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ON A CLASS OF TOPOLOGICAL GROUPS

MORE GENERAL THAN SIN GROUPS

R. W. BAGLEY, T. S. W U AND J. S. YANG

We consider a class of topological groups more general than those
with small invariant nieghborhoods of the identity, SIN-groups. We refer
to these more general groups as TV-groups. We prove that a compactly
generated TV-group is a SIN-group. This result has several applications,
including the following: A locally compact TV-group is unimodular.

Introduction. There has been considerable interest in topological

groups with small invariant neighborhoods of the identity. There is a very

good bibliography of the literature on these groups in [6]. In this paper,

we are interested in a more general class of groups which share some of

the interesting properties of SIN-groups. We obtain some of these proper-

ties and attempt to determine which of the more general class are

SIN-groups.

If G is a topological group and 38 is a subgroup of the group of

topological automorphisms of G, we say that G is an 7V(^?)-group or

simply G is N(SI) if the following holds: For each pair of nets {x a ) in G

and {φa} in ^ s u c h that {xa} converges to the identity, the net {Φa(xa)}

converges to the identity or fails to converge. We say that G is S I N ( ^ ) if

G has small neighborhoods of the identity which are invariant under the

elements of 38. This is tantamount to saying that for any net (φα, xa) e 38

X G with xa -> e we have Φa(xa) -» e. If Si is the group of all inner

automorphisms of G we use "JV" and "SIN" for "N(38)" and " S I N ( # ) "

respectively.

One of our most useful results is the following: If SI is a completely

generated group of automorphisms of G in an admissible topology and G

is a locally compact TV(^?)-group, then G is S I N ( ^ ) . We use this result to

prove that a locally compact TV-group is unimodular, Theorem 4; a result

on invariant measures, Corollary 4; and a result on semidirect products,

Proposition 3. We prove a structure theorem for locally compact totally

disconnected TV-groups and construct an example of a locally compact

iV-group which cannot be embedded in a locally compact SIN-group. This

solves a problem posed in [6] in the category of locally compact groups. In

209



210 R. W. BAGLEY, T. S. WU AND J. S. WANG

a subsequent paper we apply some of the present results to pro-Lie
groups.

For relations between SIN-groups and MAP groups see [2], in partic-
ular Theorem 2.9 and [6].

We will use the symbol "^?" to denote an arbitrary group of topologi-
cal automorphisms of a group G unless otherwise specified. We note that
a locally compact group G is N{&8) if and only if, for each neighborhood
U of the identity and each compact set C, there is a neighborhood V of
the identity such that φ(V) c U c (G - C) for every ψ e i

PROPOSITION l.IfGis a locally connected, locally compact N{3S)-groupy

then G is SIN(^).

Proof. Let U be a compact neighborhood of the identity. Let V be an
open neighborhood of the identity contained in U. Since G is locally
connected and is an 7V(̂ ?)-group, there is a connected neighborhood Fof
the identity such that 3&{V) c U' U (G - U). Since each φ(V) is con-
nected and contains e, 88{V) is connected and hence contained in U' c U.

If 38 is a group of automorphisms of G and K is a normal subgroup of
G which is invariant under the elements of 38, we let 9S represent the
automorphisms of G/K induced by the elements of 38 in the natural way.

PROPOSITION 2. // G is a locally compact N(3#)-group, then the
following hold:

(ϊ)G/KisN(&).
(ii) G is SIN(#) if and only if G/K is SIN( J ) .

Proof of (ϊ). Let C be a compact subset of G such that CK = C and U
a ΛΓ-saturated neighborhood of e in G. Then, since G is an 7V(^)-group
there is a neighborhood V of e such that C n J ( F ) c [/. It follows that
C/K Π J ( Fί:/i<0 c U/K and the proof of (i) is complete.

Proof (ii). Clearly G/ΛΓis SIN( J ) if G is SIN(#). To prove the other
implication, let G/Kbe SIN( J*). Let [/be a compact neighborhood of the
identity. We let C = KU. Since G/K is SIN( J ) , there is a neighborhood
W of the identity in G such that WK = KW and B(W) c C. But since G
is N(33) there is a neighborhood F of the identity such that V <z W and
C Π ^ ( F ) c t/. But 38(V) c #(ΪF) c C, whence ^(K) c ί/.

