie in 4. Viewing (2) as n?
equations in the variables b,,...,b,2, it follows by Cramer’s rule that
8b, € A,i=1,...,n% where & = det(tr(c,c,)) € A. By the nondegeneracy
of the trace, & # 0. Let T = X7, A(8c,); since 8b, € A, we have

(3) 8%4(T) c T.

To see that T is actually a ring we make a similar computation. Let
(4) ¢ = ;Bijkck'
Multiplying (4) by any ¢, and taking traces, we have
(5) tr(c,c,c,) = Zk:,B,jk tr(c,c,).

Again, the traces in (5) lie in A4, so (fixing i or j) by Cramer’s rule
6B, ;x € A. Thus, rewriting (4) as
(Sci)(acj) = Z(aﬁijk)(sck)

k
we see that T is closed under multiplication. Since 7 is also a finitely
generated A-module, it is integral over 4. Therefore, Lemma 2 and (3)
above show that A(T") is integral over 4. This contradiction completes the
proof.
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COROLLARY 7 (Bass). If, in addition to the hypotheses at the beginning
of the section, A is Noetherian and T is a finitely generated monoid, then
A(T') is a finitely generated A-module.

Proof. As noted earlier, the Mori-Nagata theorem assures that the
integral closure of a Noetherian domain is c.i.c. Therefore, by Prop. 6,
A(T) is integral over A. Since, in addition, 4 is Noetherian and A(T) is a
finitely generated p.i. A-algebra, it follows by a theorem of Procesi [P, p.
128] that A(T') is a finitely generated A-module.

ExAMPLE 8. Let F be any field of prime characteristic p, and let x and
y be commuting indeterminates over F. Let C = F[x, y]; J = yC, A the
subring F + J of C, and B the quotient field of C. In the matrix ring
M,(B), let I be the identity matrix, and { E;;} the usual matrix units. Let
I' be the monoid generated by {xI + yE, |1 <i, j < p}. Then B(I') =
M,(B), and for each y € T, tr(y) € A. But none of the generators of I’ is
integral over A. So, (*) does not hold.

Proof. The p? generators of T are linearly independent over B; hence,
B(T') = M,(B). Note that I' € M,(C), and in M,,(C/J) the image of I is
generated by scalar matrices; so the image must consist entirely of scalar
matrices, which have trace 0. Thus, for y € T, tr(y) € J < A. However,
xI + yE,; cannot be integral over 4, since its image in M,(C/J) is clearly
not integral over 4/J = F.

ReMARKS. Example 8 shows the need for the hypotheses in Prop. 5
and Prop. 6. In the example A is integrally closed, but its complete
integral closure is C. By slightly modifying the example, one can obtains a
counterexample to (*) for any n > p and any ring 4 with a prime ideal P
such that 4 /P has characteristic p, and the integral closure of 4 /P is not
c.i.c. E.g., to obtain a counterexample in characteristic 0, replace F in Ex.
8 by the ring Z of integers, and J by the ideal of Z[x, y] generated by p
and y.
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