THEOREM 1. // G ώ α locally compact N{88)-group such that G/Go is
compact, then G is SIN(^).
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Proof. Let K be the maximal compact normal subgroup of G such that

G/K is a Lie group (see 3.1, p. 180 [3]). By Proposition 2(i), G/K is an

N( J > g r o u ρ and by Proposition 1, G/K is SIN(&). The proof is com-

pleted on applying (ii) of Proposition 2.

THEOREM 2. If 38 is a compactly generated group of automorphisms of G

in an admissible topology and G is a locally compact N(3$)-group, then G is

Proof. Let U be a compact neighborhood of the identity of G. We

obtain a neighborhood Kof the identity such that 38(V) c (7. Let ^ b e a

symmetric compact generating set of 3S. There is a neighborhood W of the

identity of G such that &(!¥) c tΛ Since G is an iV(^)-group, there is a

neighborhood Fof the identity such that U Π 3S(V) c PFand # ( F ) c ϊF.

By induction ^n(V) c IF. First, ^ a n d Fwere chosen so that this holds

when n = 1. If <Vn(V) c JF, then ί ί " + 1 ( F ) c <V(W) c £/, whence

^ W + 1 ( F ) c ί / n Λ ( F ) c fF. This completes the induction. It follows

that a(V) = UΛ Vn(V) c W c [/ as desired.

In the following we denote the center of G by " Z " .

COROLLARY 1. If G is a locally compact N group and H is a normal

subgroup of G such that G/H Π Z is compactly generated, then G has small

H-invariate neighborhoods of the identity.

Proof. Let SS be the group of inner automorphisms of G determined

by the elements of H. Then G is a locally compact N{3i) group and 3$ is

compactly generated in the compact-open topology. By Theorem 2, G is

), which is the desired conclusion.

COROLLARY 2. // & is compactly generated in an admissible topology

and G is a locally compact N(3$)-group, then G is 3§-unimodular.

Proof. By Theorem 2, G is S I N ( ^ ) and hence ^-unimodular by

Proposition 2.4 [2].

The following is a special case of Corollary 1 of Theorem 2. We state

it as a theorem because of its frequent subsequent use.

THEOREM 3. If G is a locally compact N-group such that G/Z is

compactly generated, then G is SIN.
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THEOREM 4. If G is a locally compact N-group, then G is unimodular.

Proof. Let g be an element of G and V a compact neighborhood of the

identity. Let H be the open subgroup generated by gV U V. By Theorem

3, H is SIN. Thus H is unimodular and it follows from Proposition 20,

page 86 [5] that G is unimodular.

A subgroup H is uniform if H is closed and G/H is compact.

COROLLARY 4. // G is a locally compact, o-compact group such that

G = FH where F is a normal N-subgroup and H is a uniform subgroup, then

G/H admits a finite invariant measure.

Proof. Since G is σ-compact the map θ: F/F Π H -> G/H defined by

θ(fF Π H) = fH for / e F is a homeomorphism. By Theorem 4, the

modular functions for F and F Π H correspond onF Π H. Thus JF/F Π i/

admits a finite invariant measure and the conclusion follows from Lemma

1.7 [8].

We are now able to give an easy proof of a result of S. P. Wang,

Lemma 3.3 [9].

THEOREM (S. P. Wang). If G is a locally compact group, H is a uniform

subgroup, and G contains an open normal MAP subgroup F, then G/H

admits a finite invariant measure.

Proof. Since F is open and normal, the natural mapping of F/F Π H

onto FH/H is a homeomorphism. By Corollary 4 to Theorem 4, FH/H

admits a finite invariant measure. Now G/FH is finite since FH is open

and H is a uniform subgroup. Thus G/H admits a finite invariant

measure.

Among the examples of semi-direct products of two SIN groups

which are not SIN are the following: The circle group acting on the plane

by rotation and the discrete cyclic group acting on the compact group of

bisequences by shifts. We consider a semi-direct product G XηH defined

by the homomorphism η: H -* s/, the group of automorphisms of G. We

denote the kernel of η by Kη. The group operation in G X η H is defined as

follows: (g, h)(gι, hλ) = (gη(h)(gι), hhx).

PROPOSITION 3. If H is a locally compact, locally connected group, G is

a locally compact SIN-group, H/Kη is compactly generated, and G XηH is

an N-group, then G XηH is SIN.
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Proof. We first show that G is SIN(η(#)). Let U X V be a neighbor-
hood of the identity (el9 e2) of G Xη H and let C be any compact subset
of G. Since G XηH is an iV-group, there is a neighborhood W of the
identity of G such that

(η(h)(x)9 e2) = (e l 9 A)(x, e 2)(e l 9 A"1) E ί/X F ϋ ( G X i ί - C X e 2 )

whenever x ^ W. Thus τj(A)O) e ί / U ( G - C ) . It follows that G is
N(η(H)); and since A/ΛΓη is compactly generated, G is SIN(τ](/f)) by
Theorem 2. To complete the proof we let Uλ X U2 be an open neighbor-
hood of the identity of G XηH and let C be a compact subset G X H such
that Ux X U2 c C. Since G is SIN there is a neighborhood U of the
identity of G such that gUg'1 c t^. Since G X^ // is an TV-group, there is
a neighborhood Ĥ  of the identity of G and a connected neighborhood K
of the identity of H such that

(g,h)WxV(g9h) ^ U,X U2U(GX H - C)

and

τj(/z)W c ί/.

If w e fF, then

(g, A)(W, β2)(g> hγl = (gη(h)(w),

Thus (g, h)w X V(gy h)~ι intersects Uτ X U2 for every (g, A). It follows
that (g, h)w X V(g, h)~ι c Uλ X U2 for every (g, A) e G X H and w e
PF since Fis connected. This completes the proof of Proposition 3.

To see the necessity of the hypothesis of local connectedness we point
to Example 2 below, a semi-direct product H XηK which is a locally
compact MAP group hence N but not SIN, even though K is compact and
H is discrete normal.

EXAMPLE 1. We construct a locally compact TV group which is not
embeddable in a locally compact SIN group. Let F be a discrete group
which is not MAP. For each positive integer n we let Hn = F X F and
Kn = Z2. Let H = ΣHn, the direct sum with discrete topology and
K = Π Kn, the direct product with product topology. We define the
semi-direct product H XηK as follows: If the zth coordinate of k is 1,
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then η(k)(h) has /th coordinate (/2, fλ) where (fl9 f2) is the /th coordi-
nate of h. If the /th coordinate of k is 0, then the /th coordinate of
η(k)(h) is unchanged. It is a routine computation to show that H XηK =
G is an N group. As a matter of fact, if H is given the product topology,
the corresponding group is SIN. Thus G is embeddable in a nonlocally
compact SIN group. By "embedding" we mean a continuous isomor-
phism.

To see that G is not embeddable in a locally compact SIN group, we
note that if it were, it would contain an open normal MAP subgroup. It is
easy to see that any open normal subgroup contains a subgroup isomor-
phic to the direct sum of all but a finite number of the groups Hn. This
contradicts the fact that F is not MAP.

The following is an example of an MAP group which is not SIN and
as mentioned above shows the necessity of the hypothesis or local con-
nectedness in Proposition 3.

EXAMPLE 2. For each positive integer / let Hι = Z3 and Kt = Z2. Let
H be the direct sum Σ Hι with discrete topology and K be the direct
product Π Kt with product topology. Let G = H XηKdefined as follows:
The /th coordinate of η(k)(h) is the /th coordinate of h if the correspond-
ing coordinate of k is 0. Otherwise, the /th coordinate of η(k)(h) is the
negative of the /th coordinate of h. The group G is MAP since H XηK
with the product topology is compact.

Since any topological group G is a quotient of the free topological
group generated by the underlying space of G and since every free
topological group is MAP [6], quotients of N groups are not necessarily
TV-groups. In Proposition 2 we say that, if a compact normal subgroup is
factored from an TV-group, the result is an N group.

LEMMA 1. If G is a locally compact totally disconnected N group and X
is a compact subset of G, there is an arbitrarily small compact open subgroup
which is normal in some open subgroup containing X.

Proof. Let H be the open subgroup generated by X and some compact
neighborhood of the identity. By Theorem 3, H is SIN and therefore
contains arbitrarily small compact open normal subgroups.

PROPOSITION 4. // G is a totally disconnected locally compact N group
and A is a closed normal central subgroup which has no non-trivial bounded
elements, then G/A is an N group.
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Proof. Suppose {aagauag~1} converges to x where aa e A and {ua)
converges to e. That is gauag~ιA converges to xA in G/A. Let K be a
compact open subgroup such that xK = Kx by Lemma 1. We can choose
α 0 such that wα e K and aagauag~ι e xST for all a > a0. Since the
sequence {gaU^g'1} is frequently in K for each α > α0, for any fixed
α > α0, there is an integer n such that α£ and an

a^ are in .x"KΓ. Thus
(aaoaa)n e ^ This implies that a~^aa = e since A has no non-trivial
compact elements. It follows that {gauag~1} converges to a~^x and since
G is an N group, x = aao e A. This completes the proof.

For a topological group G we denote by P(G) the periodic elements
of G and by B(G) the bounded elements of G.

PROPOSITION 5. If G is a locally compact totally disconnected N group,

F is a closed-normal SIN subgroup, and for some open compact normal

subgroup K of F, B(F/K) is compactly generated, then F has small G

invariant neighborhoods of the identity.

Proof. Since B(F/K) = B(F)/K and K is compact, B(F) is com-
pactly generated. By 3.22 [2], P(F) Π B(F) is compactly generated and
therefore compact by 3.17 [2]. By Theorem 3 [11] and Corollary 5.6 [10],
P(F) Π B(F) is open and characteristic in F. Thus, if a net {xa} in F
converges to the identity and {ga} is any net in G, the net {gα-x^g"1} is
eventually in P(F) Π B(F) and consequently has a subnet which con-
verges. This subnet converges to the identity since G is an N group. This
completes the proof.

COROLLARY 5. If G is a locally compact totally disconnected N group

and F is a closed-normal SIN subgroup such that B(F) is compactly

generated, then F has small G invariant neighborhoods of the identity.

Proof. Since F has compact open-normal subgroups, the corollary
follows immediately.

Since almost connected as well as compactly generated N groups are
SIN, there are structure theorems for such groups [2]. The following
theorem is a structure theorem for totally disconnected N groups.

THEOREM 5. If G is a second countable locally compact totally discon-

nected N group which is not SIN and K is a compact open subgroup there are

sequences of open subgroups {Gn} and {Kn} such that {Gn} is strictly

monotone increasing, {Kn} is strictly monotone decreasing and

1. Each Gn is a compactly generated SIN group, G = (JGn, andKn is a

maximal compact open normal subgroup of Gn contained in K.
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2. The group of inner automorphisms of G restricted to L = Γ\Kn is
equicontinuous on L.

3.Gn/L= lim^GJK,

Proof. There is a sequence {gz} in G such that G is generated by
{K, gl9 g2,...}. Let Gλ be the open subgroup generated by {K, gλ) and
let Kλ be the maximal compact open subgroup of Gv For some integer nv

the open subgroup G2 generated by {K, gv.. .,Gni} contains a maximal
compact open normal subgroup K2 properly contained in Kv The strict
inclusion is obtained since otherwise K would be normal in G contradict-
ing the fact that G is not SIN. An N group with a compact open normal
subgroup is clearly SIN. By induction we obtain Gn and Kn for each
positive integer n with the desired properties. The first conclusion is
obvious by construction and the fact that any compactly generated N
group is SIN. The second conclusion follows since L is compact and
normal in G and G is an N group. For the third conclusion we note that, if
U is any compact neighborhood of the identity of G, then some Ki is
contained in UL.

We note that, since L is compact and normal in G and G is not SIN,
then L is not open. Also, since there is a sequence of compact open
subgroups which forms a neighborhood base at the identity of G, there is
a monotone decreasing sequence of compact normal subgroups {Ln} such
that G == \iτnG/Ln. Each Ln is obtained in the manner above.

Added in proof. There is a gap in the description of Example 1. The
problem is resolved in the paper: Maximal compact normal subgroups and
pro-Lie groups by R. W. Bagley and T. S. Wu to appear in Proc. Amer.
Math. Soc.
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